請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98331完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 藍俊宏 | zh_TW |
| dc.contributor.advisor | Jakey Blue | en |
| dc.contributor.author | 邵懿文 | zh_TW |
| dc.contributor.author | Yi-Wen Freda Shao | en |
| dc.date.accessioned | 2025-08-01T16:15:00Z | - |
| dc.date.available | 2025-08-02 | - |
| dc.date.copyright | 2025-08-01 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-15 | - |
| dc.identifier.citation | [1] Argyle, L. P., Busby, E. C., Fulda, N., Gubler, J., Rytting, C., & Wingate, D. (2023). Out of one, many: Using language models to simulate human samples. Political Analysis, 31(3), 337–351. https://doi.org/10.1017/pan.2023.2
[2] Arora, N., Chakraborty, I., & Nishimura, Y. (2025). AI–human hybrids for marketing research: Leveraging large language models (LLMs) as collaborators. Journal of Marketing, 89(2), 43–70. https://doi.org/10.1177/00222429241276529 [3] Brand, J., Israeli, A., & Ngwe, D. (2024). Using LLMs for market research (Harvard Business School Marketing Unit Working Paper No. 23-062). Harvard Business School. https://doi.org/10.2139/ssrn.4395751 [4] Bisbee, J., Clinton, J., Dorff, C., Kenkel, B., & Larson, J. (2024). Synthetic replacements for human survey data? The perils of large language models. Political Analysis, 32(4), 1–16. https://doi.org/10.1017/pan.2023.28 [5] Boston Consulting Group. (2023, June 15). CMOs are profiting from the transformative power of generative AI. Boston Consulting Group. https://www.bcg.com/press/15june2023-cmos-profiting-transformative-power-of-genai [6] Castricato, L., Lile, N., Rafailov, R., Fränken, J.-P., & Finn, C. (2025). PERSONA: A reproducible testbed for pluralistic alignment. In Proceedings of the 31st International Conference on Computational Linguistics (COLING 2025) (pp. 11348–11368). Abu Dhabi, UAE: Association for Computational Linguistics. https://aclanthology.org/2025.coling-main.752/ [7] Dentsu Benelux. (2023, June 13). Unlock valuable insights and optimize your media strategy and performance with dentsu CCS [Video]. YouTube. https://youtu.be/BfTzfNZjJOA [8] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Vol. 1, pp. 4171–4186). https://doi.org/10.18653/v1/N19-1423 [9] Eichstaedt, J. C., Salecha, A., Ireland, M. E., Subrahmanya, S., Sedoc, J., & Ungar, L. H. (2023). Large language models display human-like social desirability biases in Big Five personality surveys. PNAS Nexus, 2(12), pgae533. https://doi.org/10.1093/pnasnexus/pgae533 [10] Ge, T., Chan, X., Wang, X., Yu, D., Mi, H., & Yu, D. (2024). Scaling synthetic data creation with 1,000,000,000 personas. arXiv. https://doi.org/10.48550/arXiv.2406.20094 [11] Gerosa, M., Trinkenreich, B., Steinmacher, I., & Sarma, A. (2023). Can AI serve as a substitute for human subjects in software engineering research? arXiv preprint. https://arxiv.org/abs/2311.11081 [12] Giorgi, S., Liu, T., Aich, A., Isman, K., Sherman, G., Fried, Z., Sedoc, J., Ungar, L. H., & Curtis, B. (2024). Modeling human subjectivity in LLMs using explicit and implicit human factors in personas. arXiv. https://arxiv.org/abs/2406.14462 [13] Hinton, G., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527–1554. https://doi.org/10.1162/neco.2006.18.7.1527 [14] House, A. E. (n.d.). Henry Murray’s needs and presses (environmental pressures). Illinois State University. Retrieved May 8, 2025, from https://about.illinoisstate.edu/aehouse/teaching/psy-364-motivation/henry-murrays-needs-and-presses-environmental-pressures/ [15] Huang, M. H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49, 30–50. https://doi.org/10.1007/s11747-020-00749-9 [16] Kantar. (2024). Synthetic data: The real deal? The opportunities and challenges of synthetic data for market research [White paper]. https://www.kantar.com/inspiration/ai/synthetic-data-the-real-deal [17] Liu, X. B., Xia, H., & Chen, X. A. (2025). Interacting with Thoughtful AI. arXiv. https://doi.org/10.48550/arXiv.2502.18676 [18] Liu, Y., Bhandari, S., & Pardos, Z. (in press). Leveraging LLM-respondents for item evaluation: A psychometric analysis. British Journal of Educational Technology. Advance online publication. https://arxiv.org/abs/2407.10899 [19] Malhotra, N. K. (2020). Marketing research: An applied orientation (7th ed.). Pearson. [20] McCrae, R. R., & Costa, P. T. (1987). Validation of the five‐factor model of personality across instruments and observers. Journal of Personality and Social Psychology, 52(1), 81–90. https://doi.org/10.1037/0022-3514.52.1.81 [21] Murray, H. A. (1938). Explorations in Personality. Oxford University Press. [22] Park, J. S., Zou, C. Q., Shaw, A., Hill, B. M., Cai, C., Morris, M. R., Willer, R., Liang, P., & Bernstein, M. S. (2024). Generative agent simulations of 1,000 people. arXiv. https://arxiv.org/abs/2411.10109 [23] Proxona. (2024). Leveraging LLM-driven personas to enhance creators' understanding of their audience. arXiv. https://arxiv.org/abs/2408.10937 [24] Qu, Y., & Wang, J. (2024). Performance and biases of large language models in public opinion simulation. Humanities and Social Sciences Communications, 11, Article 1095. https://doi.org/10.1057/s41599-024-03609-x [25] Schwarzkopf, S. (2016). In search of the consumer: The history of market research from 1890 to 1960. In D. G. B. Jones & M. Tadajewski (Eds.), The Routledge companion to marketing history (pp. 61–83). Routledge.CBS - Copenhagen Business School [26] Tao, M., Liang, X., Shi, T., Yu, L., & Xie, Y. (2024). RoleCraft-GLM: Advancing personalized role-playing in large language models. arXiv. https://arxiv.org/abs/2401.09432 [27] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems, 30 (NeurIPS 2017) (pp. 5998–6008). https://doi.org/10.48550/arXiv.1706.03762 [28] White, K., & Dhar, R. (2024). PersonaLLM: Investigating the ability of large language models to express personality traits. arXiv. https://arxiv.org/abs/2401.09432 [29] Wilkie, W. L., & Moore, E. S. (2003). Scholarly research in marketing: Exploring the "4 eras" of thought development. Journal of Public Policy & Marketing, 22(2), 116–146. https://doi.org/10.1509/jppm.22.2.116.17639 [30] Yeykelis, L., Pichai, K., Cummings, J. J., & Reeves, B. (2022). Using large language models to create AI personas for replication and prediction of media effects: An empirical test of 133 published experimental research findings. arXiv. https://arxiv.org/abs/2209.06899 [31] Yu, C., Weng, Z., Li, Y., Li, Z., Hu, X., & Zhao, Y. (2024). Towards more accurate US presidential election via multi-step reasoning with large language models. arXiv. https://arxiv.org/abs/2411.03321 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98331 | - |
| dc.description.abstract | 本研究旨在探討生成式人工智慧(Generative AI)於虛擬人格(AI Persona)建模之設計工程流程,並深入分析其在市場研究領域的應用策略與實務發展潛力。研究以Henry Murray(1938)提出之心理需求理論為核心理論架構,建構六類動機向度(成就、感情、資訊、佔有、權力、地位/保護),結合電通行銷傳播集團CCS(Consumer Connection System)調查去識別化資料,運用提示詞工程(Prompt Engineering)技術,生成具備特定人格特徵的AI Persona敘事內容,並進行語義一致性與動機再現性之系統化分析。研究結果證實,在結構化提示設計與精確資料配置條件下,AI Persona能夠有效模擬真實消費者之動機特徵表現,從而驗證本研究之核心假設。
然而,本研究發現語言模型在處理抽象或具爭議性的人格動機面向(如地位追求與權力展現)時,表現仍存在明顯侷限,特別是在負面語意表達上呈現系統性偏誤,例如傾向性誤判等現象。相較於McCrae & Costa(1987)所提出的大五人格模型之統計可區辨的五維特質架構,其五個連續性特質向度在語言模型中較易透過語言風格或表達習慣進行建模與區辨;Murray(1938)所建構之心理需求理論則涉及情境觸發與內在動機的交互關係,具有高度語境依賴性與需求重疊性。為提升語言模型對動機性人格的精確模擬能力,本研究提出三項改進策略:其一,設計具情境深度的提示詞場景以誘發目標動機;其二,建構動機導向的語言特徵詞庫以輔助模型識別;其三,採用混合式人格建模架構,以結合動機需求與特質性格的表徵優勢。綜合而言,生成式AI結合心理學理論與實證調查資料之虛擬人格設計工程,不僅為市場研究提供高效率且具創新性的洞察分析工具,更為AI驅動之合成資料應用與消費行為模擬研究領域建立嶄新的研究典範。 | zh_TW |
| dc.description.abstract | This study aims to investigate the design engineering processes of AI Persona modeling through Generative AI and to conduct an in-depth analysis of its application strategies and practical development potential in the field of market research. Grounded in Henry Murray's (1938) psychological needs theory as the core theoretical fundamental, this research constructs six motivational dimensions (achievement, affection, information, acquisition, power, and status/protection), integrating the survey data from Dentsu Group Inc. Through proper prompt engineering techniques, AI Persona narratives with specific personality characteristics were generated, followed by systematic analysis of semantic consistency and motivational reproducibility. The findings confirm that under structured prompt design and data configuration, AI Personas can effectively simulate the motivational characteristics of real consumers, thereby validating the core hypothesis of this study.
Furthermore, the study reveals that language models exhibit performance limitations when processing abstract or controversial motivational dimensions (such as status pursuit and power manifestation), while simultaneously demonstrating systematic bias in expressing negative semantic content. Compared to the bipolar dimensional structure of the Big Five personality model, Murray's psychological needs theory faces challenges including high contextual dependency and technical difficulties in feature separation during the language mapping. Based on these findings, this research proposes three optimization strategies: contextualized prompt design, systematic construction of linguistic feature lexicons, and hybrid personality modeling, to further enhance the precise representational capabilities of language models for motivational personalities. In conclusion, the virtual persona design engineering that combines generative AI with psychological theories and empirical survey data not only provides market research with highly efficient and innovative analytical tools for insights, but also establishes a novel research paradigm for AI-driven synthetic data applications and consumer behavior simulation research fields. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-01T16:15:00Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-01T16:15:00Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
誌謝 i 中文摘要 ii Abstract iii 目次 v 圖次 vii 表次 ix 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與限制 4 第二章 文獻探討 7 2.1 行銷研究方法的歷史發展與演變 7 2.2 虛擬人格的理論基礎與發展脈絡 10 2.3 AI Persona在市場調查中的應用現狀 17 2.4 AI Persona的驗證效度評估 24 2.5 生成式AI在市場研究中的整合策略與循環驗證流程 27 2.6 AI Persona的學術探討 29 第三章 AI Persona設計工程 32 3.1 理論基礎與問卷設計 33 3.2 資料蒐集與處理 37 3.3 Persona原型建構與動機需求分類 38 3.4 角色代入提示工程(Prompt Engineering) 39 3.5 虛擬人格一致性檢定 42 第四章 案例模擬研究流程與驗證評估 43 4.1 問卷資料定義與說明 43 4.2 人格面向映射 45 4.3 AI Persona提示工程與案例分析 51 4.4 AI Persona人格模型驗證評估 65 第五章 結論與建議 78 5.1 AI Persona的應用潛力 78 5.2 未來研究方向 80 參考文獻 82 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 虛擬人格 | zh_TW |
| dc.subject | Murray心理需求理論 | zh_TW |
| dc.subject | 市場研究調查 | zh_TW |
| dc.subject | 大型語言模型 | zh_TW |
| dc.subject | 提示詞工程 | zh_TW |
| dc.subject | Prompt engineering | en |
| dc.subject | Murray’s psychogenic needs theory | en |
| dc.subject | Market research | en |
| dc.subject | Large language models | en |
| dc.subject | AI persona | en |
| dc.title | 生成式AI之虛擬人格設計工程及其在市場研究之應用策略探析 | zh_TW |
| dc.title | AI Personas Engineering with Large Language Models: Strategies for Market Research Applications | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊立偉;黃奎隆;劉福運 | zh_TW |
| dc.contributor.oralexamcommittee | Li-Wei Yang;Kwei-Long Huang;Fu-Yun Liu | en |
| dc.subject.keyword | 虛擬人格,Murray心理需求理論,市場研究調查,大型語言模型,提示詞工程, | zh_TW |
| dc.subject.keyword | AI persona,Murray’s psychogenic needs theory,Market research,Large language models,Prompt engineering, | en |
| dc.relation.page | 85 | - |
| dc.identifier.doi | 10.6342/NTU202501772 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-16 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工業工程學研究所 | - |
| dc.date.embargo-lift | 2025-08-02 | - |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 5.62 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
