請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98338完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳建錦 | zh_TW |
| dc.contributor.advisor | Chien-Chin Chen | en |
| dc.contributor.author | 游佳民 | zh_TW |
| dc.contributor.author | Chia-Min You | en |
| dc.date.accessioned | 2025-08-04T16:04:25Z | - |
| dc.date.available | 2025-08-05 | - |
| dc.date.copyright | 2025-08-04 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-24 | - |
| dc.identifier.citation | [1] A. Asai, Z. Wu, Y. Wang, A. Sil, and H. Hajishirzi. Self-rag: Learning to retrieve, generate, and critique through self-reflection. In The Twelfth International Conference on Learning Representations, 2023.
[2] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020. [3] Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, H. Chen, X. Yi, C. Wang,Y. Wang, et al. A survey on evaluation of large language models. ACM transactions on intelligent systems and technology, 15(3):1–45, 2024. [4] F. Cuconasu, G. Trappolini, F. Siciliano, S. Filice, C. Campagnano, Y. Maarek, N. Tonellotto, and F. Silvestri. The power of noise: Redefining retrieval for rag systems. In Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 719–729, 2024. [5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers), pages 4171–4186, 2019. [6] F. Draxler, D. Buschek, M. Tavast, P. Hämäläinen, A. Schmidt, J. Kulshrestha, and R. Welsch. Gender, age, and technology education influence the adoption and appropriation of llms. arXiv preprint arXiv:2310.06556, 2023. [7] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, H. Wang, and H. Wang. Retrieval-augmented generation for large language models: A survey. arXiv preprint arXiv:2312.10997, 2(1), 2023. [8] A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten, A. Vaughan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024. [9] S. Gururangan, A. Marasović, S. Swayamdipta, K. Lo, I. Beltagy, D. Downey, and N. A. Smith. Don’t stop pretraining: Adapt language models to domains and tasks. arXiv preprint arXiv:2004.10964, 2020. [10] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022. [11] G. Izacard and E. Grave. Leveraging passage retrieval with generative models for open domain question answering. arXiv preprint arXiv:2007.01282, 2020. [12] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang, A. Madotto, and P. Fung. Survey of hallucination in natural language generation. ACM computing surveys, 55(12):1–38, 2023. [13] M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy. Spanbert: Improving pre-training by representing and predicting spans. Transactions of the association for computational linguistics, 8:64–77, 2020. [14] N. Kandpal, H. Deng, A. Roberts, E. Wallace, and C. Raffel. Large language models struggle to learn long-tail knowledge. In International Conference on Machine Learning, pages 15696–15707. PMLR, 2023. [15] J. Kasai, K. Sakaguchi, R. Le Bras, A. Asai, X. Yu, D. Radev, N. A. Smith, Y. Choi, K. Inui, et al. Realtime qa: What’s the answer right now? Advances in neural information processing systems, 36:49025–49043, 2023. [16] K. Lee, M.-W. Chang, and K. Toutanova. Latent retrieval for weakly supervised open domain question answering. arXiv preprint arXiv:1906.00300, 2019. [17] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and L. Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461, 2019. [18] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:9459–9474, 2020. [19] X. L. Li and P. Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv preprint arXiv:2101.00190, 2021. [20] N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni, and P. Liang. Lost in the middle: How language models use long contexts. arXiv preprint arXiv:2307.03172, 2023. [21] S.-Y. Liu, C.-Y. Wang, H. Yin, P. Molchanov, Y.-C. F. Wang, K.-T. Cheng, and M.-H. Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first International Conference on Machine Learning, 2024. [22] X. Liu, K. Ji, Y. Fu, W. L. Tam, Z. Du, Z. Yang, and J. Tang. P-tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and tasks. arXiv preprint arXiv:2110.07602, 2021. [23] X. Liu, Y. Zheng, Z. Du, M. Ding, Y. Qian, Z. Yang, and J. Tang. Gpt understands, too. AI Open, 5:208–215, 2024. [24] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019. [25] X. Ma, L. Wang, N. Yang, F. Wei, and J. Lin. Fine-tuning llama for multi-stage text retrieval. In Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 2421–2425, 2024. [26] A. Mallen, A. Asai, V. Zhong, R. Das, D. Khashabi, and H. Hajishirzi. When not to trust language models: Investigating effectiveness of parametric and non-parametric memories. arXiv preprint arXiv:2212.10511, 2022. [27] N. Muennighoff, H. SU, L. Wang, N. Yang, F. Wei, T. Yu, A. Singh, and D. Kiela. Generative representational instruction tuning. In ICLR 2024 Workshop: How Far Are We From AGI, 2024. [28] R. Nogueira, Z. Jiang, and J. Lin. Document ranking with a pretrained sequence-to-sequence model. arXiv preprint arXiv:2003.06713, 2020. [29] F. Petroni, T. Rocktäschel, P. Lewis, A. Bakhtin, Y. Wu, A. H. Miller, and S. Riedel. Language models as knowledge bases? arXiv preprint arXiv:1909.01066, 2019. [30] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving language understanding by generative pre-training. 2018. [31] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. [32] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of machine learning research, 21(140):1–67, 2020. [33] P. Rajpurkar, R. Jia, and P. Liang. Know what you don‘t know: Unanswerable questions for SQuAD. In I. Gurevych and Y. Miyao, editors, Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 784–789, Melbourne, Australia, July 2018. Association for Computational Linguistics. [34] Z. Shao, Y. Gong, Y. Shen, M. Huang, N. Duan, and W. Chen. Enhancing retrieval-augmented large language models with iterative retrieval-generation synergy. arXiv preprint arXiv:2305.15294, 2023. [35] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023. [36] H. Trivedi, N. Balasubramanian, T. Khot, and A. Sabharwal. Interleaving retrieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. arXiv preprint arXiv:2212.10509, 2022. [37] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017. [38] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing systems, 35:24824–24837, 2022. [39] S. Wu, O. Irsoy, S. Lu, V. Dabravolski, M. Dredze, S. Gehrmann, P. Kambadur, D. Rosenberg, and G. Mann. Bloomberggpt: A large language model for finance. arXiv preprint arXiv:2303.17564, 2023. [40] G. Xiong, Q. Jin, Z. Lu, and A. Zhang. Benchmarking retrieval-augmented generation for medicine. In Findings of the Association for Computational Linguistics ACL 2024, pages 6233–6251, 2024. [41] P. Xu, W. Ping, X. Wu, L. McAfee, C. Zhu, Z. Liu, S. Subramanian, E. Bakhturina, M. Shoeybi, and B. Catanzaro. Retrieval meets long context large language models. In The Twelfth International Conference on Learning Representations, 2023. [42] S.-Q. Yan, J.-C. Gu, Y. Zhu, and Z.-H. Ling. Corrective retrieval augmented generation. 2024. [43] X. Yang, A. Chen, N. PourNejatian, H. C. Shin, K. E. Smith, C. Parisien, C. Compas, C. Martin, M. G. Flores, Y. Zhang, et al. Gatortron: A large clinical language model to unlock patient information from unstructured electronic health records. arXiv preprint arXiv:2203.03540, 2022. [44] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le. XLNet:generalized autoregressive pretraining for language understanding. Curran Associates Inc., Red Hook, NY, USA, 2019. [45] B. Zhang, H. Yang, T. Zhou, M. Ali Babar, and X.-Y. Liu. Enhancing financial sentiment analysis via retrieval augmented large language models. In Proceedings of the fourth ACM international conference on AI in finance, pages 349–356, 2023. [46] T. Zhang, S. G. Patil, N. Jain, S. Shen, M. Zaharia, I. Stoica, and J. E. Gonzalez. Raft:Adapting language model to domain specific rag. In First Conference on Language Modeling, 2024. [47] Y. Zhang, Y. Li, L. Cui, D. Cai, L. Liu, T. Fu, X. Huang, E. Zhao, Y. Zhang, Y. Chen, et al. Siren’s song in the ai ocean: a survey on hallucination in large language models. arXiv preprint arXiv:2309.01219, 2023. [48] Z. Zhang, M. Fang, and L. Chen. RetrievalQA: Assessing adaptive retrieval-augmented generation for short-form open-domain question answering. In L.-W. Ku, A. Martins, and V. Srikumar, editors, Findings of the Association for Computational Linguistics: ACL 2024, pages 6963–6975, Bangkok, Thailand, Aug. 2024. Association for Computational Linguistics. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98338 | - |
| dc.description.abstract | 檢索增強生成 (Retrieval-Augmented Generation, RAG) 通過提供外部知識庫,大幅增強了大型語言模型的能力。然而,傳統的架構通常會檢索固定數量的相關文章,導致實作時出現一些問題:過少的文章可能會遺漏關鍵資訊,而過多的文章則可能引入干擾文章並使大型語言模型的輸入過長。為了解決這些問題,我們提出了一個全新的框架,此框架能夠實現動態的外部知識文章組成。首先,透過實施候選篩選模組來動態篩選檢索到的候選文章集合。再來,受先前研究的啟發,我們引入了噪音注入模組,通過系統性地加入隨機文章,來形成最終的參考文章集合。我們在六個知名的資料集上進行了實驗,結果發現,我們提出的框架在準確性方面持續優於傳統的架構。我們的研究結果突顯了動態的外部知識文章組成的優勢,並為構建更有效的 RAG 系統提供了實用的解決方案。 | zh_TW |
| dc.description.abstract | Retrieval-Augmented Generation (RAG) significantly enhances Large Language Models (LLMs) by providing external knowledge base. However, traditional RAG typically retrieve fixed number (top-k) of articles, often struggle with some problems: too few articles may miss crucial information, while too many can introduce distractors and overwhelm the LLM. To address these limitations, we propose a novel framework that enables an adaptive reference articles formulation of RAG. Our approach moves beyond the fixed top-k paradigm by implementing candidate pruning module to dynamically filtering a retrieved candidate articles set. Furthermore, inspired by prior work, we introduce another module for noise injection through the systematic inclusion of random articles. We conduct experiments on six well-known datasets, demonstrating that our proposed framework consistently outperforms traditional top-k RAG baselines in terms of generation accuracy. Our findings highlight the significant benefits of adaptive context formulation and offer practical solution for building more effective RAG systems. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-04T16:04:25Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-04T16:04:25Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from Oral Examination Committee i
Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xi List of Tables xiii Chapter 1 Introduction 1 Chapter 2 Related Work 5 2.1 Generator 5 2.2 LLM tuning 8 2.3 Retrieval-Augmented Generation 10 Chapter 3 Adaptive RAG Framework 13 3.1 Candidate Pruning 14 3.1.1 Relevance filtering 15 3.1.2 Gap filtering 15 3.1.3 Topic filtering 16 3.2 Noise Injection 17 3.2.1 Fixed Noise 17 3.2.2 Padding Noise 18 3.2.3 Ratio Noise 18 3.3 Reference Article Formulation 19 Chapter 4 Experiment 21 4.1 Evaluation Datasets and Settings 21 4.2 Comparisons with Baselines 23 4.3 Effectiveness of Candidate Pruning and Noise Injection 24 Chapter 5 Conclusion 29 References 31 | - |
| dc.language.iso | en | - |
| dc.subject | 大型語言模型 | zh_TW |
| dc.subject | 資訊檢索 | zh_TW |
| dc.subject | 檢索增強生成 | zh_TW |
| dc.subject | Retrieval-Augmented Generation | en |
| dc.subject | Large Language Model | en |
| dc.subject | Information Retrieval | en |
| dc.title | 基於候選篩選與噪音注入的動態檢索增強生成架構 | zh_TW |
| dc.title | An Adaptive RAG Framework using Candidate Pruning and Noise Injection | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張詠淳;陳孟彰 | zh_TW |
| dc.contributor.oralexamcommittee | Yung-Chun Chang;Meng-Chang Chen | en |
| dc.subject.keyword | 檢索增強生成,大型語言模型,資訊檢索, | zh_TW |
| dc.subject.keyword | Retrieval-Augmented Generation,Large Language Model,Information Retrieval, | en |
| dc.relation.page | 37 | - |
| dc.identifier.doi | 10.6342/NTU202502131 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-28 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 資訊管理學系 | - |
| dc.date.embargo-lift | 2030-07-24 | - |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-07-24 | 5.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
