請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98339完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙本秀 | zh_TW |
| dc.contributor.advisor | Pen-Hsiu Grace Chao | en |
| dc.contributor.author | 陳雪麗 | zh_TW |
| dc.contributor.author | Shirley Ting | en |
| dc.date.accessioned | 2025-08-04T16:04:52Z | - |
| dc.date.available | 2025-08-05 | - |
| dc.date.copyright | 2025-08-04 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-29 | - |
| dc.identifier.citation | Turnbull, G., et al., 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater, 2018. 3(3): p. 278-314.
Esposito Corcione, C., et al., Highly loaded hydroxyapatite microsphere/ PLA porous scaffolds obtained by fused deposition modelling. Ceramics International, 2019. 45(2, Part B): p. 2803-2810. Farokhi, M., et al., Importance of dual delivery systems for bone tissue engineering. J Control Release, 2016. 225: p. 152-69. Goldberg, V.M. and S. Stevenson, Natural history of autografts and allografts. Clin Orthop Relat Res, 1987(225): p. 7-16. Bose, S., S. Vahabzadeh, and A. Bandyopadhyay, Bone tissue engineering using 3D printing. Materials Today, 2013. 16(12): p. 496-504. Cottrill, E., et al., Creation and preclinical evaluation of a novel mussel-inspired, biomimetic, bioactive bone graft scaffold: direct comparison with Infuse bone graft using a rat model of spinal fusion. Journal of Neurosurgery: Spine, 2023. 39(1): p. 113-121. Carragee, E.J., E.L. Hurwitz, and B.K. Weiner, A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. The Spine Journal, 2011. 11(6): p. 471-491. Gao, X., M. Fraulob, and G. Haiat, Biomechanical behaviours of the bone-implant interface: a review. J R Soc Interface, 2019. 16(156): p. 20190259. O'Brien, F.J., Biomaterials & scaffolds for tissue engineering. Materials Today, 2011. 14(3): p. 88-95. Langer, R. and J.P. Vacanti, Tissue engineering. Science, 1993. 260(5110): p. 920-6. Kang, Z., et al., Preparation of polymer/calcium phosphate porous composite as bone tissue scaffolds. Mater Sci Eng C Mater Biol Appl, 2017. 70(Pt 2): p. 1125-1131. Preethi Soundarya, S., et al., Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. Int J Biol Macromol, 2018. 119: p. 1228-1239. Udomluck, N., et al., Recent Developments in Nanofiber Fabrication and Modification for Bone Tissue Engineering. International Journal of Molecular Sciences, 2020. 21(1): p. 99. Flores-Rojas, G.G., et al., Electrospun Scaffolds for Tissue Engineering: A Review. Macromol, 2023. 3(3): p. 524-553. Pandey, P., et al., Engineered nanomaterials as an effective tool for HER2+ breast cancer therapy. Drug Discovery Today, 2022. 27(9): p. 2526-2540. Min, B.M., et al., Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials, 2004. 25(7-8): p. 1289-97. Singh, P., et al., Biomimicking dual drug eluting twisted electrospun nanofiber yarns for post-operative wound healing. Biomedical Materials, 2023. 18(3): p. 035006. Ameer, J.M., A.K. PR, and N. Kasoju, Strategies to Tune Electrospun Scaffold Porosity for Effective Cell Response in Tissue Engineering. Journal of Functional Biomaterials, 2019. 10(3): p. 30. Hwang, T.I., et al., In Situ Biological Transmutation of Catalytic Lactic Acid Waste into Calcium Lactate in a Readily Processable Three-Dimensional Fibrillar Structure for Bone Tissue Engineering. ACS Appl Mater Interfaces, 2020. 12(16): p. 18197-18210. Pimentel, E.S., et al., Tailoring Electrospun Poly(l-lactic acid) Nanofibers as Substrates for Microfluidic Applications. ACS Applied Materials & Interfaces, 2020. 12(1): p. 60-69. Gerhardt, L.C. and A.R. Boccaccini, Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. Materials (Basel), 2010. 3(7): p. 3867-3910. Oksiuta, Z., et al., Mechanical and Thermal Properties of Polylactide (PLA) Composites Modified with Mg, Fe, and Polyethylene (PE) Additives. Polymers, 2020. 12(12): p. 2939. Mokhena, T.C., et al., Thermoplastic Processing of PLA/Cellulose Nanomaterials Composites. Polymers, 2018. 10(12): p. 1363. Matsui, T., et al., Cell patterning on polylactic acid through surface-tethered oligonucleotides. Acta Biomaterialia, 2015. 13: p. 32-41. Wang, W., et al., 3D printing of PLA/n-HA composite scaffolds with customized mechanical properties and biological functions for bone tissue engineering. Composites Part B: Engineering, 2021. 224: p. 109192. Zhang, D., et al., One-step fabrication of functionalized poly(l-lactide) porous fibers by electrospinning and the adsorption/separation abilities. Journal of Hazardous Materials, 2018. 360: p. 150-162. Zheng, Q., et al., The recent progress on metal–organic frameworks for phototherapy. Chemical Society Reviews, 2021. 50(8): p. 5086-5125. Du, C., et al., A review of metal organic framework (MOFs)-based materials for antibiotics removal via adsorption and photocatalysis. Chemosphere, 2021. 272: p. 129501. Kirchon, A., et al., From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chemical Society Reviews, 2018. 47(23): p. 8611-8638. Han, D., X. Liu, and S. Wu, Metal organic framework-based antibacterial agents and their underlying mechanisms. Chemical Society Reviews, 2022. 51(16): p. 7138-7169. Abánades Lázaro, I. and R.S. Forgan, Application of zirconium MOFs in drug delivery and biomedicine. Coordination Chemistry Reviews, 2019. 380: p. 230-259. Bose, S., et al., Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends in Biotechnology, 2013. 31(10): p. 594-605. Chen, B., et al., Zeolitic imidazolate framework materials: recent progress in synthesis and applications. Journal of Materials Chemistry A, 2014. 2(40): p. 16811-16831. Phan, A., et al., Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res, 2010. 43(1): p. 58-67. Lu, G., et al., Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat Chem, 2012. 4(4): p. 310-6. Hoseinpour, V. and Z. Shariatinia, Applications of zeolitic imidazolate framework-8 (ZIF-8) in bone tissue engineering: A review. Tissue and Cell, 2021. 72: p. 101588. Wang, N., H. Liang, and K. Zen, Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol, 2014. 5: p. 614. Xia, X., et al., Antibacterial and anti-inflammatory ZIF-8@Rutin nanocomposite as an efficient agent for accelerating infected wound healing. Front Bioeng Biotechnol, 2022. 10: p. 1026743. Siva, V., et al., A Simple Synthesis Method of Zeolitic Imidazolate Framework-8 (ZIF-8) Nanocrystals as Superior Electrode Material for Energy Storage Systems. Journal of Inorganic and Organometallic Polymers and Materials, 2022. 32(12): p. 4707-4714. Kim, S.J., et al., The Impact of ZIF-8 Particle Size Control on Low-Humidity Sensor Performance. Nanomaterials, 2024. 14(3): p. 284. Lee, S., et al., The Study of Zeolitic Imidazolate Framework (ZIF-8) Doped Polyvinyl Alcohol/Starch/Methyl Cellulose Blend Film. Polymers, 2019. 11(12): p. 1986. Zhan, X., et al., Enhanced Desulfurization Performance of ZIF−8/PEG MMMs: Effect of ZIF−8 Particle Size. Membranes, 2023. 13(5): p. 515. Cooper, L.F., A role for surface topography in creating and maintaining bone at titanium endosseous implants. J Prosthet Dent, 2000. 84(5): p. 522-34. Chen, H., et al., Tailoring surface nanoroughness of electrospun scaffolds for skeletal tissue engineering. Acta Biomater, 2017. 59: p. 82-93. Dalby, M.J., et al., The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater, 2007. 6(12): p. 997-1003. Ji, S. and M. Guvendiren, 3D Printed Wavy Scaffolds Enhance Mesenchymal Stem Cell Osteogenesis. Micromachines, 2020. 11(1): p. 31. Grace Chao, P.H., H.Y. Hsu, and H.Y. Tseng, Electrospun microcrimped fibers with nonlinear mechanical properties enhance ligament fibroblast phenotype. Biofabrication, 2014. 6(3): p. 035008. Hung, Y.-H. and C.-M. Lo, Use of Cross‐linked Polypeptide Multilayer‐coated Electrodes to Monitor Osteogenic Differentiation of Human Dental Pulp Stem Cells. The FASEB Journal, 2019. 33: p. 603.1-603.1. Sun, H., et al., Osteogenic differentiation of human amniotic fluid-derived stem cells induced by bone morphogenetic protein-7 and enhanced by nanofibrous scaffolds. Biomaterials, 2010. 31(6): p. 1133-1139. Prabhakaran, M.P., J. Venugopal, and S. Ramakrishna, Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomaterialia, 2009. 5(8): p. 2884-2893. Jiang, S., et al., Blending PLLA/tannin-grafted PCL fiber membrane for skin tissue engineering. Journal of Materials Science, 2017. 52(3): p. 1617-1624. Devi, S., et al., Highly sensitive and selective detection of trinitrotoluene using cysteine-capped gold nanoparticles. Analytical Methods, 2016. 8(22): p. 4398-4405. Qin, Y.-T., et al., pH-Responsive Polymer-Stabilized ZIF-8 Nanocomposites for Fluorescence and Magnetic Resonance Dual-Modal Imaging-Guided Chemo-/Photodynamic Combinational Cancer Therapy. ACS Applied Materials & Interfaces, 2019. 11(37): p. 34268-34281. Cai, C., et al., Broccoli-like porous carbon nitride from ZIF-8 and melamine for high performance supercapacitors. Applied Surface Science, 2018. 440: p. 47-54. He, M., et al., Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Microporous and Mesoporous Materials, 2014. 184: p. 55-60. Kaur, H., et al., Synthesis and characterization of ZIF-8 nanoparticles for controlled release of 6-mercaptopurine drug. Journal of Drug Delivery Science and Technology, 2017. 41: p. 106-112. Kouhdareh, J., et al., Synthesis of a Au/Au NPs-PPy/ l -CYs/ZIF-8 nanocomposite electrode for voltammetric determination of insulin in human blood. RSC Advances, 2023. 13: p. 24474-24486. Ismail, K., S. Ramarad, and T.C. Yap, Design and Fabrication of an In Situ Short-Fiber Doser for Fused Filament Fabrication 3D Printer: A Novel Method to Manufacture Fiber–Polymer Composite. Inventions, 2023. 8: p. 10. Davoodian, N., et al., Fischer–Tropsch synthesis using zeolitic imidazolate framework (ZIF‐7 and ZIF‐8)‐supported cobalt catalysts. Applied Organometallic Chemistry, 2020. 34(9): p. e5747. Satsum, A., et al., Structural and mechanical properties of biodegradable poly(lactic acid) and pectin composites: using bionucleating agent to improve crystallization behavior. Polymer Journal, 2022. 54(7): p. 921-930. Si, Y., et al., Zeolitic imidazolate framework-8 for ratiometric fluorescence sensing tetracyclines in environmental water based on AIE effects. Analytica Chimica Acta, 2022. 1199: p. 339576. Velásquez-Hernández, M.d.J., et al., Degradation of ZIF-8 in phosphate buffered saline media. CrystEngComm, 2019. 21(31): p. 4538-4544. Wu, H., et al., Enhanced bacteriostatic activity, osteogenesis and osseointegration of silicon nitride/polyetherketoneketone composites with femtosecond laser induced micro/nano structural surface. Applied Materials Today, 2020. 18: p. 100523. Terada, D., et al., The outermost surface properties of silk fibroin films reflect ethanol-treatment conditions used in biomaterial preparation. Materials Science and Engineering: C, 2016. 58: p. 119-126. Nielsen, A.R., et al., Thermodynamic and Kinetic Parameters for Calcite Nucleation on Peptoid and Model Scaffolds: A Step toward Nacre Mimicry. Crystal Growth & Design, 2020. 20(6): p. 3762-3771. Jicsinszky, L., et al., Mechanochemical Degradation of Biopolymers. Molecules, 2023. 28(24): p. 8031. Xue, Y., et al., Accelerated Bone Regeneration by MOF Modified Multifunctional Membranes through Enhancement of Osteogenic and Angiogenic Performance. Adv Healthc Mater, 2021. 10(6): p. e2001369. Chen, W.-H., et al., Glucose-Responsive Metal–Organic-Framework Nanoparticles Act as “Smart” Sense-and-Treat Carriers. ACS Nano, 2018. 12(8): p. 7538-7545. Niu, X., et al., ZIF-8-modified hydrogel sequentially delivers angiogenic and osteogenic growth factors to accelerate vascularized bone regeneration. Journal of Controlled Release, 2024. 374: p. 154-170. Schwartz, A.G., et al., Muscle loading is necessary for the formation of a functional tendon enthesis. Bone, 2013. 55(1): p. 44-51. Han, X., et al., Contribution of PTHrP to mechanical strain-induced fibrochondrogenic differentiation in entheses of Achilles tendon of miniature pigs. J Biomech, 2014. 47(10): p. 2406-14. Olvera, D., B.N. Sathy, and D.J. Kelly, Spatial Presentation of Tissue-Specific Extracellular Matrix Components along Electrospun Scaffolds for Tissue Engineering the Bone–Ligament Interface. ACS Biomaterials Science & Engineering, 2020. 6(9): p. 5145-5161. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98339 | - |
| dc.description.abstract | 在骨缺損修復領域,雖然自體骨和異體骨移植被視為黃金標準療法,然而其應用範圍受限於組織來源的不足和供體部位的相關併發症。利用組織工程技術所開發的合成支架為極具潛力的替代方案,但有效整合植入物與骨組織界面仍是一項重要挑戰。過去研究指出,微米到奈米尺度的表面結構可促進成骨相關基因表現及提升界面穩定性,顯著強化骨與植入物整合。此外,毫米尺度的波浪狀結構亦證實能有效提升成骨分化能力。本研究透過電紡絲技術,製備具波浪結構之聚乳酸(PLLA)微米纖維支架,並結合奈米尺度沸石咪唑骨架-8(ZIF-8)顆粒,以優化支架的奈米與微米尺度結構。結果顯示,載有較大的ZIF-8奈米顆粒的支架,顯著促進人類骨髓間質幹細胞(MSCs)的成骨基因表現與礦化能力。此外支架的波浪狀纖維結構更進一步放大此成骨效果。控制實驗則進一步證明,此成骨效果主要來自ZIF-8顆粒誘導的奈米特徵,而非鋅離子的單純釋放。因此,本研究所提出的多尺度奈米/微米表面結構策略,在臨床上具備顯著潛力,有望大幅改善植入物與骨組織的界面整合效果。 | zh_TW |
| dc.description.abstract | Bone autografting and allografting, considered the clinical gold standard for bone defect repair, are limited by insufficient tissue availability and donor site morbidity. Tissue-engineered grafts offer promising alternatives, yet achieving effective integration at the implant-bone interface remains a significant challenge. Previous studies have demonstrated that micro- to nanoscale surface topographies critically enhance bone-implant integration by promoting osteogenic gene expression and mechanical stability at the interface. Moreover, millimeter-scale wavy structures have been demonstrated to enhance osteogenic differentiation. In this study, electrospun poly(lactic acid) (PLLA) microfibrous scaffolds were developed and integrated with nanoscale zeolitic imidazolate framework-8 (ZIF-8) nanoparticles to optimize nano and microscale topographical cues. Our results indicate that ethanol treatment facilitated the formation of larger ZIF-8 nanoparticles on scaffold surfaces, significantly enhancing osteogenic gene expression and mineralization of human mesenchymal stem cells (MSCs). Additionally, the introduction of microscale wavy fiber structures further amplified these osteogenic effects. Control experiments confirmed that the enhanced osteogenic differentiation primarily resulted from the nanotopographical cues provided by ZIF-8 nanoparticles rather than Zn2+ release alone. This multiscale nano/microstructural strategy thus presents significant clinical potential to substantially improve implant-bone interface integration. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-04T16:04:52Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-04T16:04:52Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv Contents v List of Figures vi List of Table vii Chapter 1 Background 1 Chapter 2 Materials and Methods 7 Chapter 3 Results 13 3.1. Establishment of an Osteogenic Differentiation Protocol for Mesenchymal Stem Cells (MSCs) 13 3.2. Effect of Pre-Treatment on Scaffold Wettability and ZIF-8 Nanoparticle Size 16 3.3. Characterization of ZIF-8 coated scaffold 20 3.4. Optimizing Cell Pre-Seeding Treatment to Maintain Stability of ZIF-8 Nanoparticles. 28 3.5. Ethanol-Treated Nano-Topography Restores Nucleus Elongation on Wavy Scaffold. 34 3.6. The Combination of the Wavy Micro-fibrous Structure and Ethanol-Treated Nanotopography Effectively Enhances Osteogenesis. 37 Chapter 4 Discussion 40 References 47 | - |
| dc.language.iso | en | - |
| dc.subject | 電紡絲支架 | zh_TW |
| dc.subject | 骨組織工程 | zh_TW |
| dc.subject | ZIF-8 奈米顆粒 | zh_TW |
| dc.subject | 成骨分化 | zh_TW |
| dc.subject | 表面結構 | zh_TW |
| dc.subject | Surface topography | en |
| dc.subject | Osteogenic differentiation | en |
| dc.subject | ZIF-8 nanoparticles | en |
| dc.subject | Electrospun scaffold | en |
| dc.subject | Bone tissue engineering | en |
| dc.title | 優化奈米-微米表面結構以增強成骨分化 | zh_TW |
| dc.title | Optimization of Nano/Microscale Topography for Enhancing Osteogenesis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 葉伊純;羅俊民 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Cheun Yeh;Chun-Min Lo | en |
| dc.subject.keyword | 骨組織工程,電紡絲支架,表面結構,成骨分化,ZIF-8 奈米顆粒, | zh_TW |
| dc.subject.keyword | Bone tissue engineering,Electrospun scaffold,Surface topography,Osteogenic differentiation,ZIF-8 nanoparticles, | en |
| dc.relation.page | 53 | - |
| dc.identifier.doi | 10.6342/NTU202501139 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-30 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 3.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
