請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98290完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊昀叡 | zh_TW |
| dc.contributor.advisor | Ray Y. Chuang | en |
| dc.contributor.author | 李旻 | zh_TW |
| dc.contributor.author | Min Lee | en |
| dc.date.accessioned | 2025-08-01T16:05:38Z | - |
| dc.date.available | 2025-08-02 | - |
| dc.date.copyright | 2025-08-01 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-30 | - |
| dc.identifier.citation | Angelier, J., Chu, H. T., and Lee, J. C. (1997). Shear concentration in a collision zone: Kinematics of the Chihshang fault as revealed by outcrop-scale quantification of active faulting, Longitudinal Valley, eastern Taiwan, Tectonophysics, 274(1–3), 117–143.
Avouac, J. P. (2015). From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle. Annual Review of Earth and Planetary Sciences, 43, 233–271. https://doi.org/10.1146/annurev-earth-060614-105302 Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E. (2002). Monitoring based on small baseline differential SAR interferograms, IEEE Transactions on Geoscience and Remote Sensing, 40, 2375-2383. doi: 10.1109/TGRS.2002.803792. Bonilla, M. G. (1975). A review of recently active fault in Taiwan. USGS Open-File Report, 75-41, 58 pp. Burbank, D. W., and Anderson, R. S. (2001). Tectonic Geomorphology (2nd ed.). Wiley-Blackwell. https://www2.irsm.cas.cz/ext/ethiopia/materials/papers/tectonic_geomorphology/Tectonic_Geomorphology_Burbank.pdf Bürgmann, R. (2018). The geophysics, geology and mechanics of slow fault slip. Earth and Planetary Science Letters. https://doi.org/10.1016/j.epsl.2018.04.062 Bürgmann, R., Rosen, P. A., and Fielding, E. J. (2000). Synthetic Aperture Radar Interferometry to Measure Earth’s Surface Topography and Its Deformation. Annual Review of Earth and Planetary Sciences, 28(1), 169-209. https://doi.org/10.1146/annurev.earth.28.1.169 Champenois, J., Fruneau, B., Pathier, E., Deffontaines, B., Lin, K. C., and Hu, J. C. (2012). Monitoring of active tectonic deformations in the longitudinal valley (eastern Taiwan) using persistent scatterer InSAR method with ALOS PALSAR data, Earth Planet. Sci. Lett., 337, 144–155. Chang, S. H., Wang, W. H., and Lee, J. C. (2009). Modelling temporal variation of surface creep on the Chihshang fault in eastern Taiwan with velocity-strengthening friction, Geophys. J. Int., 176(2), 601–613. Chuang, R. Y., Johnson, K. M., Kuo, Y.-T., Wu, Y.-M., Chang, C.-H., and Kuo, L.-C. (2014). Active back thrust in the eastern Taiwan suture revealed by the 2013 Rueisuei earthquake: Evidence for a doubly vergent orogenic wedge?, Geophys. Res. Lett., 41, 3464–3470, doi:10.1002/2014GL060097. Chuang, R. Y., Neha, Ching, K.-E., Sagiya, T., Nishimura, T., Lee, Z. Lin, L.-C., Chen, L.-S., Lin, G.-P., and Pichonnat, J. (2024). Seismic hazard assessments constrained by satellite and imaging geodesy for the Taiwan area. Presented at the 2024 Japan-New Zealand-Taiwan Seismic Hazard Workshop. Chen, H. Y., Lee, J. C., Tung, H., Chen, C-. L, and Lee, H. (2021). Variable vertical movements and their deformation behaviors at convergent plate suture: 14-year-long (2004–2018) repeated measurements of precise leveling around middle Longitudinal Valley in eastern Taiwan. Journal of Asian Earth Sciences, Volume 218, 104865, ISSN 1367-9120, https://doi.org/10.1016/j.jseaes.2021.104865 Chen, H. Y., Lee, J. C., Tung, H., Yu, S. B., Hsu, Y. J., and Lee, H. (2012). Determination of vertical velocity field of southernmost longitudinal valley in eastern Taiwan: A joint analysis of leveling and GPS measurements. Terr. Atmos. Oceanic Sci., 23(4), 355–376. Chen, K. H., and Bürgmann, R. (2017). Creeping faults: Good news, bad news?, Rev. Geophys., 55, 282–286, https://doi.org/10.1002/2017RG000565 Chen, K. H., Nadeau, R. M., and Rau, R. J. (2008). Characteristic repeating earthquakes in an arc-continent collision boundary zone: The Chihshang fault of eastern Taiwan. Earth and Planetary Science Letters, 276(3-4), 262-272. https://doi.org/10.1016/j.epsl.2008.09.021 Chin, N.-C. (2014). Interseismic deformation across the middle part of the Longitudinal Valley suture, eastern Taiwan (Master's thesis). National Taiwan University, Department of Geosciences. Ching, K. E., Hsieh, M. L., Johnson, K. M., Chen, K. H., Rau, R. J., and Yang, M. (2011). Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000-2008, J. Geophys. Res., 116, B08406, doi:10.1029/2011JB008242. Elliott, J. R., Walters, R. J., and Wright, T. J. (2016). The role of space-based observation in understanding and responding to active tectonics and earthquakes, Nat. Commun., 7, 13844, https://doi.org/10.1038/ncomms13844 Ferretti, A., Prati, C. and Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 1, pp. 8-20, doi: 10.1109/36.898661. Franklin, K. R., and Huang, M.-H. (2022). Revealing crustal deformation and strain rate in Taiwan using InSAR and GNSS. Geophysical Research Letters, 49, e2022GL101306. https://doi.org/10.1029/2022GL101306 Gudmundsson, S., Sigmundsson, F., and Carstensen, J. M. (2002). Three‐dimensional surface motion maps estimated from combined interferometric synthetic aperture radar and GPS data. Journal of Geophysical Research, 107(B10), 2250. https://doi.org/10.1029/2001JB000283 Harris, R. A. (2017). Large earthquakes and creeping faults, Rev. Geophys., 55, 169-198, https://doi.org/10.1002/2016RG000539 Hassen, R. F. (2001). Radar Interferometry: Data Interpretation and Error Analysis, Kluwer Acad., New York. https://books.google.com.tw/books?hl=zh-TWandlr=andid=bqNkJUk4wtMCandoi=fndandpg=PA4anddq=Radar+Interferometry:+Data+Interpretation+and+Error+Analysisandots=8QbzoII2fLandsig=glutyBiPlfRYaZy7joMoxwrm3O0andredir_esc=y#v=onepageandqandf=false Hetland, E. A., and Hager, B. H. (2006). The effects of rheological layering on post-seismic deformation, Geophysical Journal International, Volume 166, Issue 1, July 2006, Pages 277–292, https://doi.org/10.1111/j.1365-246X.2006.02974.x Hooper, A., P. Segall, and H. Zebker (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos, J. Geophys. Res., 112, B07407, doi:10.1029/2006JB004763. Hsieh, Y.-C., Hsiao, Y.-S., and Cho, Y.-H. (2022). Monitoring Soil Erosion Changes on Slopes Through SBAS-InSAR Technology. http://cswcs.org.tw/AllDataPos/JournalPos/VOL53/NO1/jcswc53(1)_04_035-04.pdf Hsu, L., and Bürgmann, R. (2006). Surface creep along the Longitudinal Valley fault, Taiwan from InSAR measurements. Geophysical Research Letters, 33(6), L06312. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2005GL024624 Hsu, Y. J., Avouac, J. P., Yu, S. B., Chang, C. H., Wu, Y. M., and Woessner, J. (2009). Spatio-temporal slip, and stress level on the faults within the western foothills of Taiwan: Implications for fault frictional properties, Pure Appl. Geophys., 166(10–11), 1853–1884. Huang, H.-H., and Wang, Y (2022). Seismogenic structure beneath the northern Longitudinal Valley revealed by the 2018–2021 Hualien earthquake sequences and 3-D velocity model. TAO 33, 17. https://doi.org/10.1007/s44195-022-00017-z Johnson, K. M., and Segall, P. (2004). Viscoelastic earthquake cycle models with deep stress-driven creep along the San Andreas fault system, J. Geophys. Res., 109, B10403, doi:10.1029/2004JB003096. Kanamori, H. (1994). Mechanics of Earthquakes. Annual Review Of Earth And Planetary Sciences, Volume 22, pp. 207-237. Kaneko, Y., and Lapusta, N. (2008), Variability of earthquake nucleation in continuum models of rate-and-state faults and implications for aftershock rates, J. Geophys. Res., 113, B12312, doi:10.1029/2007JB005154. Ko, Y. Y., Hsu, S. Y., Yang, H. C., Lu, C. C., Hwang, Y. W., Liu, C. H., and Hwang, J. H. (2019). Soil liquefaction and ground settlements in 6 February 2018 Hualien, Taiwan, earthquake. Seismological Research Letters, 90(1), 51-59. Kuochen, H., Wu, Y. M., Chen, Y. G., and Chen, R. Y. (2007). 2003 Mw6.8 Chengkung earthquake and its related seismogenic structures. Journal of Asian Earth Sciences, 31(3), 332–339. https://doi.org/10.1016/j.jseaes.2006.07.028 Lee, J. C., and Angelier, J. (1993). Location of active deformation and geodetic data analyses: An example of the Longitudinal Valley Fault, Taiwan, Bull. Soc. Geol. Fr., 164, 533–570. Lee, J. C., Angelier, J., Chu, H. T., Yu, S. B., and Hu, J. C. (1998). Plate-boundary strain partitioning along the sinistral collision suture of the Philippine and Eurasian plates: Analysis of geodetic data and geological observation in southeastern Taiwan, Tectonics, 17(6), 159–181. Lee, J. C., Angelier, J., Chu, H. T., Hu, J. C., and Jeng, F. S. (2001). Continuous monitoring of an active fault in a plate suture zone: A creepmeter study of the Chihshang fault, eastern Taiwan, Tectonophysics, 333(1–2), 219–240. Lee, J.-C., Angelier, J., Chu, H.-T., Hu, J.-C., Jeng, F.-S., and Rau, R.-J. (2003). Active fault creep variations at Chihshang, Taiwan, revealed by creep meter monitoring, 1998–2001, J. Geophys. Res., 108, 2528, doi:10.1029/2003JB002394, B11. Lee, J. C., Angelier, J., Chu, H. T., Hu, J. C., and Jeng, F. S. (2005). Monitoring active fault creep as a tool in seismic hazard mitigation. Insights from creepmeter study at Chihshang, Taiwan, C. R. Geosci., 337(13), 1200–1207. Lee, J. -C., Fu-Shu, J., Hao-Tsu, C., Angelier, J., and Hu, J. C. (2000). A rod-type creepmeter for measurement of displacement in active fault zone, Earth Planets Space, 52(5), 321–328. Lee, Y.-H (2024). InSAR-based Multidecadal Coastal Land Subsidence Analysis and Future Inundation Scenarios in Western Taiwan (Master’s thesis). National Taiwan University, department of Geography. Lee, Y. H., Chen, G. T., Rau, R. J., and Ching, K. E. (2008). Coseismic displacement and tectonic implication of 1951 Longitudinal Valley earthquake sequence, eastern Taiwan, J. Geophys. Res., 113, B04305, doi:10.1029/2007JB005180. Li, S., Xu, W., and Li, Z. (2021). Review of the SBAS InSAR Time-series algorithms, applications, and challenges. Geodesy and Geodynamics, Volume 13, Issue 2, Pages 114-126. https://doi.org/10.1016/j.geog.2021.09.007 Liu, C., Huang, M. W., and Tsai, Y. B. (2006). Water level fluctuations induced by ground motions of local and teleseismic earthquakes at two wells in Hualien, Eastern Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 17(2), 371. Liu, Y., and Rice, J. R. (2007). Spontaneous and triggered aseismic deformation transients in a subduction fault model, J. Geophys. Res., 112, B09404, doi:10.1029/2007JB004930. Liu, C.-C., and Yu, S.-B. (1990). Vertical crustal movements in eastern Taiwan and their tectonic implications. Tectonophysics, 183(1–4), 111–119. https://doi.org/10.1016/0040-1951(90)90191-A Marone, C. (1998). Laboratory-derived friction laws and their application to seismic faulting. Annual Review of Earth and Planetary Sciences, 26(1), 643–696. https://doi.org/10.1146/annurev.earth.26.1.643 Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., and Rabaute, T. (1993). The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364(6433), 138-142. doi:10.1038/364138a0 Massonnet, D., and Feigl, K. L. (1998). Radar interferometry and its application to changes in the Earths surface. Reviews of Geophysics, 36(4), 441-500. https://doi.org/10.1029/97RG03139 Mirzaee, S., Amelung, F., and Fattahi, H. (2023). Non-linear phase linking using joined distributed and persistent scatterers, Computers and Geosciences, Volume 171, 105291, ISSN 0098-3004, https://doi.org/10.1016/j.cageo.2022.105291 Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., and Papathanassiou, K. P. (2013). A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, vol. 1, no. 1, pp. 6-43, March 2013, doi: 10.1109/MGRS.2013.2248301 Mozziconacci, L., Delouis, B., Angelier, J., Hu, J. C., and Huang, B. S. (2009). Slip distribution on a thrust fault at a plate boundary: The 2003 Chengkung earthquake, Taiwan, Geophys. J. Int., 177(2), 609–623. NASA SAR Handbook. What is Synthetic Aperture Radar? Background information on synthetic aperture radar, with details on wavelength and frequency, polarization, scattering mechanisms, and interferometry. Retrieved from: https://www.earthdata.nasa.gov/learn/backgrounders/what-is-sar Peyret, M., Dominguez, S., Cattin, R., Champenois, J., Leroy, M., and Zajac, A. (2011). Present-day interseismic surface deformation along the Longitudinal Valley, eastern Taiwan, from a PS-InSAR analysis of the ERS satellite archives, J. Geophys. Res., 116, B03402, doi:10.1029/2010JB007898. Robbins, K., Huang, M.‐H., and Evans, E. L. (2022). Assessing Fault Slip and Seismic Hazard in Taiwan using Space Geodesy. AGU Fall Meeting 2021, 13-17 December 2021, id. G25C-0381. https://www.proquest.com/openview/7f39721ccfdb2349d3f8829298f7d6f7/1.pdf?cbl=18750anddiss=yandpq-origsite=gscholar Rosen, P. A., Gurrola, E., Sacco, G. F., and Zebker, H. (2012). The InSAR scientific computing environment, Proc. EUSAR, Nuremberg, Germany, 730–733. Samsonov, S., Tiampo, K., Rundle, J., and Li, Z. (2007). Application of DInSAR‐GPS optimization for derivation of fine‐scale surface motion maps of Southern California. IEEE Transactions on Geoscience and Remote Sensing, 45(2), 512–521. DOI: 10.1109/TGRS.2006.887166 Samsonov, S. V., Tiampo, K. F., and Rundle, J. B. (2008). Application of DInSAR‐GPS optimization for derivation of three‐dimensional surface motion of the southern California region along the San Andreas fault. Computers and Geosciences, 34(5), 503–514. https://doi.org/10.1016/j.cageo.2007.05.013 Savage, J. C. (1983). A dislocation model of strain accumulation and release at a subduction zone, J. Geophys. Res., 88(B6), 4984–4996, doi:10.1029/JB088iB06p04984. Scholz, C. H. (2002). The Mechanics of Earthquakes and Faulting (2nd ed.). Cambridge University Press. Seno, T., Stein, S., and Gripp, A. E. (1993). A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data. https://doi.org/10.1029/93JB00782 Shen, Z.‐K., and Liu, Z. (2020). Integration of GPS and InSAR data for resolving 3‐dimensional crustal deformation. Earth and Space Science, 7, e2019EA001036. https://doi.org/10.1029/2019EA001036 Shirzaei, M., and Bürgmann, R. (2013). Time-dependent model of creep on the Hayward fault from joint inversion of 18 years of InSAR and surface creep data, J. Geophys. Res. Solid Earth, 118, 1733–1746, doi:10.1002/jgrb.50149. Shyu, J. B. H., Sieh, K., Chen, Y.-G., and Liu, C.-S. (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes, J. Geophys. Res., 110, B08402, doi:10.1029/2004JB003251. Shyu, J. B. H., Sieh, K., Avouac, J.-P., Chen, W.-S., and Chen, Y.-G. (2006). Millennial slip rate of the Longitudinal Valley fault from river terraces: Implications for convergence across the active suture of eastern Taiwan, J. Geophys. Res., 111, B08403, doi:10.1029/2005JB003971. Shyu, J. B. H., Chung, L.-H., Chen, Y.-G., Lee, J.-C., and Sieh, K. (2007). Re-evaluation of the surface ruptures of the November 1951 earthquake series in eastern Taiwan, and its neotectonic implications. Journal of Asian Earth Sciences, Volume 31, Issue 3, Pages 317-331, ISSN 1367-9120, https://doi.org/10.1016/j.jseaes.2006.07.018. Shyu, J. B. H., Sieh, K., Chen, Y.-G., Chuang, R. Y., Wang, Y., and Chung, L.-H. (2008). Geomorphology of the southernmost Longitudinal Valley fault: Implications for evolution of the active suture of eastern Taiwan, Tectonics, 27, TC1019, doi:10.1029/2006TC002060. Shyu, J. B. H., Yin, Y.-H., Chen, C.-H., Chuang, Y.-R., and Liu, S.-C. (2020). Updates to the on-land seismogenic structure source database by the Taiwan Earthquake Model (TEM) project for seismic hazard analysis of Taiwan. Terr. Atmos. Ocean. Sci., 31, 469-478, doi: 10.3319/TAO.2020.06.08.01 Simons, M., Fialko, Y., and Rivera, L. (2002). Coseismic Deformation from the 1999 Mw 7.1 Hector Mine, California, Earthquake as Inferred from InSAR and GPS Observations. Bulletin of the Seismological Society of America 2002;; 92 (4): 1390–1402. doi: https://doi.org/10.1785/0120000933 Tang, C. H., Lin, Y. N., Tung, H., Wang, Y., Lee, S.-J., Hsu, Y.-J., Shyu, J. B. H., Kuo, Y. T. and Chen, H.-Y. (2023). Nearby fault interaction within the double-vergence suture in eastern Taiwan during the 2022 Chihshang earthquake sequence. Commun Earth Environ 4, 333. https://doi.org/10.1038/s43247-023-00994-0 Thomas, M. Y., Avouac, J.-P., Champenois, J., Lee, J.-C. and Kuo, L.-C. (2014). Spatiotemporal evolution of seismic and aseismic slip on the Longitudinal Valley Fault, Taiwan, J. Geophys. Res. Solid Earth, 119, 5114–5139, doi:10.1002/2013JB010603. Tong, X., Sandwell, D. T., and Smith‐Konter, B. R. (2013). High‐resolution interseismic velocity data along the San Andreas Fault from GPS and InSAR. Journal of Geophysical Research ‐ Solid Earth, 118, 369–389. https://doi.org/10.1029/2012JB009442 Tsai, C. C., Huang, L. Y., and Chen, C. J. (2023). Earthquake-induced persistent and instantaneous groundwater variations caused by volumetric strain of soil in Taiwan from 1999 to 2020. Soil Dynamics and Earthquake Engineering, 164, 107586. Tsai, Y. H. (2024). Investigating surface creeping in the southern Longitudinal Valley Fault using InSAR time series (Master’s thesis). National Taiwan University, department of Geography. Tung, H., Chen, H.-Y., Hsu, Y.-J, Tang, C.-H, Lee, J.C., Wang, Y., Lee, H. K. (2025). Geodetic constraints on the September 2022 Guanshan and Chihshang earthquakes, eastern Taiwan, Tectonophysics, Volume 895, 230600, ISSN 0040-1951, https://doi.org/10.1016/j.tecto.2024.230600. Wang, Y., Wu, S. H., and Chou, H.L.B. et al. (2024). Surface ruptures of the 2022 Guanshan-Chihshang earthquakes in central Longitudinal Valley area, eastern Taiwan. Terr Atmos Ocean Sci 35, 16. https://doi.org/10.1007/s44195-024-00077-3 Wright, T. J., Parsons, B. E., and Lu, Z. (2004). Toward mapping surface deformation in three dimensions using InSAR, Geophys. Res. Lett., 31, L01607, doi:10.1029/2003GL018827. Wu, Y. M., Chen, Y. G., Shin, T. C., Kuochen, H., Hou, C. S., Hu, J. C., Chang, C. H., Wu, C. F., and Teng, T. L. (2006a). Coseismic versus interseismic ground deformations, fault rupture inversion and segmentation revealed by 2003 mw 6.8 Chengkung earthquake in eastern Taiwan, Geophys. Res. Lett., 33, L02312, doi:10.1029/2005GL024711. Wu, Y.-M., Chen, Y.-G., Chang, C.-H., Chung, L.-H., Teng, T.-L., Wu, F. T., and Wu, C.-F. (2006b). Seismogenic structure in a tectonic suture zone: With new constraints from 2006 Mw6.1 Taitung earthquake, Geophys. Res. Lett., 33, L22305, doi:10.1029/2006GL027572. Xu, X., Sandwell, D. T., Klein, E., and Bock, Y. (2021). Integrated Sentinel-1 InSAR and GNSS time-series along the San Andreas fault system. Journal of Geophysical Research: Solid Earth, 126, e2021JB022579. https://doi.org/10.1029/2021JB022579 Yu, S.-B., Chen, H.-Y., and Kuo, L.-C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1- 3), 41–59. https://doi.org/10.1016/S0040-1951(96)00297-1 Yu, S. B., and Kuo, L. C. (2001). Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan, Tectonophysics, 333(1–2), 199–217. Yu, S. B., and Liu, C.-C. (1989). Fault Creep On The Central Segment Of The Longitudinal Valley Fault, Eastern Taiwan. Bull. Inst. Earth Sci. Academia Sinica, v.9, pp.45-46 Yunjun, Z., Fattahi, H., and Amelung, F. (2019). Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction. Computers and Geosciences, 133, [104331]. https://doi.org/10.1016/j.cageo.2019.104331 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98290 | - |
| dc.description.abstract | 地震週期中的間震形變(interseismic deformation),是地殼沿著板塊邊界逐漸累積應變(strain),最終以地震的形式突然釋放的過程。花東縱谷斷層是位於菲律賓海板塊與歐亞板塊聚合邊界上的著名潛移型斷層,前人透過多種測地觀測方法得知,其在池上鄉附近的潛移速率高達每年 20 毫米,然而,斷層沿線的間震期潛移行為仍不清楚。觀測間震形變的典型方法是使用高精度的全球導航衛星系統(GNSS),但 GNSS 觀測僅能提供特定站址的三維地表變形,缺乏足夠的空間解析度來揭示較小尺度的潛移或鎖定斷層。若無高空間解析度的地殼形變資料,將會無法準確推估間震期斷層鎖定深度。相比之下,合成孔徑雷達干涉測量(InSAR)可提供公分級精度與高空間解析度的地表變形觀測。過去研究多使用視線方向(LOS)的速度或結合 LOS 與 GNSS 資料來觀測斜向縱谷斷層的潛移行為,然而,這些觀測僅限於單一方向,或者是在南北方向的解析度不足。因此,我們利用 Sentinel-1 與 ALOS-2 衛星影像(2015–2020年),透過短基線差分干涉合成孔徑雷達(SBAS-InSAR)技術生成三維速度場,透過高解析度的速度場,我們得以辨識出更細微的地質構造及其變形行為。我們發現2022 年關山池上地震發生前,玉里斷層在東西向有每年 2–3 毫米的潛移現象,此為先前尚未被提出的觀測結果。此外,根據我們的南北向與垂直速度場及水準測量資料,在已知東傾的奇美斷層附近,推測存在一條西傾構造,此構造可能為中央山脈斷層的延伸,並可能與奇美斷層交會。我們的研究結果有助於發展更準確的地震災害風險模型。 | zh_TW |
| dc.description.abstract | Interseismic deformation is the gradual accumulation of strain in the Earth's crust along tectonic plate boundaries, culminating in the abrupt release manifested as earthquakes. The Longitudinal Valley fault is a well-known creeping fault located at the convergent boundary between the Philippine Sea Plate and the Eurasian Plate. Its creeping rate is as high as 20 mm/yr near Chihshang Township through varied geodetic observations. However, the comprehensive interseismic creeping behavior along the fault trace remains unknown. The typical method to observe interseismic deformation is to use the GNSS network with the highest precision. However, GNSS measurements in previous studies offer three-dimensional surface deformation at specific sites, lacking the spatial detail to reveal smaller-scale creeping/locked fault traces. Determining interseismic fault locking depth is challenging without high-resolution crustal deformation data. In contrast, InSAR provides centimeter-scale precision and high spatial resolution observations of surface deformation. Previous research utilized line-of-sight (LOS) velocity or LOS velocities combined with GNSS to observe the creeping behavior of the oblique Longitudinal Valley fault. However, these observations are either limited to a single direction or lack sufficient resolution in the north-south direction. Therefore, we used Sentinel-1 and ALOS-2 imagery (2015-2020) to generate 3-D velocity fields through Small Baseline Subset InSAR (SBAS-InSAR). With the high-resolution velocity fields, we identified more detailed geological structures and their behaviors. We found the Yuli fault exhibited 2-3 mm/yr of creep in the E-W direction before the 2022 Guanshan-Chishang earthquake, a phenomenon not previously reported. Additionally, an inferred structure near the previously mapped east-dipping Chimei fault appears to be west-dipping based on our N-S and U velocities and leveling data. This inferred structure may represent an extension of the Central Range fault, potentially intersecting the Chimei fault. Our findings could facilitate the development of accurate models for mitigating seismic hazards. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-01T16:05:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-01T16:05:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書................................................................................................................i
誌謝...................................................................................................................................ii 摘要..................................................................................................................................iii Abstract…………………….………………………………………………………..…iv Table of Contents.………….…………..………………………………………………vi List of Figures.………………………..………………………………………..………ix List of Tables.……….…………………………………………………………..……..xii Chapter 1 Introduction………………………………………………………1 1.1 Motivation………………………………………………………………………1 1.2 Research question.………………………………………..……..………………4 1.3 Research purpose.………………………………………..……..……………….5 Chapter 2 Literature Review………..…….…………………………………7 2.1 Fault creep…………………………..…………………………………………..7 2.2 Interseismic and coseismic strain….………………………..…………………..9 2.3 Creeping faults and earthquakes.…………..……………..……………………12 2.4 The Longitudinal Valley Fault and the Central Range Fault..………..…..……14 2.5 Combination of InSAR and GNSS………….…………………………………16 2.6 Study area …………………………….…….…………………………………18 Chapter 3 Data and Methods………………………..…………….…….…21 3.1 Workflow……………………………………………………………………….21 3.2 Data…………………………………………………………………………….22 3.2.1 Sentinel-1 SAR imagery…………………………………………….22 3.2.2 Global Navigation Satellite System (GNSS) time series …..……….27 3.3 Methods…………………………………………………………………..……29 3.3.1 Interferometric Synthetic Aperture Radar (InSAR)..…………..……29 3.3.1.1 Stacking.……………………………………………..……31 3.3.1.2 SBAS-InSAR time series………………..…………..……32 3.3.1.3 PS-InSAR time series..…………………..…………..……35 3.3.2 InSAR LOS velocity calibration…………………………………….36 3.3.3 3-D velocity inversion……………………………………………….39 3.3.4 3-D velocity uncertainty estimation..……………………….……….41 Chapter 4 Results……………….……….……………………………….…43 4.1 GNSS-calibrated LOS velocity fields…………………………………………43 4.1.1 Sentinel-1 LOS velocity fields………….……………………………43 4.1.2 ALOS-2 LOS velocity fields……..…….…………………………….49 4.2 3-D velocity inversion……………………….…………….……………..……52 4.3 3-D velocity uncertainty estimation………….…………….…………….……54 Chapter 5 Discussion..………………………………………….…………55 5.1 Creeping of the Central Range Fault…………………………….…………….55 5.2 Inferred structure near Chimei Fault..……………….…………..…….….……59 5.3 Along-strike velocity gradient variation…………….…………………………62 5.4 Velocity boundary interpretations.……………………………………………..65 5.5 Improvement of 3-D velocities derived from multi-sensor InSAR……………67 Chapter 6 Conclusion.………………………………………….…………69 References……………………….…………………………………………………….71 Appendix…….………………..…………………………………………….…………84 | - |
| dc.language.iso | en | - |
| dc.subject | 間震變形 | zh_TW |
| dc.subject | 短基線差分⼲涉合成孔徑雷達 | zh_TW |
| dc.subject | 全球導航衛星系統 | zh_TW |
| dc.subject | 縱⾕縫合帶 | zh_TW |
| dc.subject | SBAS-InSAR | en |
| dc.subject | GNSS | en |
| dc.subject | Interseismic deformation | en |
| dc.subject | Longitudinal Valley Suture | en |
| dc.title | 利用多感測器合成孔徑雷達干涉技術計算縱谷縫合帶三維地表變形場 | zh_TW |
| dc.title | 3-D Surface Deformation Fields of the Longitudinal Valley Suture Derived from Multi-Sensor InSAR Velocities | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張午龍;曾國欣;郭昱廷;鍾令和 | zh_TW |
| dc.contributor.oralexamcommittee | Wu-Lung Chang;Kuo-Hsin Tseng;Yu-Ting Kuo;Ling-Ho Chung | en |
| dc.subject.keyword | 間震變形,短基線差分⼲涉合成孔徑雷達,全球導航衛星系統,縱⾕縫合帶, | zh_TW |
| dc.subject.keyword | Interseismic deformation,SBAS-InSAR,GNSS,Longitudinal Valley Suture, | en |
| dc.relation.page | 101 | - |
| dc.identifier.doi | 10.6342/NTU202502629 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-31 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 地理環境資源學系 | - |
| dc.date.embargo-lift | 2025-08-02 | - |
| 顯示於系所單位: | 地理環境資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 72.39 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
