請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98320完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 于昌平 | zh_TW |
| dc.contributor.advisor | Chang-Ping Yu | en |
| dc.contributor.author | 吳昆泰 | zh_TW |
| dc.contributor.author | Kun-Tai Wu | en |
| dc.date.accessioned | 2025-08-01T16:12:32Z | - |
| dc.date.available | 2025-08-02 | - |
| dc.date.copyright | 2025-08-01 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-25 | - |
| dc.identifier.citation | Abreu, A. P., Morais, R. C., Teixeira, J. A., & Nunes, J. (2022). A comparison between microalgal autotrophic growth and metabolite accumulation with heterotrophic, mixotrophic and photoheterotrophic cultivation modes. Renewable and Sustainable Energy Reviews, 159, 112247. https://doi.org/10.1016/j.rser.2022.112247
Acevedo, B., Oehmen, A., Carvalho, G., Seco, A., Borrás, L., & Barat, R. (2012). Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage. Water Research, 46(6), 1889-1900. https://doi.org/10.1016/j.watres.2012.01.003 Adav, S. S., Lee, D.-J., & Tay, J.-H. (2008). Extracellular polymeric substances and structural stability of aerobic granule. Water Research, 42(6), 1644-1650. https://doi.org/10.1016/j.watres.2007.10.013 Ahmad, H. A., Guo, B., Zhuang, X., Zhao, Y., Ahmad, S., Lee, T., Zhu, J., Dong, Y., & Ni, S.-Q. (2021). A twilight for the complete nitrogen removal via synergistic partial-denitrification, Anammox, and DNRA process. npj Clean Water, 4(1), 31. https://doi.org/10.1038/s41545-021-00122-5 Ahmad, J., Cai, W., Zhao, Z., Zhang, Z., Shimizu, K., Lei, Z., & Lee, D.-J. (2017). Stability of algal-bacterial granules in continuous-flow reactors to treat varying strength domestic wastewater. Bioresource Technology, 244. https://doi.org/10.1016/j.biortech.2017.07.134 Al-Ani, F. H., Majdi, H. S., Ali, J. M., Al Rahawi, A. M., & Alsalhy, Q. F. (2019). Comparative study on CAS, UCT, and MBR configurations for nutrient removal from hospital wastewater. Desalination and Water Treatment, 164, 39-47. https://doi.org/10.5004/dwt.2019.24454 Berry, D. F., Francis, A. J., & Bollag, J.-M. (1987). Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions. Microbiological reviews, 51(1), 43-59. https://doi.org/10.1128/mr.51.1.43-59.1987 Boltyanskaya, Y. V., Kevbrin, V. V., Lysenko, A. M., Kolganova, T. V., Tourova, T. P., Osipov, G. A., & Zhilina, T. N. (2007). Halomonas mongoliensis sp. nov. and Halomonas kenyensis sp. nov., new haloalkaliphilic denitrifiers capable of N2O reduction, isolated from soda lakes. Microbiology, 76(6), 739-747. https://doi.org/10.1134/S0026261707060148 Bossa, R., Di Colandrea, M., Salbitani, G., & Carfagna, S. (2024). Phosphorous utilization in microalgae: physiological aspects and applied implications. Plants, 13(15), 2127. https://doi.org/10.3390/plants13152127 Bruins, J. G., Oostergo, H. D., & Brinkhorst, M. A. (1995). Emission of greenhouse gases from wastewater treatment processes. In S. Zwerver, R. S. A. R. van Rompaey, M. T. J. Kok, & M. M. Berk (Eds.), Studies in Environmental Science (Vol. 65, pp. 635-638). Elsevier. https://doi.org/10.1016/S0166-1116(06)80259-1 Caille, C., Duhamel, S., Latifi, A., & Rabouille, S. (2024). Adaptive responses of cyanobacteria to phosphate limitation: a focus on marine diazotrophs. Environmental Microbiology, 26(12), e70023. https://doi.org/10.1111/1462-2920.70023 Cao, J., Chen, F., Fang, Z., Gu, Y., Wang, H., Lu, J., Bi, Y., Wang, S., Huang, W., & Meng, F. (2022). Effect of filamentous algae in a microalgal-bacterial granular sludge system treating saline wastewater: Assessing stability, lipid production and nutrients removal. Bioresource Technology, 354, 127182. https://doi.org/10.1016/j.biortech.2022.127182 Cao, Y., Yang, S., Wang, J., Kong, W., Guo, B., Xi, Y., Zhang, A., & Yue, B. (2023). Metabolomic exploration of the physiological regulatory mechanism of the growth and metabolism characteristics of Chlorella vulgaris under photoautotrophic, mixotrophic, and heterotrophic cultivation conditions. Biomass and Bioenergy, 173, 106775. https://doi.org/10.1016/j.biombioe.2023.106775 Carvalho, V. C. F., Gan, A. Z. M., Shon, A., Kolakovic, S., Freitas, E. B., Reis, M. A. M., Fradinho, J. C., & Oehmen, A. (2024). The phototrophic metabolic behaviour of Candidatus Accumulibacter. Water Research, 259, 121865. https://doi.org/10.1016/j.watres.2024.121865 Chen, H., Zhou, W., Zhu, S., Liu, F., Qin, L., Xu, C., & Wang, Z. (2021). Biological nitrogen and phosphorus removal by a phosphorus-accumulating bacteria Acinetobacter sp. strain C-13 with the ability of heterotrophic nitrification–aerobic denitrification. Bioresource Technology, 322, 124507. https://doi.org/10.1016/j.biortech.2020.124507 Chen, S., Wang, J., Feng, X., & Zhao, F. (2025). Algal–bacterial symbiotic granular sludge technology in wastewater treatment: A Review on advances and future prospects. Water, 17(11), 1647. https://doi.org/10.3390/w17111647 Chiu, Z. C., Chen, M. Y., Lee, D. J., Wang, C. H., & Lai, J. Y. (2007a). Oxygen diffusion and consumption in active aerobic granules of heterogeneous structure. Applied Microbiology and Biotechnology, 75(3), 685-691. https://doi.org/10.1007/s00253-007-0847-6 Chiu, Z. C., Chen, M. Y., Lee, D. J., Wang, C. H., & Lai, J. Y. (2007b). Oxygen diffusion in active layer of aerobic granule with step change in surrounding oxygen levels. Water Res, 41(4), 884-892. https://doi.org/10.1016/j.watres.2006.11.035 Choi, J. W., & Peters, F. (1992). Effects of temperature on two psychrophilic ecotypes of a heterotrophic nanoflagellate, Paraphysomonas imperforata. Applied and environmental microbiology, 58(2), 593-599. https://doi.org/10.1128/aem.58.2.593-599.1992 Chojnacka, K., & Marquez-Rocha, F. (2004). Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology(Faisalabad), 3, 21-34. https://doi.org/10.3923/biotech.2004.21.34 Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J., & Smith, A. G. (2005). Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature, 438(7064), 90-93. https://doi.org/10.1038/nature04056 Cummins, P. M., Rochfort, K. D., & O'Connor, B. F. (2017). Ion-Exchange Chromatography: Basic Principles and Application. Methods Mol Biol, 1485, 209-223. https://doi.org/10.1007/978-1-4939-6412-3_11 Daims, H. (2014). The Family Nitrospiraceae. In E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, & F. Thompson (Eds.), The Prokaryotes: Other Major Lineages of Bacteria and The Archaea (pp. 733-749). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-38954-2_126 Dashty, M. (2013). A quick look at biochemistry: Carbohydrate metabolism. Clinical Biochemistry, 46(15), 1339-1352. https://doi.org/10.1016/j.clinbiochem.2013.04.027 Dawen, G., & Nabi, M. (2024). Aerobic Granular Sludge. In G. Dawen & M. Nabi (Eds.), Novel Approaches Towards Wastewater Treatment: Effective Strategies and Techniques (pp. 91-165). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-55189-5_2 de Kreuk, M. K., Kishida, N., & van Loosdrecht, M. C. M. (2007). Aerobic granular sludge – state of the art. Water Science and Technology, 55(8-9), 75-81. https://doi.org/10.2166/wst.2007.244 de Kreuk, M. K., & van Loosdrecht, M. C. M. (2006). Formation of aerobic granules with domestic sewage. Journal of Environmental Engineering, 132(6), 694-697. https://doi.org/10.1061/(asce)0733-9372(2006)132:6(694) Di Capua, F., Pirozzi, F., Lens, P. N. L., & Esposito, G. (2019). Electron donors for autotrophic denitrification. Chemical Engineering Journal, 362, 922-937. https://doi.org/10.1016/j.cej.2019.01.069 Ding, X., Lan, W., Li, Y., Yan, A., Katayama, Y., Koba, K., Makabe, A., Fukushima, K., Yano, M., Onishi, Y., Ge, Q., & Gu, J.-D. (2021). An internal recycling mechanism between ammonia/ammonium and nitrate driven by ammonia-oxidizing archaea and bacteria (AOA, AOB, and Comammox) and DNRA on Angkor sandstone monuments. International Biodeterioration & Biodegradation, 165, 105328. https://doi.org/10.1016/j.ibiod.2021.105328 Drewnowski, J., Remiszewska-Skwarek, A., Duda, S., & Łagód, G. (2019). Aeration process in bioreactors as the main energy consumer in a wastewater treatment plant. Review of solutions and methods of process optimization. Processes, 7(5), 311. https://doi.org/10.3390/pr7050311 Duan, H., Zhao, Y., Koch, K., Wells, G. F., Zheng, M., Yuan, Z., & Ye, L. (2021). Insights into nitrous oxide mitigation strategies in wastewater treatment and challenges for wider implementation. Environmental Science & Technology, 55(11), 7208-7224. https://doi.org/10.1021/acs.est.1c00840 DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017 Fernández, E., Llamas, Á., & Galván, A. (2009). Nitrogen assimilation and its regulation. In The chlamydomonas sourcebook (pp. 69-113). Elsevier. https://doi.org/10.1016/b978-0-12-370873-1.00011-3 Fu, X., Li, Y., Huang, W., Wang, D., Yang, C., & Han, H. (2025). Unveiling environmental adaptability of magnetite-mediated Feammox system: Multiple pathways identification, metabolic responses and engineering potential analysis. Chemical Engineering Journal, 511, 161921. https://doi.org/10.1016/j.cej.2025.161921 Gonçalves, A. L., Pires, J. C. M., & Simões, M. (2017). A review on the use of microalgal consortia for wastewater treatment. Algal Research, 24, 403-415. https://doi.org/10.1016/j.algal.2016.11.008 Graziani, M., & McLean, D. (2006). Phosphorus treatment and removal technologies. (wq-wwtp9-02). St. Paul, MN: Minnesota Pollution Control Agency Retrieved from https://www.pca.state.mn.us/sites/default/files/wq-wwtp9-02.pdf Gu, Y., Li, Y., Li, X., Luo, P., Wang, H., Robinson, Z. P., Wang, X., Wu, J., & Li, F. (2017). The feasibility and challenges of energy self-sufficient wastewater treatment plants. Applied Energy, 204, 1463-1475. https://doi.org/10.1016/j.apenergy.2017.02.069 Gui, X., Wang, Z., Li, K., Li, Z., Mao, X., Geng, J., & Pan, Y. (2024). Enhanced nitrogen removal in sewage treatment is achieved by using kitchen waste hydrolysate without a significant increase in nitrous oxide emissions. Science of The Total Environment, 906, 167108. https://doi.org/10.1016/j.scitotenv.2023.167108 Gumaelius, L., Magnusson, G., Pettersson, B., & Dalhammar, G. (2001). Comamonas denitrificans sp. nov., an efficient denitrifying bacterium isolated from activated sludge. International journal of systematic and evolutionary microbiology, 51(3), 999-1006. https://doi.org/10.1099/00207713-51-3-999 Günther, S., Trutnau, M., Kleinsteuber, S., Hause, G., Bley, T., Röske, I., Harms, H., & Müller, S. (2009). Dynamics of Polyphosphate-Accumulating Bacteria in Wastewater Treatment Plant Microbial Communities Detected via DAPI (4′,6′-Diamidino-2-Phenylindole) and Tetracycline Labeling. Applied and environmental microbiology, 75(7), 2111-2121. https://doi.org/10.1128/AEM.01540-08 He, S., & McMahon, K. D. (2011). Microbiology of ‘Candidatus Accumulibacter’in activated sludge. Microbial biotechnology, 4(5), 603-619. https://doi.org/10.1111/j.1751-7915.2011.00248.x Hellebust, J. A., & Ahmad, I. (1989). Regulation of nitrogen assimilation in green microalgae. Biological oceanography, 6(3-4), 241-255. https://doi.org/10.1080/01965581.1988.10749529 Holen, D. A., & Boraas, M. E. (1995). Mixotrophy in chrysophytes. In C. D. Sandgren, J. P. Smol, & J. Kristiansen (Eds.), Chrysophyte Algae: Ecology, Phylogeny and Development (pp. 119-140). Cambridge University Press. https://doi.org/10.1017/CBO9780511752292.007 Huang, T.-L., Zhou, S.-L., Zhang, H.-H., Bai, S.-Y., He, X.-X., & Yang, X. (2015). Nitrogen removal characteristics of a newly isolated indigenous aerobic denitrifier from oligotrophic drinking water reservoir, Zoogloea sp. N299. International Journal of Molecular Sciences, 16(5), 10038-10060. https://doi.org/10.3390/ijms160510038 Huang, X., Yao, K., Yu, J., Dong, W., & Zhao, Z. (2022). Nitrogen removal performance and microbial characteristics during simultaneous chemical phosphorus removal process using Fe3+. Bioresource Technology, 363, 127972. https://doi.org/10.1016/j.biortech.2022.127972 Iorhemen, O. T., Zaghloul, M. S., Hamza, R. A., & Tay, J. H. (2020). Long-term aerobic granular sludge stability through anaerobic slow feeding, fixed feast-famine period ratio, and fixed SRT. Journal of Environmental Chemical Engineering, 8(2), 103681. https://doi.org/10.1016/j.jece.2020.103681 Irvine, R. L., Ketchum Jr, L. H., & Asano, T. (1989). Sequencing batch reactors for biological wastewater treatment. Critical Reviews in Environmental Control, 18(4), 255-294. https://doi.org/10.1080/10643388909388350 Ji, B. (2022). Towards environment-sustainable wastewater treatment and reclamation by the non-aerated microalgal-bacterial granular sludge process: Recent advances and future directions. Science of The Total Environment, 806, 150707. https://doi.org/10.1016/j.scitotenv.2021.150707 Ji, B., Wang, S., Silva, M. R. U., Zhang, M., & Liu, Y. (2021). Microalgal-bacterial granular sludge for municipal wastewater treatment under simulated natural diel cycles: Performances-metabolic pathways-microbial community nexus. Algal Research, 54, 102198. https://doi.org/10.1016/j.algal.2021.102198 Jia, W., Huang, X., & Li, C. (2014). A preliminary study of the algicidal mechanism of bioactive metabolites of Brevibacillus laterosporus on Oscillatoria in prawn ponds. The Scientific World Journal, 2014(1), 869149. https://doi.org/10.1155/2014/869149 Jiang, Q., Chen, H., Fu, Z., Fu, X., Wang, J., Liang, Y., Yin, H., Yang, J., Jiang, J., Yang, X., Wang, H., Liu, Z., & Su, R. (2022). Current progress, challenges and perspectives in the microalgal-bacterial aerobic granular sludge process: a review. Int J Environ Res Public Health, 19(21). https://doi.org/10.3390/ijerph192113950 Jimenez, J., Dursun, D., Dold, P., Bratby, J., Keller, J., & Parker, D. (2010). Simultaneous nitrification-denitrification to meet low effluent nitrogen limits: Modeling, performance and reliability. Proceedings of the Water Environment Federation (WEFTEC 2010), 2404-2421. https://doi.org/10.2175/193864710798158968 Jin, Y., Zhan, W., Wu, R., Han, Y., Yang, S., Ding, J., & Ren, N. (2023). Insight into the roles of microalgae on simultaneous nitrification and denitrification in microalgal-bacterial sequencing batch reactors: Nitrogen removal, extracellular polymeric substances, and microbial communities. Bioresour Technol, 379, 129038. https://doi.org/10.1016/j.biortech.2023.129038 Kalmbach, S., Manz, W., Wecke, J., & Szewzyk, U. (1999). Aquabacterium gen. nov., with description of Aquabacterium citratiphilum sp. nov., Aquabacterium parvum sp. nov. and Aquabacterium commune sp. nov., three in situ dominant bacterial species from the Berlin drinking water system. International journal of systematic and evolutionary microbiology, 49(2), 769-777. https://doi.org/10.1099/00207713-49-2-769 Kamp, A., de Beer, D., Nitsch, J. L., Lavik, G., & Stief, P. (2011). Diatoms respire nitrate to survive dark and anoxic conditions. Proceedings of the National Academy of Sciences, 108(14), 5649-5654. https://doi.org/10.1073/pnas.1015744108 Kartal, B., de Almeida, N. M., Maalcke, W. J., Op den Camp, H. J. M., Jetten, M. S. M., & Keltjens, J. T. (2013). How to make a living from anaerobic ammonium oxidation. FEMS Microbiology Reviews, 37(3), 428-461. https://doi.org/10.1111/1574-6976.12014 Kartal, B., Maalcke, W. J., de Almeida, N. M., Cirpus, I., Gloerich, J., Geerts, W., Op den Camp, H. J. M., Harhangi, H. R., Janssen-Megens, E. M., Francoijs, K.-J., Stunnenberg, H. G., Keltjens, J. T., Jetten, M. S. M., & Strous, M. (2011). Molecular mechanism of anaerobic ammonium oxidation. Nature, 479(7371), 127-130. https://doi.org/10.1038/nature10453 Kemmou, L., & Amanatidou, E. (2023). Factors affecting nitrous oxide emissions from activated sludge wastewater treatment plants—A review. Resources, 12(10), 114. https://doi.org/10.3390/resources12100114 Kennes-Veiga, D. M., Gonzalez-Gil, L., Carballa, M., & Lema, J. M. (2021). The organic loading rate affects organic micropollutants’ cometabolic biotransformation kinetics under heterotrophic conditions in activated sludge. Water Research, 189, 116587. https://doi.org/10.1016/j.watres.2020.116587 Khardenavis, A. A., Kapley, A., & Purohit, H. J. (2007). Simultaneous nitrification and denitrification by diverse Diaphorobacter sp. Appl Microbiol Biotechnol, 77(2), 403-409. https://doi.org/10.1007/s00253-007-1176-5 Kokou, F., Makridis, P., Kentouri, M., & Divanach, P. (2012). Antibacterial activity in microalgae cultures. Aquaculture Research, 43(10), 1520-1527. https://doi.org/10.1111/j.1365-2109.2011.02955.x Ladd, J., & Jackson, R. (1982). Biochemistry of ammonification (F. J. Stevenson, Ed. Vol. 22). https://doi.org/10.2134/agronmonogr22.c5 Lake, A., & Vellacott, A. (2024). The challenges of eliminating nitrous oxide from the water sector. TCE: The Chemical Engineer, (1000), 22–29. https://www.thechemicalengineer.com/features/the-challenges-of-eliminating-nitrous-oxide-from-the-water-sector/ Larsdotter, K., Cour, J. J. l., & and Dalhammar, G. (2007). Biologically mediated phosphorus precipitation in wastewater treatment with microalgae. Environmental Technology, 28(9), 953-960. https://doi.org/10.1080/09593332808618855 Lettinga, G., Van Velsen, A., Hobma, S. d., De Zeeuw, W., & Klapwijk, A. (1980). Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnology and bioengineering, 22(4), 699-734. https://doi.org/10.1002/bit.260220402 Liang, L., Wang, Z., Ding, Y., Li, Y., & Wen, X. (2023). Protein reserves elucidate the growth of microalgae under nitrogen deficiency. Algal Research, 75, 103269. https://doi.org/10.1016/j.algal.2023.103269 Lim, S. J., & Kim, T.-H. (2014). Applicability and trends of anaerobic granular sludge treatment processes. Biomass and Bioenergy, 60, 189-202. https://doi.org/10.1016/j.biombioe.2013.11.011 Lin, H., Wang, Y., & Dong, Y. (2024). A review of methods, influencing factors and mechanisms for phosphorus recovery from sewage and sludge from municipal wastewater treatment plants. Journal of Environmental Chemical Engineering, 12(1), 111657. https://doi.org/10.1016/j.jece.2023.111657 Liu, L., Zeng, Z., Bee, M., Gibson, V., Wei, L., Huang, X., & Liu, C. (2018). Characteristics and performance of aerobic algae-bacteria granular consortia in a photo-sequencing batch reactor. Journal of Hazardous Materials, 349, 135-142. https://doi.org/10.1016/j.jhazmat.2018.01.059 Liu, Y.-Q. (2024). Environmental protection through aerobic granular sludge process. Processes, 12(2), 243. https://doi.org/10.3390/pr12020243 Liu, Y.-Q., & Tay, J.-H. (2015). Fast formation of aerobic granules by combining strong hydraulic selection pressure with overstressed organic loading rate. Water Research, 80, 256-266. https://doi.org/10.1016/j.watres.2015.05.015 Liu, Z., Liu, J., Zhao, Y., Zhang, S., Gao, M., Wang, J., Zhang, A., & Liu, Y. (2022). Understanding the effects of algae growth on algal-bacterial granular sludge formation: From sludge characteristics, extracellular polymeric substances, and microbial community. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4244547 Madigan, M. T. B., Kelly S.; Buckley, Daniel H.; Sattley, W. Matthew; Stahl, David A.; Brock, Thomas D. (2018). Brock Biology of Microorganisms (15 ed.). Pearson. Mao, Y., Xiong, R., Gao, X., Jiang, L., Peng, Y., & Xue, Y. (2021). Analysis of the status and improvement of microalgal phosphorus removal from municipal wastewater. Processes, 9(9), 1486. https://doi.org/10.3390/pr9091486 Martineau, C., Mauffrey, F., & Villemur, R. (2015). Comparative Analysis of Denitrifying Activities of Hyphomicrobium nitrativorans, Hyphomicrobium denitrificans, and Hyphomicrobium zavarzinii. Appl Environ Microbiol, 81(15), 5003-5014. https://doi.org/10.1128/aem.00848-15 Massara, T. M., Malamis, S., Guisasola, A., Baeza, J. A., Noutsopoulos, C., & Katsou, E. (2017). A review on nitrous oxide (N2O) emissions during biological nutrient removal from municipal wastewater and sludge reject water. Science of The Total Environment, 596, 106-123. https://doi.org/10.1016/j.scitotenv.2017.03.191 Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217-232. https://doi.org/10.1016/j.rser.2009.07.020 McIlroy, S. J., Albertsen, M., Andresen, E. K., Saunders, A. M., Kristiansen, R., Stokholm-Bjerregaard, M., Nielsen, K. L., & Nielsen, P. H. (2014). ‘Candidatus Competibacter’-lineage genomes retrieved from metagenomes reveal functional metabolic diversity. The ISME Journal, 8(3), 613-624. https://doi.org/10.1038/ismej.2013.162 Meng, F., Xi, L., Liu, D., Huang, W., Lei, Z., Zhang, Z., & Huang, W. (2019). Effects of light intensity on oxygen distribution, lipid production and biological community of algal-bacterial granules in photo-sequencing batch reactors. Bioresource Technology, 272, 473-481. https://doi.org/10.1016/j.biortech.2018.10.059 Meyer, N., Bigalke, A., Kaulfuß, A., & Pohnert, G. (2017). Strategies and ecological roles of algicidal bacteria. FEMS Microbiology Reviews, 41(6), 880-899. https://doi.org/10.1093/femsre/fux029 Mohsenpour, S. F., Hennige, S., Willoughby, N., Adeloye, A., & Gutierrez, T. (2021). Integrating micro-algae into wastewater treatment: A review. Science of The Total Environment, 752, 142168. https://doi.org/10.1016/j.scitotenv.2020.142168 Muloiwa, M., Dinka, M., & Nyende-Byakika, S. (2023). Modelling and optimization of energy consumption in the activated sludge biological aeration unit. Water Practice & Technology, 18(1), 140-158. https://doi.org/10.2166/wpt.2022.154 Na, H., Na, A., & Mg, S. (2019). The performance of extracellular polymeric substance (EPS) on stability of aerobic granular sludge (AGS). Civil and Environmental Engineering Reports, 29(3), 60-69. https://doi.org/10.2478/ceer-2019-0024 Nirmalakhandan, N., Selvaratnam, T., Henkanatte-Gedera, S. M., Tchinda, D., Abeysiriwardana-Arachchige, I. S. A., Delanka-Pedige, H. M. K., Munasinghe-Arachchige, S. P., Zhang, Y., Holguin, F. O., & Lammers, P. J. (2019). Algal wastewater treatment: Photoautotrophic vs. mixotrophic processes. Algal Research, 41, 101569. https://doi.org/10.1016/j.algal.2019.101569 Nishizawa, T., Tago, K., Oshima, K., Hattori, M., Ishii, S., Otsuka, S., & Senoo, K. (2012). Complete genome sequence of the denitrifying and N2O-reducing bacterium Azoarcus sp. strain KH32C. J Bacteriol, 194(5), 1255. https://doi.org/10.1128/jb.06618-11 Oruganti, R. K., Keerthi, K., Loke, S. P., Venkataramana, G., Kumar, U. V. K., & and Bhattacharyya, D. (2022). A comprehensive review on the use of algal-bacterial systems for wastewater treatment with emphasis on nutrient and micropollutant removal. Bioengineered, 13(4), 10412-10453. https://doi.org/10.1080/21655979.2022.2056823 Park, H.-J., Kwon, J., Yun, J., & Cho, K.-S. (2020). Characterization of nitrous oxide reduction by Azospira sp. HJ23 isolated from advanced wastewater treatment sludge. Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering, 55, 1-9. https://doi.org/10.1080/10934529.2020.1812321 Park, J.-E., Zhang, S., Han, T. H., & Hwang, S.-J. (2021). The contribution ratio of autotrophic and heterotrophic metabolism during a mixotrophic culture of Chlorella sorokiniana. International Journal of Environmental Research and Public Health, 18(3), 1353. https://doi.org/10.3390/ijerph18031353 Peng, T., Wang, Y., Wang, J., Fang, F., Yan, P., & Liu, Z. (2022). Effect of different forms and components of EPS on sludge aggregation during granulation process of aerobic granular sludge. Chemosphere, 303, 135116. https://doi.org/10.1016/j.chemosphere.2022.135116 Perez-Garcia, O., Escalante, F. M., De-Bashan, L. E., & Bashan, Y. (2011). Heterotrophic cultures of microalgae: metabolism and potential products. Water Research, 45(1), 11-36. https://doi.org/10.1016/j.watres.2010.08.037 Petriglieri, F., Singleton, C., Peces, M., Petersen, J. F., Nierychlo, M., & Nielsen, P. H. (2021). “Candidatus Dechloromonas phosphoritropha” and “Ca. D. phosphorivorans”, novel polyphosphate accumulating organisms abundant in wastewater treatment systems. The ISME Journal, 15(12), 3605-3614. https://doi.org/10.1038/s41396-021-01029-2 Pietsch, T., Nitsche, F., & Arndt, H. (2022). High molecular diversity in the functional group of small bacterivorous non-scaled chrysomonad flagellates. European Journal of Protistology, 86, 125915. https://doi.org/10.1016/j.ejop.2022.125915 Pozzobon, V., Cui, N., Moreaud, A., Michiels, E., & Levasseur, W. (2021). Nitrate and nitrite as mixed source of nitrogen for Chlorella vulgaris: Growth, nitrogen uptake and pigment contents. Bioresource Technology, 330, 124995. https://doi.org/10.1016/j.biortech.2021.124995 Pronk, M., De Kreuk, M., De Bruin, B., Kamminga, P., Kleerebezem, R. v., & Van Loosdrecht, M. (2015). Full scale performance of the aerobic granular sludge process for sewage treatment. Water Research, 84, 207-217. https://doi.org/10.1016/j.watres.2015.07.011 Pronk, M., van Dijk, E. J. H., & van Loosdrecht, M. C. M. (2023). Aerobic granular sludge. In G. Chen, M. C. M. van Loosdrecht, G. A. Ekama, & D. Brdjanovic (Eds.), Biological Wastewater Treatment: Principles, Modelling and Design (pp. 0). IWA Publishing. https://doi.org/10.2166/9781789060362_0497 Pujalte, M. J., Lucena, T., Ruvira, M. A., Arahal, D. R., & Macián, M. C. (2014). The Family Rhodobacteraceae. In E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, & F. Thompson (Eds.), The Prokaryotes: Alphaproteobacteria and Betaproteobacteria (pp. 439-512). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30197-1_377 Purba, L. D. A., Zahra, S. A., Yuzir, A., Iwamoto, K., Abdullah, N., Shimizu, K., Lei, Z., & Hermana, J. (2023). Algal-bacterial aerobic granular sludge for real municipal wastewater treatment: performance, microbial community change and feasibility of lipid recovery. Journal of Environmental Management, 333, 117374. https://doi.org/10.1016/j.jenvman.2023.117374 Qiao, Z., Sun, R., Wu, Y., Hu, S., Liu, X., Chan, J., & Mi, X. (2020). Characteristics and metabolic pathway of the bacteria for heterotrophic nitrification and aerobic denitrification in aquatic ecosystems. Environmental Research, 191, 110069. https://doi.org/10.1016/j.envres.2020.110069 Qin, L., Feng, P., Zhu, S., Xu, Z., & Wang, Z. (2022). A novel partial complete nitrification coupled microalgae assimilation system for resource utilization of high ammonia nitrogen wastewater. Journal of Environmental Chemical Engineering, 10(6), 108584. https://doi.org/10.1016/j.jece.2022.108584 Ren, T., Chi, Y., Wang, Y., Shi, X., Jin, X., & Jin, P. (2021). Diversified metabolism makes novel Thauera strain highly competitive in low carbon wastewater treatment. Water Research, 206, 117742. https://doi.org/10.1016/j.watres.2021.117742 Ren, Y., Hao Ngo, H., Guo, W., Wang, D., Peng, L., Ni, B.-J., Wei, W., & Liu, Y. (2020). New perspectives on microbial communities and biological nitrogen removal processes in wastewater treatment systems. Bioresource Technology, 297, 122491. https://doi.org/10.1016/j.biortech.2019.122491 Rittmann, B. E. M., Perry L. (2001). Environmental Biotechnology: Principles and Applications (1 ed.). McGraw-Hill Education. Sanz-Luque, E., Bhaya, D., & Grossman, A. R. (2020). Polyphosphate: a multifunctional metabolite in cyanobacteria and algae. Frontiers in plant science, 11, 938. https://doi.org/10.3389/fpls.2020.00938 Sanz-Luque, E., Chamizo-Ampudia, A., Llamas, A., Galvan, A., & Fernandez, E. (2015). Understanding nitrate assimilation and its regulation in microalgae. Frontiers in plant science, Volume 6 - 2015. https://doi.org/10.3389/fpls.2015.00899 Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia & Analgesia, 126(5), 1763-1768. https://doi.org/10.1213/ane.0000000000002864 Shan, S., Manyakhin, A. Y., Wang, C., Ge, B., Han, J., Zhang, X., Zhou, C., Yan, X., Ruan, R., & Cheng, P. (2023). Mixotrophy, a more promising culture mode: Multi-faceted elaboration of carbon and energy metabolism mechanisms to optimize microalgae culture. Bioresource Technology, 386, 129512. https://doi.org/10.1016/j.biortech.2023.129512 Slocombe, S. P., Zúñiga-Burgos, T., Chu, L., Mehrshahi, P., Davey, M. P., Smith, A. G., Camargo-Valero, M. A., & Baker, A. (2023). Overexpression of PSR1 in Chlamydomonas reinhardtii induces luxury phosphorus uptake. Frontiers in plant science, 14, 1208168. https://doi.org/10.1101/2022.11.18.517064 Solovchenko, A., Plouviez, M., & Khozin-Goldberg, I. (2024). Getting grip on phosphorus: Potential of microalgae as a vehicle for sustainable usage of this macronutrient. Plants, 13(13), 1834. https://doi.org/10.20944/preprints202405.1379.v1 Strous, M., Fuerst, J. A., Kramer, E. H. M., Logemann, S., Muyzer, G., van de Pas-Schoonen, K. T., Webb, R., Kuenen, J. G., & Jetten, M. S. M. (1999). Missing lithotroph identified as new planctomycete. Nature, 400(6743), 446-449. https://doi.org/10.1038/22749 Strubbe, L., van Dijk, E. J. H., Carrera, P., van Loosdrecht, M. C. M., & Volcke, E. I. P. (2024). Impact of oxygen transfer dynamics on the performance of an aerobic granular sludge reactor. Chemical Engineering Journal, 482, 148843. https://doi.org/10.1016/j.cej.2024.148843 Subashchandrabose, S. R., Ramakrishnan, B., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2011). Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential. Biotechnology Advances, 29(6), 896-907. https://doi.org/10.1016/j.biotechadv.2011.07.009 Sun, J., Liang, P., Yan, X., Zuo, K., Xiao, K., Xia, J., Qiu, Y., Wu, Q., Wu, S., Huang, X., Qi, M., & Wen, X. (2016). Reducing aeration energy consumption in a large-scale membrane bioreactor: Process simulation and engineering application. Water Research, 93, 205-213. https://doi.org/10.1016/j.watres.2016.02.026 Sun, Y., Zuo, Y., Shao, Y., Wang, L., Jiang, L.-M., Hu, J., Zhou, C., Lu, X., Huang, S., & Zhou, Z. (2024). Carbon footprint analysis of wastewater treatment processes coupled with sludge in situ reduction. Water Research X, 24, 100243. https://doi.org/10.2139/ssrn.4644500 Tan, X., Yang, Y.-L., Li, X., Gao, Y.-X., & Fan, X.-Y. (2021). Multi-metabolism regulation insights into nutrients removal performance with adding heterotrophic nitrification-aerobic denitrification bacteria in tidal flow constructed wetlands. Science of The Total Environment, 796, 149023. https://doi.org/10.1016/j.scitotenv.2021.149023 Tan, Y., Park, J., Ikuma, K., Evans, E. A., Flamming, J. J., & Ellis, T. G. (2020). Feasibility test of autotrophic denitrification of industrial wastewater in sequencing batch and static granular bed reactors. Water Environment Research, 92(5), 749-758. https://doi.org/10.1002/wer.1271 Tay, J. H., Liu, Q. S., & Liu, Y. (2001). The effects of shear force on the formation, structure and metabolism of aerobic granules. Applied Microbiology and Biotechnology, 57(1), 227-233. https://doi.org/10.1007/s002530100766 Tchobanoglous, G., Stensel, H. D., Burton, F. L., & Eddy, M. (2014). Wastewater Engineering: Treatment and Resource Recovery (5th ed. ed.). McGraw-Hill Education. Thomas, R. J., Hipkin, C. R., & Syrett, P. J. (1976). The interaction of nitrogen assimilation with photosynthesis in nitrogen deficient cells of Chlorella. Planta, 133(1), 9-13. https://doi.org/10.1007/BF00385999 Toh, S., Tay, J., Moy, B., Ivanov, V., & Tay, S. (2003). Size-effect on the physical characteristics of the aerobic granule in a SBR. Applied Microbiology and Biotechnology, 60(6), 687-695. https://doi.org/10.1007/s00253-002-1145-y Tran, N. H., Urase, T., Ngo, H. H., Hu, J., & Ong, S. L. (2013). Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants. Bioresource Technology, 146, 721-731. https://doi.org/10.1016/j.biortech.2013.07.083 Wan, K., Yu, Y., Hu, J., Liu, X., Deng, X., Yu, J., Chi, R., & Xiao, C. (2022). Recovery of Anammox process performance after substrate inhibition: Reactor performance, sludge morphology, and microbial community. Bioresource Technology, 357, 127351. https://doi.org/10.1016/j.biortech.2022.127351 Wang, F., Liu, W., Liu, W., Xiao, L., Ai, S., Sun, X., & Bian, D. (2022). Simultaneous removal of organic matter and nitrogen by heterotrophic nitrification–aerobic denitrification bacteria in an air-lift multi-stage circulating integrated bioreactor. Bioresource Technology, 363, 127888. https://doi.org/10.1016/j.biortech.2022.127888 Wang, L. K., & Li, Y. (2009). Sequencing Batch Reactors. In L. K. Wang, N. C. Pereira, & Y.-T. Hung (Eds.), Biological Treatment Processes (pp. 459-511). Humana Press. https://doi.org/10.1007/978-1-60327-156-1_11 Wang, S., Guo, Z., Ding, X., Li, L., Jin, Z., Zhang, C., Liu, S., Zhou, Y., & Fan, G. (2023). The effect of light on nitrogen removal by microalgae-bacteria symbiosis system (MBS). Water, 15(11), 1991. https://doi.org/10.3390/w15111991 Wang, Y., Wang, J., Liu, Z., Huang, X., Fang, F., Guo, J., & Yan, P. (2021). Effect of EPS and its forms of aerobic granular sludge on sludge aggregation performance during granulation process based on XDLVO theory. Science of The Total Environment, 795, 148682. https://doi.org/10.1016/j.scitotenv.2021.148682 Wasai-Hara, S., Itakura, M., Fernandes Siqueira, A., Takemoto, D., Sugawara, M., Mitsui, H., Sato, S., Inagaki, N., Yamazaki, T., Imaizumi-Anraku, H., Shimoda, Y., & Minamisawa, K. (2023). Bradyrhizobium ottawaense efficiently reduces nitrous oxide through high nosZ gene expression. Scientific Reports, 13(1), 18862. https://doi.org/10.1038/s41598-023-46019-w Weidner, M., & Kiefer, H. (1981). Nitrate reduction in the marine brown alga Giffordia mitchellae (Harv.) Ham. Zeitschrift für Pflanzenphysiologie, 104(4), 341-351. https://doi.org/10.1016/s0044-328x(81)80073-6 Welles, L., Abbas, B., Sorokin, D. Y., Lopez-Vazquez, C. M., Hooijmans, C. M., van Loosdrecht, M. C., & Brdjanovic, D. (2017). Metabolic response of “Candidatus Accumulibacter Phosphatis” clade II C to changes in influent P/C ratio. Frontiers in Microbiology, 7, 2121. https://doi.org/10.3389/fmicb.2016.02121 Wendeborn, S. (2020). The chemistry, biology, and modulation of ammonium nitrification in soil. Angewandte Chemie International Edition, 59(6), 2182-2202. https://doi.org/10.1002/anie.201903014 Wu, Q., Guo, L., Li, X., & Wang, Y. (2021). Effect of phosphorus concentration and light/dark condition on phosphorus uptake and distribution with microalgae. Bioresource Technology, 340, 125745. https://doi.org/10.1016/j.biortech.2021.125745 Wu, T., Li, J., Cao, R., Chen, X., Wang, B., Huang, T., & Wen, G. (2024). Nitrate removal by a novel aerobic denitrifying Pelomonas puraquae WJ1 in oligotrophic condition: Performance and carbon source metabolism. Science of The Total Environment, 954, 176614. https://doi.org/10.1016/j.scitotenv.2024.176614 Xi, L., Huang, W., Sun, B., Meng, F., & Gu, S. (2022). Effects of illumination time on biological community of algal-bacterial granules and lipid content. Environmental Engineering Research, 27(6), 210334-210330. https://doi.org/10.4491/eer.2021.334 Xia, L., Li, X., Fan, W., & Wang, J. (2020). Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. ND7 isolated from municipal activated sludge. Bioresource Technology, 301, 122749. https://doi.org/10.1016/j.biortech.2020.122749 Yan, L., Yu, L., Liu, Q., Zhang, X., Liu, Y., Zhang, M., Liu, S., Ren, Y., & Chen, Z. (2019). Effects of phosphorus on loosely bound and tightly bound extracellular polymer substances in aerobic granular sludge. Chemical and Biochemical Engineering Quarterly, 33(1), 59-68. https://doi.org/10.15255/cabeq.2018.1445 Yang, J., Feng, L., Pi, S., Cui, D., Ma, F., Zhao, H.-p., & Li, A. (2020). A critical review of aerobic denitrification: Insights into the intracellular electron transfer. Science of The Total Environment, 731, 139080. https://doi.org/10.1016/j.scitotenv.2020.139080 Yang, J., Gou, Y., Fang, F., Guo, J., Ma, H., Wei, X., & Shahmoradi, B. (2018). Impacts of sludge retention time on the performance of an algal-bacterial bioreactor. Chemical Engineering Journal, 343, 37-43. https://doi.org/10.1016/j.cej.2018.02.118 Yang, M., Lu, D., Yang, J., Zhao, Y., Zhao, Q., Sun, Y., Liu, H., & Ma, J. (2019). Carbon and nitrogen metabolic pathways and interaction of cold-resistant heterotrophic nitrifying bacteria under aerobic and anaerobic conditions. Chemosphere, 234, 162-170. https://doi.org/10.1016/j.chemosphere.2019.06.052 Yu, D., Yan, L., Shi, J., Liu, Y., Zhang, A., Wang, Y., Zhang, Y., & Xie, T. (2024). Phosphorus removal and recovery during microalgae-based wastewater treatment: A mini-review. International Journal of Environmental Research, 18(3), 34. https://doi.org/10.1007/s41742-024-00590-w Zerveas, S., Mente, M. S., Tsakiri, D., & Kotzabasis, K. (2021). Microalgal photosynthesis induces alkalization of aquatic environment as a result of H+ uptake independently from CO2 concentration – New perspectives for environmental applications. Journal of Environmental Management, 289, 112546. https://doi.org/10.1016/j.jenvman.2021.112546 Zhang, B., Guo, Y., Lens, P. N. L., Zhang, Z., Shi, W., Cui, F., & Tay, J. H. (2019). Effect of light intensity on the characteristics of algal-bacterial granular sludge and the role of N-acyl-homoserine lactone in the granulation. Science of The Total Environment, 659, 372-383. https://doi.org/10.1016/j.scitotenv.2018.12.250 Zhang, B., Lens, P. N. L., Shi, W., Zhang, R., Zhang, Z., Guo, Y., Bao, X., & Cui, F. (2018). Enhancement of aerobic granulation and nutrient removal by an algal–bacterial consortium in a lab-scale photobioreactor. Chemical Engineering Journal, 334, 2373-2382. https://doi.org/10.1016/j.cej.2017.11.151 Zhang, B., Wu, L., Guo, Y., Lens, P. N. L., & Shi, W. (2023). Rapid establishment of algal-bacterial granular sludge system by applying mycelial pellets in a lab-scale photo-reactor under low aeration conditions: Performance and mechanism analysis. Environmental Pollution, 322, 121183. https://doi.org/10.1016/j.envpol.2023.121183 Zhang, H., Sekiguchi, Y., Hanada, S., Hugenholtz, P., Kim, H., Kamagata, Y., & Nakamura, K. (2003). Gemmatimonas aurantiaca gen. nov., sp. nov., a gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. International journal of systematic and evolutionary microbiology, 53(4), 1155-1163. https://doi.org/10.1099/ijs.0.02520-0 Zhang, W., Wu, Y., Wu, J., Zheng, X., & Chen, Y. (2022). Enhanced removal of sulfur-containing organic pollutants from actual wastewater by biofilm reactor: Insights of sulfur transformation and bacterial metabolic traits. Environmental Pollution, 313, 120187. https://doi.org/10.1016/j.envpol.2022.120187 Zhang, Z., Pan, S., Huang, F., Li, X., Shang, J., Lai, J., & Liao, Y. (2017). Nitrogen and phosphorus removal by activated sludge process: a review. Mini-Reviews in Organic Chemistry, 14(2), 99-106. https://doi.org/10.2174/1570193x14666161130151411 Zhang, Z., Sun, D., Cheng, K.-W., & Chen, F. (2021). Investigation of carbon and energy metabolic mechanism of mixotrophy in Chromochloris zofingiensis. Biotechnology for Biofuels, 14(1), 36. https://doi.org/10.1186/s13068-021-01890-5 Zhang, Z., Wan, J., Ye, G., Zhu, B., Wu, C., Wang, Y., & Ji, S. (2024). Microbial succession and pollutant removal metabolic pathways in anaerobic treatment of saline organic wastewater based on metagenomic technology. Journal of Environmental Chemical Engineering, 12(3), 112734. https://doi.org/10.1016/j.jece.2024.112734 Zhou, T., Xiang, Y., Liu, S., Ma, H., Shao, Z., He, Q., & Chai, H. (2023). Microbial community dynamics and metagenomics reveal the potential role of unconventional functional microorganisms in nitrogen and phosphorus removal biofilm system. Science of The Total Environment, 905, 167194. https://doi.org/10.1016/j.scitotenv.2023.167194 Zhou, Y., Zhou, Y., Chen, S., Guo, N., Xiang, P., Lin, S., Bai, Y., Hu, X., & Zhang, Z. (2022). Evaluating the role of algae in algal-bacterial granular sludge: Nutrient removal, microbial community and granular characteristics. Bioresource Technology, 365, 128165. https://doi.org/10.1016/j.biortech.2022.128165 Zumft, W. G. (1997). Cell biology and molecular basis of denitrification. Microbiology and molecular biology reviews, 61(4), 533-616. https://doi.org/10.1128/.61.4.533-616.1997 內政部國土管理署. (2009). 下水道工程設施標準. 臺北市: 內政部國土管理署 Retrieved from https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=D0070071 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98320 | - |
| dc.description.abstract | 藻菌顆粒污泥結合藻類與好氧顆粒污泥的優勢,不僅具備顆粒污泥的快速沉降特性,亦能有效的同步去除有機物、氮與磷。然而,該系統仰賴適當的光照以維持藻類活性及藻菌共生關係。若以自然光為光源,夜間缺乏光照可能抑制藻類對氮磷的去除功能;反之,若採用人工光源進行24小時連續照明,雖可持續提供光照,卻可能促使絲狀藻類過度生長,導致污泥沉降性劣化,並影響出流水水質。為探討光照條件與運作模式對系統處理效能與微生物組成之影響,本研究設置三組序批次反應槽:(1) A槽:24小時連續光照並持續運作;(2) B槽:12小時光照且日夜皆持續運作;(3) C槽:12小時光照,夜間則進入閒置。
研究結果顯示,長光照有助於顆粒粒徑增大並提升總氮去除效率,然而絲狀藻類過度生長導致沉降性惡化;相對的,短光照條件則有助於維持良好的沉降性能。在光暗週期的比較中,光照期的總氮去除率優於黑暗期,顯示光合作用對系統具顯著正面效益。微生物群落分析亦顯示,不同運作模式產生菌群與微藻的組成差異,進而影響系統整體表現。綜合各項指標,採用12小時光照並於夜間閒置之C槽在有機物與營養鹽去除效率及污泥沉降性方面表現最佳,SCOD去除率達97.4%、總氮去除率為84.5%、總磷去除率為71.4%、SVI30為56.5 mL/g,為效能最佳之運作模式。 | zh_TW |
| dc.description.abstract | Algal-bacterial granular sludge (ABGS) integrates the advantages of both algae and aerobic granular sludge, exhibiting rapid settling properties and the capability to simultaneously remove organic matter, nitrogen, and phosphorus. However, this system relies on appropriate illumination to maintain algal activity and the symbiotic relationship between algae and bacteria. Natural light sources may inhibit algal nitrogen and phosphorus removal functions during nighttime, while continuous artificial illumination can promote excessive filamentous algae growth, deteriorating sludge settling properties and affecting effluent quality. To investigate the effects of illumination conditions and operational modes on system performance and microbial composition, this study established three sequencing batch reactors (SBR): (1) Reactor A: continuous 24-hour illumination with continuous operation; (2) Reactor B: 12-hour illumination with continuous operation; (3) Reactor C: 12-hour illumination with nighttime idle periods.
Results demonstrated that extended illumination facilitated granule enlargement and enhanced total nitrogen removal efficiency; however, excessive filamentous algae growth deteriorated settling properties. Shorter illumination conditions maintained good settling performance. Total nitrogen removal during illumination periods was superior to dark periods, indicating photosynthesis benefits. Microbial community analysis revealed that different operational modes resulted in variations in bacterial and microalgal compositions, affecting overall system performance. Reactor C demonstrated optimal performance in organic matter and nutrient removal efficiency as well as settling properties, achieving SCOD removal of 97.4%, total nitrogen removal of 84.5%, total phosphorus removal of 71.4%, and SVI30 of 56.5 mL/g, representing the most effective operational mode. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-01T16:12:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-01T16:12:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii ABSTRACT iv 目次 vi 圖次 xi 表次 xiii 第一章 緒論 1 1.1研究背景 1 1.2研究動機 2 1.3研究目的 2 第二章 文獻回顧 5 2.1傳統活性污泥法缺陷 5 2.1.1高能源消耗 5 2.1.2溫室氣體排放 6 2.1.3營養鹽去除效率的限制 7 2.1.4占地需求 8 2.2 SBR運作限制 9 2.3顆粒污泥技術 10 2.3.1厭氧顆粒污泥 10 2.3.2好氧顆粒污泥 12 2.3.3藻菌顆粒污泥 13 2.3.3.1微藻對顆粒污泥的影響 14 2.3.3.2藻菌共生 16 2.4藻菌顆粒污泥污染物去除機制 17 2.4.1有機物去除 17 2.4.1.1好氧細菌異營代謝 17 2.4.1.2微藻之有機碳代謝機制 20 2.4.2氮去除 21 2.4.2.1硝化作用(Nitrification) 21 2.4.2.2脫硝作用(Denitrification) 22 2.4.2.3厭氧氨氧化(Anaerobic ammonium oxidation, ANAMMOX) 23 2.4.2.4微藻同化吸收氮 24 2.4.3磷去除 26 2.4.3.1聚磷菌去磷機制 26 2.4.3.2微藻除磷機制 27 第三章 材料與方法 29 3.1實驗藥品與設備 29 3.1.1實驗藥品 29 3.1.2實驗儀器與設備 30 3.2實驗設計 32 3.3反應槽配置與運作 32 3.4人工廢水組成 34 3.5植種污泥 36 3.6污泥停留時間(Sludge Retention Time, SRT)控制 37 3.7水溫控制設備 37 3.8分析項目 38 3.8.1平均粒徑測量 38 3.8.2 MLSS與MLVSS分析 38 3.8.3 SVI分析 39 3.8.4葉綠素a萃取與分析 40 3.8.5 COD分析 41 3.8.6總氮分析 41 3.8.6.1氨氮分析 41 3.8.6.2硝酸鹽氮與亞硝酸鹽氮分析 42 3.8.7總磷分析 43 3.8.8 EPS分析 43 3.8.8.1 EPS萃取 44 3.8.8.2醣類定量分析 45 3.8.8.3蛋白質定量分析 45 3.8.9微生物組成分析 46 3.8.9.1 DNA萃取 47 3.8.9.2菌群組成分析 48 3.8.9.3微藻組成分析 49 3.9統計分析 49 3.9.1皮爾森相關性分析 50 3.9.2 Shapiro-Wilk常態性檢定 51 3.9.3 Levene’s Test 51 3.9.4變異數分析(Analysis of Variance, ANOVA) 52 3.9.5 Kruskal-Wallis檢定 52 3.9.6最小顯著差異檢定(Least Significant Difference, LSD) 53 3.9.7 Dunn’s Test 53 3.9.8 Mann-Whitney U檢定 54 第四章 結果與討論 55 4.1污泥狀態 55 4.1.1藻菌顆粒污泥生長狀態 55 4.1.1.1 A槽顆粒污泥生長狀態 55 4.1.1.2 B、C槽污泥生長狀態 61 4.1.2平均粒徑 70 4.1.3污泥容積指標(SVI) 72 4.1.4 MLVSS濃度變化 75 4.1.5葉綠素a含量 78 4.2水質分析 80 4.2.1 pH 80 4.2.2溫度、溶氧 81 4.3污染物去除率 83 4.3.1 COD去除率分析 84 4.3.1.1 TCOD去除率分析 84 4.3.1.2 SCOD去除率分析 87 4.3.2總氮去除率分析 89 4.3.3 總磷去除率分析 94 4.4 EPS分析 97 4.5微生物組成分析 99 4.5.1菌群分析 99 4.5.2微藻物種分析 108 第五章 結論與建議 113 5.1結論 113 5.2建議 116 參考文獻 117 附錄 135 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 光照條件 | zh_TW |
| dc.subject | 營養鹽去除 | zh_TW |
| dc.subject | 污泥沉降性 | zh_TW |
| dc.subject | 運作模式 | zh_TW |
| dc.subject | 藻菌顆粒污泥 | zh_TW |
| dc.subject | 微生物組成 | zh_TW |
| dc.subject | sludge settling properties | en |
| dc.subject | nutrient removal | en |
| dc.subject | microbial composition | en |
| dc.subject | operational modes | en |
| dc.subject | illumination conditions | en |
| dc.subject | Algal-bacterial granular sludge | en |
| dc.title | 光照與運作模式對藻菌顆粒污泥系統污染物去除效能之影響 | zh_TW |
| dc.title | Effects of Illumination and Operational Modes on the Performance of Algal-Bacterial Granular Sludge Systems | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李學霖;蕭友晉 | zh_TW |
| dc.contributor.oralexamcommittee | Shiue-Lin Li;Yo-Jin Shiau | en |
| dc.subject.keyword | 藻菌顆粒污泥,光照條件,運作模式,微生物組成,營養鹽去除,污泥沉降性, | zh_TW |
| dc.subject.keyword | Algal-bacterial granular sludge,illumination conditions,operational modes,microbial composition,nutrient removal,sludge settling properties, | en |
| dc.relation.page | 144 | - |
| dc.identifier.doi | 10.6342/NTU202502549 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-28 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | 2025-08-02 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 6.58 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
