請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98349| 標題: | GARCH-MIDAS 對波動性與涉險值預測的應用 An Empirical Application of GARCH-MIDAS for Volatility and Value-at-Risk Forecasts |
| 作者: | 蔡秉叡 Ping-Jui Tsai |
| 指導教授: | 陳宜廷 Yi-Ting Chen |
| 關鍵字: | 結合懲罰項之混合頻率-自我迴歸條件異質變異數模型,波動度預測,涉險值預測, GARCH-MIDAS with penlized framework,Volatility forecast,Value at Risk forecast, |
| 出版年 : | 2025 |
| 學位: | 碩士 |
| 摘要: | 本文應用 Fang et al. (2020, Journal of Empirical Finance) 所提出結合懲罰項之自我迴歸條件異質變異數-混合頻率模型 (GARCH-MIDAS),進行股票與債券市場報酬率之波動度與涉險值(VaR)的日頻率預測。在實證過程中考慮了多個月頻率的預測變數;此外,也加入傳染病風險變數做為新的解釋變數。實證結果表示所考慮的實證設定在股票市場波動度與涉險值預測均具有相對的優勢;另外,就債券市場的波動度與涉險值預測而言,雖整體的預測能力下降,但本文的實證設定尚能展現一定的預測能力。 This thesis applies the generalized autoregressive conditional heteroskedasticity mixed data sampling (GARCH-MIDAS) with penalized framework proposed by Fang et al. (2020, Journal of Empirical Finance) to generate daily forecasts of volatility and Value at Risk (VaR) for stock and bond index returns. Beyond daily returns, we incorporate several monthly macroeconomic and financial predictors, and we further augment the model with indicators that capture infectious disease risk. Empirically, our specification outperforms both the traditional GJR-GARCH model and the quarterly-frequency GARCH-MIDAS framework. While its overall predictive power declines for bond index returns, the proposed specification still delivers a meaningful level of accuracy in that market. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98349 |
| DOI: | 10.6342/NTU202502186 |
| 全文授權: | 同意授權(全球公開) |
| 電子全文公開日期: | 2025-08-05 |
| 顯示於系所單位: | 財務金融學系 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 820.19 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
