請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98347完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳家麟 | zh_TW |
| dc.contributor.advisor | Ja-Ling Wu | en |
| dc.contributor.author | 葉修瑜 | zh_TW |
| dc.contributor.author | Xiu-Yu Ye | en |
| dc.date.accessioned | 2025-08-04T16:06:51Z | - |
| dc.date.available | 2025-08-05 | - |
| dc.date.copyright | 2025-08-04 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-30 | - |
| dc.identifier.citation | J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
V. Asnani, X. Yin, T. Hassner, S. Liu, and X. Liu. Proactive image manipulation de- tection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 15386–15395, 2022. S. Baluja. Hiding images in plain sight: Deep steganography. Advances in neural information processing systems, 30, 2017. P. Fernandez, G. Couairon, H. Jégou, M. Douze, and T. Furon. The stable signature: Rooting watermarks in latent diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 22466–22477, 2023. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial networks. Communications of the ACM, 63(11):139–144, 2020. M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information processing systems, 30, 2017. J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural information processing systems, 33:6840–6851, 2020. J. Jing, X. Deng, M. Xu, J. Wang, and Z. Guan. Hinet: Deep image hiding by invertible network. In Proceedings of the IEEE/CVF international conference on computer vision, pages 4733–4742, 2021. D. P. Kingma, M. Welling, et al. Auto-encoding variational bayes, 2013. A.Kirillov,E.Mintun,N.Ravi,H.Mao,C.Rolland,L.Gustafson,T.Xiao,S.White- head, A. C. Berg, W.-Y. Lo, et al. Segment anything. In Proceedings of the IEEE/CVF international conference on computer vision, pages 4015–4026, 2023. T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft coco: Common objects in context. In Computer vision–ECCV 2014: 13th European conference, zurich, Switzerland, September 6-12, 2014, proceedings, part v 13, pages 740–755. Springer, 2014. S.-P. Lu, R. Wang, T. Zhong, and P. L. Rosin. Large-capacity image steganography based on invertible neural networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 10816–10825, 2021. X. Luo, R. Zhan, H. Chang, F. Yang, and P. Milanfar. Distortion agnostic deep watermarking. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 13548–13557, 2020. R. Min, S. Li, H. Chen, and M. Cheng. A watermark-conditioned diffusion model for ip protection. In European Conference on Computer Vision, pages 104–120. Springer, 2024. P.Neekhara,S.Hussain,X.Zhang,K.Huang,J.McAuley,andF.Koushanfar.Face- signs: semi-fragile neural watermarks for media authentication and countering deep- fakes. arXiv preprint arXiv:2204.01960, 2022. A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen. Hierarchical text- conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022. R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 10684–10695, 2022. D. Song, X. Zhang, J. Zhou, W. Nie, R. Tong, M. Kankanhalli, and A.-A. Liu. Image-based virtual try-on: A survey. International Journal of Computer Vision, 133(5):2692–2720, 2025. J.Song,C.Meng,andS.Ermon.Denoisingdiffusionimplicitmodels.arXivpreprint arXiv:2010.02502, 2020. M. Tancik, B. Mildenhall, and R. Ng. Stegastamp: Invisible hyperlinks in physical photographs. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 2117–2126, 2020. Z.Wang,A.C.Bovik,H.R.Sheikh,andE.P.Simoncelli.Imagequalityassessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612, 2004. Y. Xu, C. Mou, Y. Hu, J. Xie, and J. Zhang. Robust invertible image steganogra- phy. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 7875–7884, 2022. J. Yu, X. Zhang, Y. Xu, and J. Zhang. Cross: Diffusion model makes controllable, robust and secure image steganography. Advances in Neural Information Processing Systems, 36:80730–80743, 2023. N. Yu, V. Skripniuk, S. Abdelnabi, and M. Fritz. Artificial fingerprinting for gen- erative models: Rooting deepfake attribution in training data. In Proceedings of the IEEE/CVF International conference on computer vision, pages 14448–14457, 2021. C. Zhang, P. Benz, A. Karjauv, G. Sun, and I. S. Kweon. Udh: Universal deep hiding for steganography, watermarking, and light field messaging. Advances in Neural Information Processing Systems, 33:10223–10234, 2020. X. Zhang, R. Li, J. Yu, Y. Xu, W. Li, and J. Zhang. Editguard: Versatile image watermarking for tamper localization and copyright protection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 11964– 11974, 2024. X. Zhang, Z. Tang, Z. Xu, R. Li, Y. Xu, B. Chen, F. Gao, and J. Zhang. Omniguard: Hybrid manipulation localization via augmented versatile deep image watermarking. arXiv preprint arXiv:2412.01615, 2024. Y. Zhao, B. Liu, M. Ding, B. Liu, T. Zhu, and X. Yu. Proactive deepfake defence via identity watermarking. In Proceedings of the IEEE/CVF winter conference on applications of computer vision, pages 4602–4611, 2023. Y. Zhao, T. Pang, C. Du, X. Yang, N.-M. Cheung, and M. Lin. A recipe for water- marking diffusion models. arXiv preprint arXiv:2303.10137, 2023. J. Zhu, R. Kaplan, J. Johnson, and L. Fei-Fei. Hidden: Hiding data with deep networks. In Proceedings of the European conference on computer vision (ECCV), pages 657–672, 2018. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98347 | - |
| dc.description.abstract | 隨著近年生成式人工智慧的快速發展,利用公開應用程式介面快速產生高品質圖像已成為常態。然而,這樣的便利也伴隨個資洩漏與圖像遭竄改等安全風險。雖然傳統的圖像浮水印技術能達到使用者身分識別與篡改區域標記,但這類「後處理式」方法需在每張圖像生成後再額外嵌入資訊,不僅操作繁瑣,效率也非常低落,不利於大規模應用。
為解決上述問題,本文提出一種全新的「生成中嵌入式」方法,直接在圖像產生過程中,將使用者身分與篡改標記模板一併嵌入,無需額外後處理,大幅提升整體效率。我們的做法是針對變分自動編碼器中的解碼器進行微調,使其生成圖像時自動帶有不可見的識別與定位資訊。同時,我們引入模擬失真層,透過裁切、縮放、壓縮、亮度調整等常見圖像變化來模擬真實環境中可能出現的破壞行為,提升整體的穩定性與耐用性。 實驗結果顯示,本方法能在維持生成圖像視覺品質的前提下,能準確還原使用者身分並精確標示被竄改區域,同時展現出更高的嵌入效率與執行效能,證實其在實務應用上的潛力與價值。 | zh_TW |
| dc.description.abstract | With the rapid advancement of generative artificial intelligence, generating high-quality images through public APIs has become increasingly common. However, this convenience also brings serious security concerns like personal privacy leakage and unauthorized image manipulation. Although traditional post-generation watermarking methods can achieve user attribution and tamper localization, they require additional data embedding for each generated image, resulting in low efficiency and limited scalability in large-scale applications. To address this issue, this work presents a novel in-generation watermarking framework that embeds invisible user-specific identification and localization templates directly during the image generation stage. Specifically, we fine-tune the decoder of a Variational Autoencoder within a Latent Diffusion Model, enabling the generated images to carry the embedded invisible information without requiring any post-processing. This design significantly improves the integration capability and operational efficiency of watermarking. To enhance the system's robustness, we introduce a noise simulation layer during training, which emulates common image manipulations such as cropping, resizing, JPEG compression, and brightness adjustment. This extra layer enables the model to remain effective under divergent real-world scenarios. Experimental results demonstrate that our method maintains high perceptual quality of the generated images while achieving accurate and robust user attribution and tamper localization simultaneously. Moreover, our in-generation strategy outperforms existing benchmarked works simultaneously in terms of performance and efficiency. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-04T16:06:51Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-04T16:06:51Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 ii Abstract iii Contents v List of Figures vii List of Tables viii Chapter 1 Introduction 1 Chapter 2 Preliminaries and Related works 4 2.1 Diffusion Models 4 2.2 DNN-based Watermarking 5 2.3 Tamper detection and localization 6 2.4 In-Generation Watermarking 7 Chapter 3 The Proposed Method 10 3.1 Pre-train the Identification Watermark’s Encoder and Decoder 12 3.2 Pre-train the Localization Watermark’s Encoder and Decoder13 3.3 Fine-tune the VAE Decoder 15 3.4 The Noise Emulation Layer 17 Chapter 4 Experiments 19 4.1 Identification of Watermark’s Encoder and Decoder 19 4.2 Localization Watermark’s Encoder and Decoder 20 4.3 Fine-tuning the VAE Decoder 21 4.4 Test Settings 22 4.5 Metrics 23 4.6 Testing Result 24 4.6.1 Image Generation Quality 24 4.6.2 User-Level Attribution 28 4.6.3 Performance in Tampering Localization 29 4.6.4 Ablation Study 31 Chapter 5 Conclusion 33 References 35 | - |
| dc.language.iso | en | - |
| dc.subject | 內嵌式浮水印 | zh_TW |
| dc.subject | 潛在擴散模型 | zh_TW |
| dc.subject | 變分自編碼器 | zh_TW |
| dc.subject | 竄改定位 | zh_TW |
| dc.subject | 使用者歸因 | zh_TW |
| dc.subject | User attribution | en |
| dc.subject | Tamper localization | en |
| dc.subject | Variational AutoEncoder | en |
| dc.subject | In-generation watermarking | en |
| dc.subject | Latent diffusion model | en |
| dc.title | 潛在擴散模型中的內嵌式浮水印方法:使用者歸因與篡改定位應用 | zh_TW |
| dc.title | In-generation Watermarking for User Attribution and Tamper Localization in Latent Diffusion Models | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳文進;胡敏君;許超雲 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Chin Chen;Min-Chun Hu;Chau-Yun Hsu | en |
| dc.subject.keyword | 潛在擴散模型,內嵌式浮水印,使用者歸因,竄改定位,變分自編碼器, | zh_TW |
| dc.subject.keyword | Latent diffusion model,In-generation watermarking,User attribution,Tamper localization,Variational AutoEncoder, | en |
| dc.relation.page | 39 | - |
| dc.identifier.doi | 10.6342/NTU202502749 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-31 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊網路與多媒體研究所 | - |
| dc.date.embargo-lift | 2025-08-05 | - |
| 顯示於系所單位: | 資訊網路與多媒體研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
