請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98310完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳俊杉 | zh_TW |
| dc.contributor.advisor | Chuin-Shan Chen | en |
| dc.contributor.author | 萬文甯 | zh_TW |
| dc.contributor.author | Wen-Ning Wan | en |
| dc.date.accessioned | 2025-08-01T16:10:05Z | - |
| dc.date.available | 2025-08-02 | - |
| dc.date.copyright | 2025-08-01 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-30 | - |
| dc.identifier.citation | [1] Robert Hooke, Denis Papin, and James Young. Lectures de potentia restitutiva; or, of spring, explaining the power of springing bodies: to which are added some collections: viz. a description of dr. pappin’s wind-fountain and force-pump. mr. young’s observation concerning natural fountains, 1980.
[2] W. C. Oliver et al. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7(6):1564–1583, 1992. [3] T. W. Clyne et al. An introduction to composite materials. Cambridge University Press, 2019. [4] K. K. Gupta. A brief history of the beginning of the finite element method. International Journal for Numerical Methods in Engineering, 39(22):3761–3774, 1996. [5] J. Yvonnet. Computational homogenization of heterogeneous materials with finite elements, volume 258. Springer, 2019. [6] H. Wei et al. Ls-dyna machine learning–based multiscale method for nonlinear modeling of short fiber–reinforced composites. Journal of Engineering Mechanics, 149(3):04023003, 2023. [7] M. F. Horstemeyer. Multiscale modeling: a review. Practical Aspects of Computational Chemistry: Methods, Concepts and Applications, pages 87–135, 2009. [8] F. Feyel et al. FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Computer Methods in Applied Mechanics and Engineering, 183(3-4):309–330, 2000. [9] R. Hill. Elastic properties of reinforced solids: Some theoretical principles. Journal of the Mechanics and Physics of Solids, 11(5):357–372, 1963. [10] H. Zhang et al. Low-voltage driven ionic polymer-metal composite actuators: struc- tures, materials, and applications. Advanced Science, 10(10):2206135, 2023. [11] M. Bhong et al. Review of composite materials and applications. Materials Today: Proceedings, 2023. [12] J. D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the royal society of London. Series A. Mathematical and physical sciences, 241(1226):376–396, 1957. [13] T. Mori et al. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21(5):571–574, 1973. [14] S. G. Advani. The use of tensors to describe and predict fiber orientation in short fiber composites. Journal of Rheology, 31(8):751–784, 1987. [15] H. Moulinec et al. A numerical method for computing the overall response of nonlinear composites with complex microstructure. Computer Methods in Applied Mechanics and Engineering, 157(1-2):69–94, 1998. [16] F. Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65(6):386, 1958. [17] M. Lefik et al. Artificial neural networks in numerical modelling of composites. Computer Methods in Applied Mechanics and Engineering, 198(21-26):1785–1804, 2009. [18] H. Yang et al. Exploring elastoplastic constitutive law of microstructured mate- rials through artificial neural network—a mechanistic-based data-driven approach. Journal of Applied Mechanics, 87(9):091005, 06 2020. [19] C. Rao et al. Three-dimensional convolutional neural network (3d-cnn) for hetero- geneous material homogenization. Computational Materials Science, 184:109850, 2020. [20] N. N. Vlassis et al. Geometric deep learning for computational mechanics part i: Anisotropic hyperelasticity. Computer Methods in Applied Mechanics and Engineering, 371:113299, 2020. [21] N. N. Vlassis et al. Geometric learning for computational mechanics part ii: Graph embedding for interpretable multiscale plasticity. Computer Methods in Applied Mechanics and Engineering, 404:115768, 2023. [22] Z. Liu et al. A deep material network for multiscale topology learning and acceler- ated nonlinear modeling of heterogeneous materials. Computer Methods in Applied Mechanics and Engineering, 345:1138–1168, 2019. [23] L. Noels et al. Interaction-based material network: A general framework for (porous) microstructured materials. Computer Methods in Applied Mechanics and Engineering, 389:114300, 2022. [24] T. J. Wei et al. Deep material network: Overview, applications and current directions. arXiv preprint arXiv:2504.12159, 2025. [25] Sebastian G. et al. On the micromechanics of deep material networks. Journal of the Mechanics and Physics of Solids, 142:103984, 2020. [26] B. Sterr et al. Deep material networks for fiber suspensions with infinite material con- trast. International Journal for Numerical Methods in Engineering, 126(7):e70014, 2025. [27] D. Shin et al. A deep material network approach for predicting the thermomechanical response of composites. Composites Part B: Engineering, 272:111177, 2024. [28] L. Noels et al. Micromechanics-based material networks revisited from the inter- action viewpoint; robust and efficient implementation for multi-phase composites. European Journal of Mechanics-A/Solids, 91:104384, 2022. [29] T. J. Wei et al. Orientation-aware interaction-based deep material network in poly- crystalline materials modeling. arXiv preprint arXiv:2502.02457, 2025. [30] KEYWORD USER’S MANUAL. Ansys ls-dyna®. 2025. [31] T. Erhart. An overview of user defined interfaces in ls-dyna. In LS-DYNA Forum, 2010. [32] Hibbitt et al. ABAQUS/Standard: User’s manual, volume 1. Hibbitt, Karlsson & Sorensen, 1997. [33] H. S. Suh et al. A publicly available pytorch-abaqus umat deep-learning framework for level-set plasticity. Mechanics of Materials, 184:104682, 2023. [34] I. A. Baratta et al. Dolfinx: the next generation fenics problem solving environment. 2023. [35] Y. Z. Chen et al. An efficient parameterized neural network enhanced multiscale finite element modeling for triply periodic minimal surface meta-structures and its applications for femur. Journal of Materials Research and Technology, 30:6176– 6194, 2024. [36] R. Anderson et al. Mfem: A modular finite element methods library. Computers & Mathematics with Applications, 81:42–74, 2021. [37] K. Mittal et al. Mixed-order meshes through rp-adaptivity for surface fitting to im- plicit geometries. In Proceedings of the 2024 International Meshing Roundtable, pages 118–131. SIAM, 2024. [38] W. N. Wan et al. Decoding material networks: exploring performance of deep mate- rial network and interaction-based material networks. Journal of Mechanics, 40:796– 807, 2024. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98310 | - |
| dc.description.abstract | 交互式材料網路(IMN)引入了代表性體積元素(RVE)內部的應力平衡方向交互機制,使其能有效地模擬複合材料的內部微觀結構力學行為。在本研究中,我們建立了一個雙尺度模擬框架,將 IMN 與商用有限元素分析(FEM)軟體整合,以促進彈塑性複合材料的多尺度模擬,在巨觀尺度下,我們使用 LS-DYNA 執行分析,並以 IMN 作為微觀材料的替代模型,透過立方體的單軸載重測試與孔洞版的顯式模擬,驗證了本框架的預測能力,基準測試進一步突顯出 LS-DYNA 與 IMN 結合後,在計算效率與穩定性上的優越表現。此框架提供了一種具擴展性且高效的方式,推動多尺度模擬技術的發展。 | zh_TW |
| dc.description.abstract | The Interaction-based Material Network (IMN) incorporates an interaction mechanism for stress-equilibrium directions within representative volume elements (RVEs). This approach enables the effective modeling of internal microstructural mechanics in elastoplastic composite materials. In this study, we develop a two-scale framework by integrating IMN with commercial finite element method (FEM) software, facilitating multiscale simulations of composite materials. Macroscale analyses are conducted in LS-DYNA, which utilizes IMN as a microscopic material surrogate model. This framework's predictive capabilities are shown by uniaxial loading tests on a one-element mesh and hole-plate problems on an explicit solver. Benchmarking further underscores the LS-DYNA-IMN superior computational efficiency and robustness. This framework establishes a scalable and efficient approach for advancing multiscale simulation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-01T16:10:05Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-01T16:10:05Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要 v Abstract vii Table of Contents ix List of Illustrations xiii List of Tables xv Chapter 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Structure of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Chapter 2 Literature Review 5 2.1 Multiscale Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 F E2 Modeling Framework . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Homogenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.2.1 Averaging Theorem: Strain . . . . . . . . . . . . . . . 10 2.1.2.2 Averaging Theorem: Stress . . . . . . . . . . . . . . . 12 2.1.2.3 Hill-Mandel Lemma . . . . . . . . . . . . . . . . . . . 13 2.1.3 Composite RVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Machine Learning Based Material Model . . . . . . . . . . . . . . . 15 2.2.1 Feed-forward Neural Network . . . . . . . . . . . . . . . . . . . . 15 2.2.2 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . 16 2.2.3 Graph Neural Network . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.4 Deep Material Network . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.4.1 Rotation-Free DMN . . . . . . . . . . . . . . . . . . . 20 2.2.4.2 Thermomechanical Deep Material Network . . . . . . 21 2.2.4.3 Interaction-based Material Network . . . . . . . . . . . 22 2.2.4.4 Orientation-aware Deep Material Network . . . . . . . 23 2.2.5 Finite Element Analysis Tool . . . . . . . . . . . . . . . . . . . . . 24 2.2.5.1 ANSYS LS-DYNA® . . . . . . . . . . . . . . . . . . 25 2.2.5.2 Abaqus® . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.5.3 FEniCS . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.5.4 MFEM . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Chapter 3 Methodology 29 3.1 Offline Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 Online Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.1 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.2 Offline Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.3 Online Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.4 Conclusion on Comparison . . . . . . . . . . . . . . . . . . . . . . 39 3.4 LS-DYNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Chapter 4 Result and Discussion 43 4.1 Experimental Environment . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.4.1 Timestep Control in Explicit Solver . . . . . . . . . . . . . . . . . 51 Chapter 5 Conclusion and Future Work 53 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 References 55 Appendix A — Data of Comparison on IMN and DMN 61 A.1 Online Prediction Time and Total Iterations . . . . . . . . . . . . . . 61 A.2 Online Prediction Accuracy (MSE) . . . . . . . . . . . . . . . . . . 61 Appendix B — LS-DNYA input card of Examples 65 B.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 B.1.1 Tensile Loading in X Direction . . . . . . . . . . . . . . . . . . . . 65 B.1.2 Loading-unloading in X Direction . . . . . . . . . . . . . . . . . . 67 B.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 | - |
| dc.language.iso | en | - |
| dc.subject | 深度材料網路 | zh_TW |
| dc.subject | 多尺度模擬 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 彈塑性材料 | zh_TW |
| dc.subject | LS-DYNA | zh_TW |
| dc.subject | LS-DYNA | en |
| dc.subject | elastoplasticity | en |
| dc.subject | machine learning | en |
| dc.subject | deep material network | en |
| dc.subject | multiscale simulation | en |
| dc.title | 深度材料網路於雙尺度彈塑性問題 | zh_TW |
| dc.title | Deep Material Networks for Two-Scale Modeling of Elastoplastic Problems | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃琮暉;劉立偉 | zh_TW |
| dc.contributor.oralexamcommittee | Tsung-Hui Huang;Li-Wei Liu | en |
| dc.subject.keyword | 多尺度模擬,深度材料網路,LS-DYNA,彈塑性材料,機器學習, | zh_TW |
| dc.subject.keyword | multiscale simulation,deep material network,LS-DYNA,elastoplasticity,machine learning, | en |
| dc.relation.page | 72 | - |
| dc.identifier.doi | 10.6342/NTU202502115 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-31 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
