請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98295完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 于昌平 | zh_TW |
| dc.contributor.advisor | Chang-Ping Yu | en |
| dc.contributor.author | 袁輔瑩 | zh_TW |
| dc.contributor.author | Fu-Ying Yuan | en |
| dc.date.accessioned | 2025-08-01T16:06:50Z | - |
| dc.date.available | 2025-08-02 | - |
| dc.date.copyright | 2025-08-01 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-25 | - |
| dc.identifier.citation | 石丞均。(2022)。評估3D生物列印於微生物固定化之應用:以尿素分解菌與重金屬去除為例。碩士 (國立臺灣大學)。
林宛瑩。(2024)。應用光固化3D列印技術固定化微生物降解辛基苯酚聚乙氧基醇。碩士 (東吳大學)。 楊采儒。(2023)。真菌在去氮上的研究及其在3D生物列印微生物固定化的應用。碩士 (國立臺灣大學)。 廖婉婷。(2023)。三個垃圾滲出水處理廠的微生物氮循環交互作用。碩士 (國立臺灣大學)。 Akaçin, İ., Ersoy, Ş., Doluca, O., and Güngörmüşler, M. (2022). Comparing the significance of the utilization of next generation and third generation sequencing technologies in microbial metagenomics. Microbiological Research 264, 127154. https://doi.org/10.1016/j.micres.2022.127154. Ali, M., Oshiki, M., Rathnayake, L., Ishii, S., Satoh, H., and Okabe, S. (2015). Rapid and successful start-up of anammox process by immobilizing the minimal quantity of biomass in PVA-SA gel beads. Water Research 79, 147-157. https://doi.org/10.1016/j.watres.2015.04.024. Arora, A.S., Nawaz, A., Yun, C.M., Cho, H., and Lee, M. (2019). Ecofriendly Anaerobic Ammonium Oxidation System: Optimum Operation and Inhibition Control Strategies for Enhanced Nitrogen Removal. Industrial & Engineering Chemistry Research 58, 20847-20856. 10.1021/acs.iecr.9b04591. Bae, H., Paul, T., Kim, D., and Jung, J.-Y. (2016). Specific ANAMMOX activity (SAA) in a sequencing batch reactor: optimization test with statistical comparison. Environmental Earth Sciences 75, 1452. 10.1007/s12665-016-6252-7. Butelmann, T., Priks, H., Parent, Z., Johnston, T.G., Tamm, T., Nelson, A., Lahtvee, P.-J., and Kumar, R. (2021). Metabolism Control in 3D-Printed Living Materials Improves Fermentation. ACS Applied Bio Materials 4, 7195-7203. 10.1021/acsabm.1c00754. Cao, S., Koch, K., Du, R., Wells, G.F., Ye, L., and Drewes, J.E. (2022). Toward Mainstream Anammox by Integrating Sidestream Treatment. Environmental Science & Technology 56, 10553-10556. 10.1021/acs.est.2c03256. Chen, Y., Zhao, Y.-G., Wang, X., and Ji, J. (2022). Impact of sulfamethoxazole and organic supplementation on mixotrophic denitrification process: Nitrate removal efficiency and the response of functional microbiota. Journal of Environmental Management 320, 115818. https://doi.org/10.1016/j.jenvman.2022.115818. Ganesan, S., and Vadivelu, V.M. (2019). Effect of external hydrazine addition on anammox reactor start-up time. Chemosphere 223, 668-674. https://doi.org/10.1016/j.chemosphere.2019.02.104. Ghaly, A., and Ramakrishnan, V. (2015). Nitrogen sources and cycling in the ecosystem and its role in air, water and soil pollution: A critical review. Journal of Pollution Effects & Control 3, 1-26. González-Cortés, J.J., Valle, A., Ramírez, M., and Cantero, D. (2022). Characterization of bacterial and Archaeal communities by DGGE and next generation sequencing (NGS) of nitrification bioreactors using two different intermediate landfill leachates as ammonium substrate. Waste and Biomass Valorization 13, 3753-3766. Greer, F.R., Shannon, M., Nutrition, C.o., and Health, C.o.E. (2005). Infant methemoglobinemia: the role of dietary nitrate in food and water. Pediatrics 116, 784-786. Han, R., Ma, H., Su, X., Song, J., Liu, P., Wu, Y., and Liu, Y. (2024). Improved nitrate removal by polyvinyl alcohol/sodium alginate hydrogel beads entrapping salt-tolerant composite bioagent AHM M3. Desalination 591, 118009. https://doi.org/10.1016/j.desal.2024.118009. He, F., Ou, Y., Liu, J., Huang, Q., Tang, B., Xin, F., Zhang, J., Jiang, M., Chen, S., and Yu, Z. (2022). 3D Printed biocatalytic living materials with dual‐network reinforced bioinks. Small 18, 2104820. Herzog, J., Franke, L., Lai, Y., Gomez Rossi, P., Sachtleben, J., and Weuster-Botz, D. (2024). 3D bioprinting of microorganisms: principles and applications. Bioprocess and Biosystems Engineering 47, 443-461. 10.1007/s00449-023-02965-3. Hou, L., Hu, K., Huang, F., Pan, Z., Jia, X., Liu, W., Yao, X., Yang, Z., Tang, P., and Li, J. (2024). Advances in immobilized microbial technology and its application to wastewater treatment: A review. Bioresource Technology, 131518. Hu, Q.-Y., Kang, D., Wang, R., Ding, A.Q., Abbas, G., Zhang, M., Qiu, L., Lu, H.-F., Lu, H.-J., and Zheng, P. (2018). Characterization of oligotrophic AnAOB culture: morphological, physiological, and ecological features. Applied Microbiology and Biotechnology 102, 995-1003. 10.1007/s00253-017-8587-8. Hu, Z., Lotti, T., de Kreuk, M., Kleerebezem, R., van Loosdrecht, M., Kruit, J., Jetten, M.S., and Kartal, B. (2013). Nitrogen removal by a nitritation-anammox bioreactor at low temperature. Appl Environ Microbiol 79, 2807-2812. 10.1128/aem.03987-12. Jelliman, S. (2021). The Economic and Technical Feasibility of the Application of Partial Nitritation Anammox Technology Over Conventional Nitrification Denitrification for the Treatment of Sidestream Liquor at Cape Flats WWTP. Ji, B., Wang, S., Guo, D., and Pang, H. (2020). Comparative and comprehensive analysis on bacterial communities of two full-scale wastewater treatment plants by second and third-generation sequencing. Bioresource Technology Reports 11, 100450. https://doi.org/10.1016/j.biteb.2020.100450. Ji, B., Zhang, X., Zhang, S., Song, H., and Kong, Z. (2019). Insights into the bacterial species and communities of a full-scale anaerobic/anoxic/oxic wastewater treatment plant by using third-generation sequencing. Journal of Bioscience and Bioengineering 128, 744-750. https://doi.org/10.1016/j.jbiosc.2019.06.007. Jin, Y., Liu, D., Xiong, W., Wu, Z., Xiao, G., Wang, S., and Su, H. (2024). Enhancing nitrogen removal performance using immobilized aerobic denitrifying bacteria by modified polyvinyl alcohol/sodium alginate (PVA/SA). Chemosphere 357, 141954. https://doi.org/10.1016/j.chemosphere.2024.141954. Kallistova, A.Y., Nikolaev, Y.A., Mardanov, A.V., Berestovskaya, Y.Y., Grachev, V.A., Kostrikina, N.A., Pelevina, A.V., Ravin, N.V., and Pimenov, N.V. (2020). Investigation of Formation and Development of Anammox Biofilms by Light, Epifluorescence, and Electron Microscopy. Microbiology 89, 708-719. 10.1134/S0026261720060077. Kartal, B., de Almeida, N.M., Maalcke, W.J., Op den Camp, H.J.M., Jetten, M.S.M., and Keltjens, J.T. (2013). How to make a living from anaerobic ammonium oxidation. FEMS Microbiology Reviews 37, 428-461. 10.1111/1574-6976.12014. Kartal, B., and Keltjens, J.T. (2016). Anammox Biochemistry: a Tale of Heme <em>c</em> Proteins. Trends in Biochemical Sciences 41, 998-1011. 10.1016/j.tibs.2016.08.015. Lawryshyn, A. (2024). Travelling Waves of the Diffusive Streeter-Phelps Equations with Braun-Berthouex BOD Decay. SIAM Undergraduate Research Online 17. 10.1137/24S1667427. Lewus, R.K., and Carta, G. (2001). Protein Transport in Constrained Anionic Hydrogels: Diffusion and Boundary-Layer Mass Transfer. Industrial & Engineering Chemistry Research 40, 1548-1558. 10.1021/ie0006054. Li, X., Yao, J., Jia, Y., Liu, J., and Chen, Y. (2024). Initiation of Anammox in an Up-Flow Anaerobic Sludge Bed Reactor: Bacterial Community Structure, Nitrogen Removal Functional Genes, and Antibiotic Resistance Genes. Water 16, 3426. Li, Y., Cui, N., Xuan, K., Xu, D., Wang, D., Li, C., Li, Z., and Wang, Y. (2021). Start-up performance and process kinetics of a UASB-Anammox reactor at low substrate concentration. Journal of Environmental Chemical Engineering 9, 106726. https://doi.org/10.1016/j.jece.2021.106726. Liang, Z., Sun, J., Zhan, C., Wu, S., Zhang, L., and Jiang, F. (2020). Effects of sulfide on mixotrophic denitrification by Thauera-dominated denitrifying sludge. Environmental Science: Water Research & Technology 6, 1186-1195. Liu, S.-H., Zeng, Z.-T., Niu, Q.-Y., Xiao, R., Zeng, G.-M., Liu, Y., Cheng, M., Hu, K., Jiang, L.-H., Tan, X.-F., and Tao, J.-J. (2019). Influence of immobilization on phenanthrene degradation by Bacillus sp. P1 in the presence of Cd(II). Science of The Total Environment 655, 1279-1287. https://doi.org/10.1016/j.scitotenv.2018.11.272. Liu, X.-L., Wang, X., Wang, Y., Huang, D., Li, K.-W., Luo, M.-J., Liu, D.-F., and Mu, Y. (2024). 3D Bioprinting of Engineered Living Materials with Extracellular Electron Transfer Capability for Water Purification. Environmental Science & Technology 58, 16905-16914. 10.1021/acs.est.4c06120. Lodha, T., Narvekar, S., and Karodi, P. (2021). Classification of uncultivated anammox bacteria and Candidatus Uabimicrobium into new classes and provisional nomenclature as Candidatus Brocadiia classis nov. and Candidatus Uabimicrobiia classis nov. of the phylum Planctomycetes and novel family Candidatus Scalinduaceae fam. nov to accommodate the genus Candidatus Scalindua. Systematic and Applied Microbiology 44, 126272. https://doi.org/10.1016/j.syapm.2021.126272. Ma, M., Cao, Q., Mabruk, A., Xie, J., Wu, P., Liu, W., and Chen, C. (2022). Promotion of nitrogen removal and microbial enrichment on anammox by exogenous substance addition: A critical review. Journal of Water Process Engineering 49, 103096. https://doi.org/10.1016/j.jwpe.2022.103096. Manonmani, U., and Joseph, K. (2018). Research advances and challenges in anammox immobilization for autotrophic nitrogen removal. Journal of Chemical Technology & Biotechnology 93, 2486-2497. Meng, J., Di, Y., Geng, Y., Li, W., Huo, R., and Zhou, S. (2024). Enhanced nitrate removal efficiency and microbial response of immobilized mixed aerobic denitrifying bacteria through biochar coupled with inorganic electron donors in oligotrophic water. Bioresource Technology 396, 130457. https://doi.org/10.1016/j.biortech.2024.130457. Miao, L., Yang, G., Tao, T., and Peng, Y. (2019). Recent advances in nitrogen removal from landfill leachate using biological treatments–A review. Journal of environmental management 235, 178-185. Morris, J.J., Lenski, R.E., and Zinser, E.R. (2012). The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. mBio 3. 10.1128/mBio.00036-12. Najim, A.A., Radeef, A.Y., al‐Doori, I., and Jabbar, Z.H. (2024). Immobilization: the promising technique to protect and increase the efficiency of microorganisms to remove contaminants. Journal of Chemical Technology & Biotechnology 99, 1707-1733. Niu, Q., He, S., Zhang, Y., Ma, H., Liu, Y., and Li, Y.-Y. (2016). Process stability and the recovery control associated with inhibition factors in a UASB-anammox reactor with a long-term operation. Bioresource Technology 203, 132-141. https://doi.org/10.1016/j.biortech.2015.12.003. Oshiki, M., Shimokawa, M., Fujii, N., Satoh, H., and Okabe, S. (2011). Physiological characteristics of the anaerobic ammonium-oxidizing bacterium ‘Candidatus Brocadia sinica’. Microbiology 157, 1706-1713. https://doi.org/10.1099/mic.0.048595-0. Parde, D., Behera, M., Dash, R.R., and Bhunia, P. (2024). A review on anammox processes: Strategies for enhancing bacterial growth and performance in wastewater treatment. International Biodeterioration & Biodegradation 191, 105812. https://doi.org/10.1016/j.ibiod.2024.105812. Pu, X., Wu, Y., Liu, J., and Wu, B. (2024). 3D Bioprinting of Microbial-based Living Materials for Advanced Energy and Environmental Applications. Chem & Bio Engineering 1, 568-592. 10.1021/cbe.4c00024. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F.O. (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41, D590-D596. 10.1093/nar/gks1219. Sanz, J.L., and Köchling, T. (2019). Next-generation sequencing and waste/wastewater treatment: a comprehensive overview. Reviews in Environmental Science and Bio/Technology 18, 635-680. 10.1007/s11157-019-09513-0. Sari, T., Yapsakli, K., Akgul, D., and Mertoglu, B. (2025). Physiological and transcriptomic response of enriched anammox culture upon elevated hydrazine exposure. Biodegradation 36, 39. 10.1007/s10532-025-10132-6. Shao, M.-F., Zhang, T., and Fang, H.H.-P. (2010). Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications. Applied Microbiology and Biotechnology 88, 1027-1042. 10.1007/s00253-010-2847-1. Sri Shalini, S., and Joseph, K. (2012). Nitrogen management in landfill leachate: Application of SHARON, ANAMMOX and combined SHARON–ANAMMOX process. Waste Management 32, 2385-2400. https://doi.org/10.1016/j.wasman.2012.06.006. Su, Z., Liu, T., Guo, J., and Zheng, M. (2023). Nitrite Oxidation in Wastewater Treatment: Microbial Adaptation and Suppression Challenges. Environmental Science & Technology 57, 12557-12570. 10.1021/acs.est.3c00636. Swann, J., Wang, Y., Abecia, L., Costabile, A., Tuohy, K., Gibson, G., Roberts, D., Sidaway, J., Jones, H., and Wilson, I.D. (2009). Gut microbiome modulates the toxicity of hydrazine: a metabonomic study. Molecular BioSystems 5, 351-355. Talan, A., Tyagi, R.D., and Drogui, P. (2021). Critical review on insight into the impacts of different inhibitors and performance inhibition of anammox process with control strategies. Environmental Technology & Innovation 23, 101553. https://doi.org/10.1016/j.eti.2021.101553. Tan, Q., Xia, S., Xu, W., and Jian, Y. (2023). Rapid Start-Up Characteristics of Anammox under Different Inoculation Conditions. International Journal of Environmental Research and Public Health 20, 2979. Tomaszewski, M., Cema, G., and Ziembińska-Buczyńska, A. (2017). Influence of temperature and pH on the anammox process: A review and meta-analysis. Chemosphere 182, 203-214. https://doi.org/10.1016/j.chemosphere.2017.05.003. Tong, Q., Wang, G., Zheng, C., Chen, M., Chen, Y., and Guo, Y. (2021). Preparation and biofilm culturing characteristics of a novel porous carrier. Environmental Engineering Science 38, 31-40. Trinh, H.P., Lee, S.-H., Jeong, G., Yoon, H., and Park, H.-D. (2021). Recent developments of the mainstream anammox processes: Challenges and opportunities. Journal of Environmental Chemical Engineering 9, 105583. https://doi.org/10.1016/j.jece.2021.105583. Tsai, T.-Y., Lo, H.-S., Chuang, H.-P., Ji, Y., Yang, M., and Jou, C.-J. (2019). Effects of conductivity in wastewater for the anaerobic ammonium oxidation (anammox) process. Journal of Environmental Protection and Ecology 20, 1904-1911. Uyanik, S., Bekmezci, O.K., and Yurtsever, A. (2011). Strategies for successful ANAMMOX enrichment at laboratory scale. Clean–Soil, Air, Water 39, 653-657. Van de Graaf, A.A., de Bruijn, P., Robertson, L.A., Jetten, M.S., and Kuenen, J.G. (1996). Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology 142, 2187-2196. Viancelli, A., Pra, M.C., Scussiato, L.A., Cantão, M., Ibelli, A.M.G., and Kunz, A. (2017). Preservation and reactivation of Candidatus Jettenia asiatica and Anammoxoglobus propionicus using different preservative agents. Chemosphere 186, 453-458. https://doi.org/10.1016/j.chemosphere.2017.07.053. Vieira, J.L., Carneiro, D.C., Soares, M.B., and Barbosa, J.D. (2021). Fundamentals of 3D bioprinting technology. JOURNAL OF BIOENGINEERING, TECHNOLOGIES AND HEALTH 4, 63-70. Wang, A., Wu, X., Sun, H., Wang, N., and Liu, Y. (2025). Anammox at low temperature: effectiveness, mechanisms and prospect of embedding immobilization to enhance AnAOB activity. Environmental Monitoring and Assessment 197, 685. 10.1007/s10661-025-14170-8. Wang, B., Wang, Z., Wang, S., Qiao, X., Gong, X., Gong, Q., Liu, X., and Peng, Y. (2020). Recovering partial nitritation in a PN/A system during mainstream wastewater treatment by reviving AOB activity after thoroughly inhibiting AOB and NOB with free nitrous acid. Environment International 139, 105684. https://doi.org/10.1016/j.envint.2020.105684. Wang, J.-J., Xu, L.-Z.-J., Huang, B.-C., Li, J., and Jin, R.-C. (2021a). Multiple electron acceptor-mediated sulfur autotrophic denitrification: Nitrogen source competition, long-term performance and microbial community evolution. Bioresource Technology 329, 124918. https://doi.org/10.1016/j.biortech.2021.124918. Wang, T., Li, X., Wang, H., Xue, G., Zhou, M., Ran, X., and Wang, Y. (2023a). Sulfur autotrophic denitrification as an efficient nitrogen removals method for wastewater treatment towards lower organic requirement: A review. Water Research 245, 120569. https://doi.org/10.1016/j.watres.2023.120569. Wang, X., Huang, J., and Gao, D. (2021b). Effects of three storage conditions on the long-term storage and short-term reactivation performances of anammox granular sludge. International Biodeterioration & Biodegradation 164, 105310. https://doi.org/10.1016/j.ibiod.2021.105310. Wang, Y., Zhang, Y., Hu, Y., Liu, L., Liu, S.-J., and Zhang, T. (2023b). Genome-centric metagenomics reveals the host-driven dynamics and ecological role of CPR bacteria in an activated sludge system. Microbiome 11, 56. Xie, G.-J., Liu, T., Cai, C., Hu, S., and Yuan, Z. (2018). Achieving high-level nitrogen removal in mainstream by coupling anammox with denitrifying anaerobic methane oxidation in a membrane biofilm reactor. Water Research 131, 196-204. https://doi.org/10.1016/j.watres.2017.12.037. Xing, B.-S., Guo, Q., Jiang, X.-Y., Chen, Q.-Q., Li, P., Ni, W.-M., and Jin, R.-C. (2016). Influence of preservation temperature on the characteristics of anaerobic ammonium oxidation (anammox) granular sludge. Applied Microbiology and Biotechnology 100, 4637-4649. 10.1007/s00253-016-7292-3. Yang, W., Lu, H., Khanal, S.K., Zhao, Q., Meng, L., and Chen, G.-H. (2016). Granulation of sulfur-oxidizing bacteria for autotrophic denitrification. Water Research 104, 507-519. https://doi.org/10.1016/j.watres.2016.08.049. Yang, X.-R., Li, H., Su, J.-Q., and Zhou, G.-W. (2021). Anammox bacteria are potentially involved in anaerobic ammonium oxidation coupled to iron (III) reduction in the wastewater treatment system. Frontiers in microbiology 12, 717249. Yao, Q., and Peng, D.-C. (2017). Nitrite oxidizing bacteria (NOB) dominating in nitrifying community in full-scale biological nutrient removal wastewater treatment plants. AMB Express 7, 25. 10.1186/s13568-017-0328-y. Yin, Z., Bi, X., and Xu, C. (2018). Ammonia-Oxidizing Archaea (AOA) Play with Ammonia-Oxidizing Bacteria (AOB) in Nitrogen Removal from Wastewater. Archaea 2018, 8429145. 10.1155/2018/8429145. Yoon, S.-W., Kim, S.-Y., Jeon, J.-S., Oh, S., Chung, S.-Y., Kim, J.-S., and Maeng, S.-K. (2024). 3D-printed Chlorella vulgaris biocarriers: A novel approach to wastewater treatment. Journal of Water Process Engineering 57, 104711. https://doi.org/10.1016/j.jwpe.2023.104711. Yu, D., Zhang, W., Wang, D., and Jin, Y. (2022). Full-Scale Application of One-Stage Simultaneous Nitrification and Denitrification Coupled with Anammox Process for Treating Collagen Casing Wastewater. International Journal of Environmental Research and Public Health 19, 5787. Yuan, X., Chao, C., Niu, J., Song, J., Liu, Y., Zhai, S., and Zhao, Y. (2025). Mechanistic insights into nitrogen removal performance and electron competition with mixed electron donor supply in a biofilm electrode reactor. Eco-Environment & Health 4, 100153. https://doi.org/10.1016/j.eehl.2025.100153. Zhang, F., Shi, X., Lian, S., Chen, Y., Lu, M., Feng, Q., and Guo, R. (2022). A novel magnetic microparticles as biocarriers for promoting enrichment of nitrifying bacteria. Journal of Water Process Engineering 47, 102794. https://doi.org/10.1016/j.jwpe.2022.102794. Zhang, L., Zhang, S., Peng, Y., Han, X., and Gan, Y. (2015a). Nitrogen removal performance and microbial distribution in pilot- and full-scale integrated fixed-biofilm activated sludge reactors based on nitritation-anammox process. Bioresource Technology 196, 448-453. https://doi.org/10.1016/j.biortech.2015.07.090. Zhang, Q., Ji, X.-M., Wang, X., Wang, W., Xu, X., Zhang, Q., Xing, D., Ren, N., Lee, D.-J., and Chen, C. (2025). Differentiation of the Anammox core microbiome: Unraveling the evolutionary impetus of scalable gene flow. Water Research 268, 122580. https://doi.org/10.1016/j.watres.2024.122580. Zhang, Y., Hui, B., and Ye, L. (2015b). Reactive toughening of polyvinyl alcohol hydrogel and its wastewater treatment performance by immobilization of microorganisms. RSC Advances 5, 91414-91422. 10.1039/C5RA20495J. Zhao, R., Biddle, J.F., and Jørgensen, S.L. (2022a). Introducing Candidatus Bathyanammoxibiaceae, a family of bacteria with the anammox potential present in both marine and terrestrial environments. ISME Commun 2, 42. 10.1038/s43705-022-00125-4. Zhao, R., Biddle, J.F., and Jørgensen, S.L. (2022b). Introducing Candidatus Bathyanammoxibiaceae, a family of bacteria with the anammox potential present in both marine and terrestrial environments. ISME communications 2, 42. Zheng, L., Wu, H., Ding, A., Tan, Q., Wang, X., Xing, Y., Tian, Q., and Zhang, Y. (2024). Optimization of operating parameters and microbiological mechanism of a low C/N wastewater treatment system dominated by iron-dependent autotrophic denitrification. Environmental Research 250, 118419. https://doi.org/10.1016/j.envres.2024.118419. Zheng, M., Tian, Z., Chai, Z., Zhang, A., Gu, A., Mu, G., Wu, D., and Guo, J. (2023). Ubiquitous occurrence and functional dominance of comammox Nitrospira in full-scale wastewater treatment plants. Water Research 236, 119931. https://doi.org/10.1016/j.watres.2023.119931. Zhuang, J.-L., Sun, X., Zhao, W.-Q., Zhang, X., Zhou, J.-J., Ni, B.-J., Liu, Y.-D., Shapleigh, J.P., and Li, W. (2022). The anammox coupled partial-denitrification process in an integrated granular sludge and fixed-biofilm reactor developed for mainstream wastewater treatment: Performance and community structure. Water Research 210, 117964. https://doi.org/10.1016/j.watres.2021.117964. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98295 | - |
| dc.description.abstract | 氮污染為水體環境中常見且具累積性之污染問題,傳統硝化–反硝化程序需外加碳源與高能耗,而厭氧氨氧化(ANAMMOX)為一種自營型脫氮機制,具有低碳源需求與低污泥產量等優勢,逐漸受到重視。然ANAMMOX菌生長速率緩慢,對操作條件敏感,故穩定富集與固定化應用成為研究重點。本研究以建立穩定之 ANAMMOX 反應系統為目標,並探討固定化材料與保存條件對其活性與應用可行性之影響。
本研究以一垃圾掩埋場滲出水處理廠生物處理單元活性污泥與食品廠廢水處理廠之活性污泥為接種源,建立實驗室規模之ANAMMOX反應系統,並採漸升氮源濃度操作模式,最終進流總氮濃度為120 mg-N/ L。第94天起觀察到氨氮與亞硝酸氮穩定消耗,顯示系統成功富集ANAMMOX菌群,後續以此建立四組反應槽進行馴養。反應系統最終去氮效率達 60 – 90 %,菌相結果顯示菌群由有機物降解菌演替為以Candidatus Brocadia為主之ANAMMOX群落,AC3反應槽ANAMMOX豐度最高達8.2 %。 懸浮態菌群之厭氧氨氧化菌比活性(Specific ANAMMOX Activity, SAA)為1.33 mg-N/ mg-VSS-day。固定化方面,以PVA-PEGDA/ Light材料列印所得載體,在總氮濃度為200 mg-N/ L下SAA可達1.51 mg-N/ mg-VSS-day,優於懸浮態。保存測試顯示,室溫厭氧條件(S3)保存10天後SAA維持1.55 mg-N/ mg-VSS-day,無需冷藏或添加保護劑,展現固定化技術之操作便利性與應用潛力。 | zh_TW |
| dc.description.abstract | Nitrogen pollution is a common and cumulative issue in aquatic environments. While conventional nitrification–denitrification processes require high energy and external carbon, anaerobic ammonium oxidation (ANAMMOX) provides an autotrophic alternative with low carbon demand and sludge yield. However, its application is limited by the slow growth and operational sensitivity of ANAMMOX bacteria.
This study established a lab-scale ANAMMOX system using activated sludge from a landfill leachate treatment unit and a food-processing wastewater plant. Operated under gradually increasing nitrogen concentrations up to 120 mg-N/L, the system showed stable ammonium and nitrite removal from day 94. Four reactors were subsequently cultivated, achieving nitrogen removal efficiencies of 60–90%. Microbial analysis revealed a shift from heterotrophs to ANAMMOX-dominated communities, with Candidatus Brocadia reaching 8.2% in reactor AC3. Suspended sludge showed a specific ANAMMOX activity (SAA) of 1.33 mg-N/ mg-VSS-day. Carriers printed with PVA-PEGDA/Light reached 1.51 (TN = 200 mg-N/ L), and after 10 days of anaerobic storage at room temperature, retained 1.55 without refrigeration or additives, demonstrating operational feasibility. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-01T16:06:50Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-01T16:06:50Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 iii 摘要 v Abstract vii 目次 ix 圖次 xiii 表次 xix 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 3 第二章 文獻回顧 5 2.1 氮循環與水體氮污染 5 2.1.1 氮型態與自然循環路徑 5 2.1.2 人為活動對氮循環的擾動 7 2.1.3 廢水中氮去除的技術需求-以生物程序為例 9 2.2 脫氮相關微生物及其功能 13 2.2.1 氨氧化菌(AOB)與硝酸鹽氧化菌(NOB) 13 2.2.2 異營與自營特性之脫硝菌 14 2.2.3 厭氧氨氧化菌(ANAMMOX)的潛能與限制 15 2.2.4 新興微生物路徑:n-DAMO 與硫脫氮等 17 2.3 ANAMMOX反應機制與菌群特性 20 2.3.1 ANAMMOX的生理與代謝路徑 20 2.3.2 常見ANAMMOX菌屬與其特徵 21 2.3.3 培養條件與富集限制因素 23 2.3.4 ANAMMOX在不同系統中的應用案例 24 2.4 微生物固定化技術在廢水處理中的應用 26 2.4.1 微生物固定化技術類型、選擇與優缺點 26 2.4.2 微生物固定化對菌體活性與穩定性的影響 29 2.4.3 固定化ANAMMOX的應用現況與挑戰 29 2.5 3D生物列印技術概述 31 2.5.1 3D生物列印的基本原理與分類 31 2.5.2 微生物應用中材料特性與列印參數對微生物生存影響 34 2.5.3 3D列印於固定化微生物的應用案例與研究進展 34 2.6 高通量基因定序技術在微生物研究中的應用 36 2.6.1 高通量基因定序技術簡介(NGS與TGS) 36 2.6.2 高通量定序在脫氮系統微生物群落分析中的應用 37 第三章 材料與方法 41 3.1 研究流程 41 3.2 實驗藥品與設備 43 3.2.1 實驗用藥品 43 3.2.2 實驗用儀器設備 46 3.3 厭氧氨氧化菌(ANAMMOX bacteria)之培養條件與鑑定 47 3.3.1 污泥來源 47 3.3.2 厭氧氨氧化菌培養之合成廢水組成與反應條件設定 49 3.3.3 運行期間之定期監測與分析 52 3.3.4 微生物群落結構分析:PacBio全長16S rRNA定序技術解析菌相變化 54 3.4 厭氧氨氧化菌比活性分析(Specific ANAMMOX Activity, SAA) 57 3.4.1 氨氮(NH3-N)濃度測定方法 58 3.4.2 亞硝氮(NO2⁻-N)與硝酸氮(NO3⁻-N)濃度測定方法 60 3.4.3 厭氧氨氧化菌比活性(SAA)之計算與表示 61 3.5 微生物固定化與3D列印設計 63 3.5.1 3D生物列印機及列印參數 63 3.5.2 固定化材料生物墨水配方製備 64 3.5.3 生物墨水材料列印步驟 66 3.5.4 固定化後載體之處理與活化 68 3.6 最佳固定化載體與懸浮態ANAMMOX菌比活性(SAA)比較分析 69 3.6.1 氮源濃度漸增下之生物固定化載體反應適應性測試 69 3.6.2 生物固定化載體保存穩定性測試 70 3.7 固定化ANAMMOX載體之特性分析 72 3.7.1 載體微結構觀察與分析:了解固定化形貌與孔隙結構 72 3.7.2 不同階段菌體生長狀態觀察:以螢光染色評估菌體活性 73 第四章 結果與討論 77 4.1 厭氧氨氧化菌培養與反應系統運行分析 77 4.1.1 培養啟動過程與初期系統表現 77 4.1.2 培養過程之氮源濃度變化與系統穩定性分析 80 4.1.3 定期監測參數統整與趨勢探討 88 4.2 微生物群落結構變化分析 96 4.2.1 微生物多樣性變化(Alpha & Beta Diversity) 96 4.2.2 ANAMMOX系統運行期間菌相組成變化 100 4.2.3 ANAMMOX系統運行期間ANAMMOX 群落相對豐度分析 113 4.3 懸浮態污泥中ANAMMOX菌群活性評估(SAA測試) 120 4.3.1 氨氮與亞硝氮去除效率分析 120 4.3.2 SAA 計算結果與活性趨勢評估 124 4.4 微生物固定化與3D列印之應用成果 125 4.4.1 列印參數設定與製程穩定性觀察 125 4.4.2 墨水與材料配方對列印成品的影響 129 4.4.3 固定化載體培養條件之適用性分析 131 4.5 固定化與懸浮態 ANAMMOX 菌之活性比較分析 138 4.5.1 氮源濃度漸增下之活性反應與耐受性分析 138 4.5.2 固定化載體之保存穩定性與活性維持效果探討 141 4.6 固定化載體之結構與菌體生長狀態分析 148 4.6.1 載體微結構觀察(SEM)結果與孔隙性探討 148 4.6.2 載體內部菌體生長狀態螢光染色結果分析 151 第五章 結論與建議 159 5.1 結論 159 5.2 建議 161 參考文獻 163 附錄 173 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | ANAMMOX | zh_TW |
| dc.subject | 厭氧氨氧化比活性 | zh_TW |
| dc.subject | 菌相分析 | zh_TW |
| dc.subject | 除氮 | zh_TW |
| dc.subject | 微生物固定化 | zh_TW |
| dc.subject | 3D生物列印 | zh_TW |
| dc.subject | Microbial Community Analysis | en |
| dc.subject | ANAMMOX | en |
| dc.subject | 3D Bioprinting | en |
| dc.subject | Microbial Immobilization | en |
| dc.subject | Nitrogen Removal | en |
| dc.subject | Specific Anammox Activity | en |
| dc.title | 應用3D生物列印於ANAMMOX菌固定化材料開發與效能評估之研究 | zh_TW |
| dc.title | Development and Functional Assessment of ANAMMOX Immobilization Materials Using 3D Bioprinting | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃郁慈;張怡塘 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Tzu Huang;Yi-Tang Chang | en |
| dc.subject.keyword | ANAMMOX,厭氧氨氧化比活性,菌相分析,除氮,微生物固定化,3D生物列印, | zh_TW |
| dc.subject.keyword | ANAMMOX,Specific Anammox Activity,Microbial Community Analysis,Nitrogen Removal,Microbial Immobilization,3D Bioprinting, | en |
| dc.relation.page | 193 | - |
| dc.identifier.doi | 10.6342/NTU202501555 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-28 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | 2025-08-02 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 15.13 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
