請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98287完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭憶中 | zh_TW |
| dc.contributor.advisor | I-Chung Cheng | en |
| dc.contributor.author | 吳奕廷 | zh_TW |
| dc.contributor.author | Yi-Ting Wu | en |
| dc.date.accessioned | 2025-08-01T16:04:48Z | - |
| dc.date.available | 2025-08-02 | - |
| dc.date.copyright | 2025-08-01 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-29 | - |
| dc.identifier.citation | [1] N. Eslami, Y. Hischer, A. Harms, D. Lauterbach, S. Böhm, Influence of copper-sided tin coating on the weldability and formation of friction stir welded aluminum-copper-joints, Metals, 9 (2019) 179.
[2] J. Schulz-Harder, Advantages and new development of direct bonded copper substrates, Microelectronics Reliability, 43 (2003) 359-365. [3] E. West, Paper 16: Copper and its Alloys, in: Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, SAGE Publications Sage UK: London, England, 1965, pp. 145-159. [4] K.J. Kundig, J.G. Cowie, Copper and copper alloys, Mechanical engineers’ handbook. Wiley Interscience, (2006) 117-220. [5] D.A. Jones, Principles and prevention, Corrosion, 2 (1996) 168. [6] K. Fitzgerald, J. Nairn, A. Atrens, The chemistry of copper patination, Corrosion science, 40 (1998) 2029-2050. [7] T. Graedel, Copper patinas formed in the atmosphere—II. A qualitative assessment of mechanisms, Corrosion Science, 27 (1987) 721-740. [8] H. Lee, K. Nobe, Kinetics and mechanisms of Cu electrodissolution in chloride media, Journal of the Electrochemical Society, 133 (1986) 2035. [9] G. Kear, B. Barker, F. Walsh, Electrochemical corrosion of unalloyed copper in chloride media––a critical review, Corrosion science, 46 (2004) 109-135. [10] Y. Ziat, M. Hammi, Z. Zarhri, C. Laghlimi, Epoxy coating modified with graphene: A promising composite against corrosion behavior of copper surface in marine media, Journal of Alloys and Compounds, 820 (2020) 153380. [11] Q. Bui, N. Nam, D. Choi, J. Lee, C. Lee, A. Kar, J. Kim, S. Jung, Corrosion protection of ENIG surface finishing using electrochemical methods, Materials Research Bulletin, 45 (2010) 305-308. [12] Z. Li, H. Yan, P. Zhang, J. Guo, Z. Yu, J.W. Ringsberg, Improving surface resistance to wear and corrosion of nickel‑aluminum bronze by laser-clad TaC/Co-based alloy composite coatings, Surface and Coatings Technology, 405 (2021) 126592. [13] R.E. Sanders, Technology innovation in aluminum products, Jom, 53 (2001) 21-25. [14] M.Y. Ahmed, S.A. Sarkodie, COVID-19 pandemic and economic policy uncertainty regimes affect commodity market volatility, Resources policy, 74 (2021) 102303. [15] D. Ólafsson, P. Vilaça, J. Vesanko, Multiphysical characterization of FSW of aluminum electrical busbars with copper ends, Welding in the World, 64 (2020) 59-71. [16] H. Wei, A. Latif, G. Hussain, B. Heidarshenas, K. Altaf, Influence of tool material, tool geometry, process parameters, stacking sequence, and heat sink on producing sound Al/Cu lap joints through friction stir welding, Metals, 9 (2019) 875. [17] E.A. Starke Jr, J.T. Staley, Application of modern aluminum alloys to aircraft, Progress in aerospace sciences, 32 (1996) 131-172. [18] S. Samaras, G. Haidemenopoulos, Modelling of microsegregation and homogenization of 6061 extrudable Al-alloy, Journal of materials processing technology, 194 (2007) 63-73. [19] S. Pogatscher, H. Antrekowitsch, H. Leitner, D. Pöschmann, Z. Zhang, P.J. Uggowitzer, Influence of interrupted quenching on artificial aging of Al–Mg–Si alloys, Acta Materialia, 60 (2012) 4496-4505. [20] G. Edwards, K. Stiller, G. Dunlop, M. Couper, The precipitation sequence in Al–Mg–Si alloys, Acta materialia, 46 (1998) 3893-3904. [21] F. Eckermann, T. Suter, P.J. Uggowitzer, A. Afseth, P. Schmutz, The influence of MgSi particle reactivity and dissolution processes on corrosion in Al–Mg–Si alloys, Electrochimica Acta, 54 (2008) 844-855. [22] K.A. Yasakau, M.L. Zheludkevich, S.V. Lamaka, M.G. Ferreira, Role of intermetallic phases in localized corrosion of AA5083, Electrochimica Acta, 52 (2007) 7651-7659. [23] S. Kairy, P. Rometsch, K. Diao, J. Nie, C. Davies, N. Birbilis, Exploring the electrochemistry of 6xxx series aluminium alloys as a function of Si to Mg ratio, Cu content, ageing conditions and microstructure, Electrochimica Acta, 190 (2016) 92-103. [24] W.J. Liang, P. Rometsch, L. Cao, N. Birbilis, General aspects related to the corrosion of 6xxx series aluminium alloys: Exploring the influence of Mg/Si ratio and Cu, Corrosion science, 76 (2013) 119-128. [25] Y. Zhou, X. Jia, J. Li, G. Guan, X. Ma, J. Zhang, Unraveling the precipitate-induced discontinuity of the surface oxide film on Al alloy, Applied Surface Science, 590 (2022) 153108. [26] L. Chen, L. Zhu, L. Lu, Z. Yang, X. Ren, X. Zhang, The effect of heat treatment on the microstructure and electrochemical corrosion behavior of multilayer AA6061 alloy fabricated by additive friction stir deposition, Applied Surface Science, 650 (2024) 159167. [27] C. Peng, G. Cao, T. Gu, C. Wang, Z. Wang, C. Sun, The effect of dry/wet ratios on the corrosion process of the 6061 Al alloy in simulated Nansha marine atmosphere, Corrosion Science, 210 (2023) 110840. [28] P. Marcus, Corrosion mechanisms in theory and practice, CRC press, 2011. [29] J. Feng, S. Xue, Growth behaviors of intermetallic compound layers in Cu/Al joints brazed with Zn–22Al and Zn–22Al–0.05 Ce filler metals, Materials & Design, 51 (2013) 907-915. [30] V. Dimatteo, A. Ascari, E. Liverani, A. Fortunato, Experimental investigation on the effect of spot diameter on continuous-wave laser welding of copper and aluminum thin sheets for battery manufacturing, Optics & Laser Technology, 145 (2022) 107495. [31] P. Xue, D. Ni, D. Wang, B. Xiao, Z. Ma, Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar Al–Cu joints, Materials science and engineering: A, 528 (2011) 4683-4689. [32] M.H. Athar, B. Tolaminejad, Weldability window and the effect of interface morphology on the properties of Al/Cu/Al laminated composites fabricated by explosive welding, Materials & design, 86 (2015) 516-525. [33] M. Abbasi, A.K. Taheri, M. Salehi, Growth rate of intermetallic compounds in Al/Cu bimetal produced by cold roll welding process, Journal of Alloys and Compounds, 319 (2001) 233-241. [34] Q. Ma, C. Song, J. Zhou, L. Zhang, H. Ji, Dynamic Weld evolution during ultrasonic welding of Cu–Al joints, Materials Science and Engineering: A, 823 (2021) 141724. [35] T. Bhattacharya, H. Das, S. Jana, T. Pal, Numerical and experimental investigation of thermal history, material flow and mechanical properties of friction stir welded aluminium alloy to DHP copper dissimilar joint, The International Journal of Advanced Manufacturing Technology, 88 (2017) 847-861. [36] J.P. Bergmann, F. Petzoldt, R. Schürer, S. Schneider, Solid-state welding of aluminum to copper—case studies, Welding in the World, 57 (2013) 541-550. [37] W. Thomas, E. Nicholas, J. Needham, M. Murch, P. Temple-Smith, C. Dawes, Friction Stir Butt Welding, International Patent Appl. n. PCT/GB92/02203 and GB Patent Appl. n. 9125978.8, US Patent, (1991). [38] J. Ouyang, E. Yarrapareddy, R. Kovacevic, Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper, Journal of materials processing technology, 172 (2006) 110-122. [39] O. Zobac, A. Kroupa, A. Zemanova, K.W. Richter, Experimental description of the Al-Cu binary phase diagram, Metallurgical and Materials Transactions A, 50 (2019) 3805-3815. [40] N. Ponweiser, C.L. Lengauer, K.W. Richter, Re-investigation of phase equilibria in the system Al–Cu and structural analysis of the high-temperature phase η1-Al1− δCu, Intermetallics, 19 (2011) 1737-1746. [41] K.P. Mehta, V.J. Badheka, Hybrid approaches of assisted heating and cooling for friction stir welding of copper to aluminum joints, Journal of Materials Processing Technology, 239 (2017) 336-345. [42] K.P. Mehta, V.J. Badheka, A review on dissimilar friction stir welding of copper to aluminum: process, properties, and variants, Materials and Manufacturing Processes, 31 (2016) 233-254. [43] V. Payak, J. Paulraj, B.S. Roy, M. Bhargava, P. Das, A review on recent development in aluminium-copper friction stir welding, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, (2023) 09544089231158201. [44] M.F.X. Muthu, V. Jayabalan, Tool travel speed effects on the microstructure of friction stir welded aluminum–copper joints, Journal of Materials Processing Technology, 217 (2015) 105-113. [45] I. Galvão, A. Loureiro, D. Verdera, D. Gesto, D.M. Rodrigues, Influence of tool offsetting on the structure and morphology of dissimilar aluminum to copper friction-stir welds, Metallurgical and Materials Transactions A, 43 (2012) 5096-5105. [46] G. Ilevbare, J. Scully, J. Yuan, R. Kelly, Inhibition of pitting corrosion on aluminum alloy 2024-T3: effect of soluble chromate additions vs chromate conversion coating, Corrosion, 56 (2000). [47] L. Xia, E. Akiyama, G. Frankel, R. McCreery, Storage and release of soluble hexavalent chromium from chromate conversion coatings equilibrium aspects of Cr VI concentration, Journal of the Electrochemical Society, 147 (2000) 2556. [48] P. Campestrini, G. Goeminne, H. Terryn, J. Vereecken, J. De Wit, Chromate conversion coating on aluminum alloys: I. formation mechanism, Journal of the Electrochemical Society, 151 (2004) B59. [49] J.S. Pinheiro, H.R.P. Cardoso, K.R. Pereira, C. Radtke, S. Kunst, C.T. Oliveira, J.Z. Ferreira, Chromium/nickel-free conversion coating as cold post-treatment to anodized AA2024-T3 for corrosion resistance increase, Surface and Coatings Technology, 480 (2024) 130566. [50] G.-T. Shen, S.-Y. Chen, C.-Y. Huang, C.-S. Lin, Microstructural evolution and corrosion behavior of constituent particles of AA2024-T3 Al alloy during zirconium conversion coating, Applied Surface Science, 635 (2023) 157657. [51] S. Verdier, N. van der Laak, F. Dalard, J. Metson, S. Delalande, An electrochemical and SEM study of the mechanism of formation, morphology, and composition of titanium or zirconium fluoride-based coatings, Surface and Coatings Technology, 200 (2006) 2955-2964. [52] V. Cristaudo, K. Baert, P. Laha, M.L. Lim, E. Brown-Tseng, H. Terryn, T. Hauffman, A combined XPS/ToF-SIMS approach for the 3D compositional characterization of Zr-based conversion of galvanized steel, Applied Surface Science, 562 (2021) 150166. [53] M. Nabizadeh, K. Marcoen, T. Kolberg, D. Schatz, H. Terryn, T. Hauffman, Unraveling the formation mechanism of hybrid Zr conversion coating on advanced high strength stainless steels, Surface and Coatings Technology, 441 (2022) 128567. [54] V. Cristaudo, K. Baert, P. Laha, M.L. Lim, L. Steely, E. Brown-Tseng, H. Terryn, T. Hauffman, Unravelling the chemisorption mechanism of epoxy-amine coatings on Zr-based converted galvanized steel by combined static XPS/ToF-SIMS approach, Applied Surface Science, 599 (2022) 153798. [55] F. Andreatta, A. Turco, I. De Graeve, H. Terryn, J. De Wit, L. Fedrizzi, SKPFM and SEM study of the deposition mechanism of Zr/Ti based pre-treatment on AA6016 aluminum alloy, Surface and coatings Technology, 201 (2007) 7668-7685. [56] O. Lunder, C. Simensen, Y. Yu, K. Nisancioglu, Formation and characterisation of Ti–Zr based conversion layers on AA6060 aluminium, Surface and Coatings Technology, 184 (2004) 278-290. [57] N. Khun, G. Frankel, J. Zimmerman, Investigation of surface morphology, wear resistance, and adhesiveness of AA6061-T6 treated in a hexafluorozirconic acid-based solution, Corrosion, 69 (2013) 259-267. [58] J. Cerezo, R. Posner, I. Vandendael, J. De Wit, H. Terryn, J. Mol, The effect of conversion bath convection on the formation of Zr‐based thin‐film coatings on multi‐metal surfaces, Materials and Corrosion, 67 (2016) 361-367. [59] Y. Liu, Y. Yang, C. Zhang, T. Zhang, B. Yu, G. Meng, Y. Shao, F. Wang, L. Liu, Protection of AA5083 by a zirconium-based conversion coating, Journal of The Electrochemical Society, 163 (2016) C576. [60] I. Galvão, R. Leal, A. Loureiro, D. Rodrigues, Material flow in heterogeneous friction stir welding of aluminium and copper thin sheets, Science and technology of welding and joining, 15 (2010) 654-660. [61] S. Shankar, S. Chattopadhyaya, P. Vilaça, Effect of compensating aluminium alloy during friction stir welding of Al-Cu alloys having dissimilar thicknesses, Materials Today Communications, 34 (2023) 105141. [62] P. Xue, B. Xiao, D. Ni, Z. Ma, Enhanced mechanical properties of friction stir welded dissimilar Al–Cu joint by intermetallic compounds, Materials science and engineering: A, 527 (2010) 5723-5727. [63] C. Tan, Z. Jiang, L. Li, Y. Chen, X. Chen, Microstructural evolution and mechanical properties of dissimilar Al–Cu joints produced by friction stir welding, Materials & Design, 51 (2013) 466-473. [64] F. Cao, J. Li, W. Hou, Y. Shen, R. Ni, Microstructural evolution and mechanical properties of the friction stir welded AlCu dissimilar joint enhanced by post-weld heat treatment, Materials Characterization, 174 (2021) 110998. [65] H. Torbati-Sarraf, S.A. Torbati-Sarraf, N. Chawla, A. Poursaee, A comparative study of corrosion behavior of an additively manufactured Al-6061 RAM2 with extruded Al-6061 T6, Corrosion Science, 174 (2020). [66] K. Mutombo, Intermetallic particles-induced pitting corrosion in 6061-T651 aluminium alloy, in: Materials science forum, Trans Tech Publ, 2011, pp. 389-392. [67] N.A. Muhammad, C. Wu, Evaluation of capabilities of ultrasonic vibration on the surface, electrical and mechanical behaviours of aluminium to copper dissimilar friction stir welds, International Journal of Mechanical Sciences, 183 (2020) 105784. [68] Y. Wei, J. Li, J. Xiong, F. Zhang, Investigation of interdiffusion and intermetallic compounds in Al–Cu joint produced by continuous drive friction welding, Engineering Science and Technology, an International Journal, 19 (2016) 90-95. [69] N. Birbilis, R.G. Buchheit, Electrochemical characteristics of intermetallic phases in aluminum alloys: an experimental survey and discussion, Journal of the Electrochemical Society, 152 (2005) B140. [70] E. Linardi, R. Haddad, L. Lanzani, Stability analysis of the Mg2Si phase in AA 6061 aluminum alloy, Procedia Materials Science, 1 (2012) 550-557. [71] B. Little, P. Wagner, F. Mansfeld, Microbiologically influenced corrosion of metals and alloys, International Materials Reviews, 36 (1991) 253-272. [72] A.H. Tuthill, Guidelines for the use of copper alloys in seawater, Nickel Development Institute, 1987. [73] R. Babić, M. Metikoš-Huković, A. Jukić, A study of copper passivity by electrochemical impedance spectroscopy, Journal of the Electrochemical Society, 148 (2001) B146. [74] G. Kear, B. Barker, K. Stokes, F. Walsh, Electrochemical corrosion behaviour of 90—10 Cu—Ni alloy in chloride-based electrolytes, Journal of Applied Electrochemistry, 34 (2004) 659-669. [75] D.K. Kozlica, B. Hernández-Concepción, J. Izquierdo, R.M. Souto, I. Milošev, In situ, real-time imaging of redox-active species on Al/Cu galvanic couple and corrosion inhibition with 2-mercaptobenzimidazole and octylphosphonic acid, Corrosion Science, 217 (2023) 111114. [76] S.G. Bratsch, Standard electrode potentials and temperature coefficients in water at 298.15 K, Journal of Physical and Chemical Reference Data, 18 (1989) 1-21. [77] M.E. Orazem, B. Tribollet, Electrochemical impedance spectroscopy, New Jersey, 1 (2008) 383-389. [78] S. Li, M.T. Teague, G.L. Doll, E.J. Schindelholz, H. Cong, Interfacial corrosion of copper in concentrated chloride solution and the formation of copper hydroxychloride, Corrosion Science, 141 (2018) 243-254. [79] S.S. Zumdahl, S.A. Zumdahl, D.J. DeCoste, Chemistry: An atoms first approach, Cengage Learning, 2020. [80] Y. Yang, F. Scenini, M. Curioni, A study on magnesium corrosion by real-time imaging and electrochemical methods: relationship between local processes and hydrogen evolution, Electrochimica Acta, 198 (2016) 174-184. [81] X. Verdalet-Guardiola, B. Fori, J.-P. Bonino, S. Duluard, C. Blanc, Nucleation and growth mechanisms of trivalent chromium conversion coatings on 2024-T3 aluminium alloy, Corrosion Science, 155 (2019) 109-120. [82] J. Cerezo, P. Taheri, I. Vandendael, R. Posner, K. Lill, J.H.W. de Wit, J. Mol, H. Terryn, Influence of surface hydroxyls on the formation of Zr-based conversion coatings on AA6014 aluminum alloy, Surface and coatings technology, 254 (2014) 277-283. [83] I. Milošev, G. Frankel, Conversion coatings based on zirconium and/or titanium, Journal of The Electrochemical Society, 165 (2018) C127-C144. [84] G. Šekularac, J. Kovač, I. Milošev, Prolonged protection, by zirconium conversion coatings, of AlSi7Mg0. 3 aluminium alloy in chloride solution, Corrosion Science, 169 (2020) 108615. [85] M.D. Havigh, M. Nabizadeh, B. Wouters, N. Hallemans, T. Hauffman, J. Lataire, A. Hubin, H. Terryn, Operando odd random phase electrochemical impedance spectroscopy (ORP-EIS) for in-situ monitoring of the Zr-based conversion coating growth in the presence of (in) organic additives, Corrosion Science, 223 (2023) 111469. [86] V. Celante, M. Freitas, Electrodeposition of copper from spent Li-ion batteries by electrochemical quartz crystal microbalance and impedance spectroscopy techniques, Journal of applied electrochemistry, 40 (2010) 233-239. [87] M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, NACE, (1966). [88] T. Våland, G. Nilsson, The influence of F− ions on the electrochemical reactions on oxide-covered A1, Corrosion Science, 17 (1977) 449-459. [89] F. George, P. Skeldon, G. Thompson, Formation of zirconium-based conversion coatings on aluminium and Al–Cu alloys, Corrosion Science, 65 (2012) 231-237. [90] Y. Kawamoto, K. Ogura, M. Shojiya, M. Takahashi, K. Kadono, F1s XPS of fluoride glasses and related fluoride crystals, Journal of fluorine chemistry, 96 (1999) 135-139. [91] M. Mujdrica Kim, B. Kapun, U. Tiringer, G. Šekularac, I. Milošev, Protection of aluminum alloy 3003 in sodium chloride and simulated acid rain solutions by commercial conversion coatings containing Zr and Cr, Coatings, 9 (2019) 563. [92] A. Mansour, Copper Mg Kα XPS spectra from the physical electronics model 5400 spectrometer, Surface Science Spectra, 3 (1994) 202-210. [93] M.C. Biesinger, L.W. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn, Applied surface science, 257 (2010) 887-898. [94] M.C. Biesinger, Advanced analysis of copper X‐ray photoelectron spectra, Surface and Interface Analysis, 49 (2017) 1325-1334. [95] S. Verdier, S. Delalande, N. Van Der Laak, J. Metson, F. Dalard, Monochromatized x‐ray photoelectron spectroscopy of the AM60 magnesium alloy surface after treatments in fluoride‐based Ti and Zr solutions, Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 37 (2005) 509-516. [96] D. Majumdar, D. Chatterjee, X‐ray photoelectron spectroscopic studies on yttria, zirconia, and yttria‐stabilized zirconia, Journal of applied physics, 70 (1991) 988-992. [97] J. Qin, Y. Long, F. Sun, P.P. Zhou, W.D. Wang, N. Luo, J. Ma, Zr (OH) 4‐Catalyzed controllable selective oxidation of anilines to azoxybenzenes, azobenzenes and nitrosobenzenes, Angewandte Chemie, 134 (2022) e202112907. [98] J.-C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Systematic XPS studies of metal oxides, hydroxides and peroxides, Physical Chemistry Chemical Physics, 2 (2000) 1319-1324. [99] W.M. Haynes, CRC handbook of chemistry and physics, CRC press, 2016. [100] L. Li, B.W. Whitman, C.A. Munson, R. Estrada, C.A. Matzdorf, G.M. Swain, Structure and corrosion performance of a non-chromium process (NCP) Zr/Zn pretreatment conversion coating on aluminum alloys, Journal of The Electrochemical Society, 163 (2016) C718. [101] G. Yoganandan, K.P. Premkumar, J. Balaraju, Evaluation of corrosion resistance and self-healing behavior of zirconium–cerium conversion coating developed on AA2024 alloy, Surface and Coatings Technology, 270 (2015) 249-258. [102] V. Bilgin, I. Akyuz, E. Ketenci, S. Kose, F. Atay, Electrical, structural and surface properties of fluorine doped tin oxide films, Applied Surface Science, 256 (2010) 6586-6591. [103] B. Zaid, D. Saidi, A. Benzaid, S. Hadji, Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy, Corrosion Science, 50 (2008) 1841-1847. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98287 | - |
| dc.description.abstract | 本研究主要分為兩個部分,第一部分為探討6061鋁合金與C1100銅合金摩擦攪拌焊接異質接合件於3.5 wt. % NaCl 溶液之異質微結構、腐蝕機制;第二部份則著重6061鋁合金與C1100銅合金,單獨及耦合化成處理之微結構、腐蝕行為及化成機制。
由於良好的熱傳導性以及導電性,銅一直以來在車輛、電力工業扮演重要的角色。而鋁合金與銅相似地具備良好的導電性以及熱傳導性,為了達到成本降低的目的,具備良好的導電性以及熱傳導性的鋁合金廣泛地作為與銅進行異質材料接合的材料。近年來許多研究採用摩擦攪拌焊接(FSW)的製程,在低入熱量的條件下,盡量減少界金屬化合物(IMCs)的生成,來完成良好的鋁銅異質接頭,但過去探討鋁銅摩擦攪拌異質焊接的腐蝕行為的文獻非常有限。本研究以掃描式電子顯微鏡、穿透式電子顯微鏡、電化學量測等方式,研究了探討6061鋁合金與C1100銅合金摩擦攪拌焊接異質接合件異質微結構以及於3.5 wt. % NaCl 溶液之腐蝕機制。研究結果顯示,焊道區是高度異質的,包含了嵌入鋁基材中的銅顆粒、CuAl2及Cu9Al4等界金屬化合物。經浸泡實驗後,焊道區中的Al/CuAl2/Cu9Al4/Cu等相會引發微觀伽凡尼效應,而鋁銅之間的巨觀伽凡尼效應會加速焊道區的腐蝕,富鋁相(Al,CuAl2)相對於富銅相(Cu,Cu9Al4),將優先被腐蝕。 鋯化成處理是透過還原反應引起的局部pH升高而引發的,Al和Cu的標準電極電位分別為-1.676和0.340 VSHE,這顯示Al/H+的氧化還原是自發性的,而Cu/H+的氧化還原則不會發生,Cu/Al 耦合將會影響 ZrO2 化成膜層的均勻性。然而,銅和鋁在耦合條件下對化成膜的形成機制研究較少。因此,本研究第二部份則著重6061鋁合金與C1100銅合金,在pH 4 的15 g/L H2ZrF6 化成溶液中,於室溫下浸泡 5 分鐘進行單獨及耦合化成處理之微結構、腐蝕行為及化成機制。研究結果顯示,C1100銅合金無法於單獨化成的條件下進行化成處理,但在耦合化成的條件下,可於其表面沉積ZrO2化成膜,此膜層十分均勻,厚度僅約為20 nm左右,且具有陽極抑制效果。而6061鋁合金無論是單獨抑或是耦合化成,均可於其表面沉積ZrO2化成膜,且在兩種化成條件下,均有良好的陽極抑制效果,耦合化成的抑制效果要比單獨化成要來的更高,但在陰極部分則無顯著差異。耦合化成過程中,來自6061鋁合金的電子藉由導線傳導至C1100銅合金於其表面發生水的還原及析氫反應,使得C1100銅合金表面pH上升,並進一步促使ZrO2化成膜沉積於銅表面,而6061鋁合金則藉由鋁於酸性溶液中的溶解,驅動ZrO2化成膜的沉積。 | zh_TW |
| dc.description.abstract | This study is divided into two main parts. The first part investigates the heterogeneous microstructures and corrosion mechanisms of 6061 aluminum alloy/C1100 copper alloy friction stir welded joints in 3.5 wt. % NaCl solution. The second part focus on the microstructures, corrosion behavior, and formation mechanism of Zr-based conversion coating on 6061 Al and C1100 Cu galvanic couple.
In light of its thermal and electrical conductivities, copper has been extensively used in the automobile and power industries, such as thermal dissipation substrate and power transmission wire. Aluminum, which has heat and electrical conductivities comparable to Cu. To reduce the use of Cu and Al, Cu composite structures have gained ever-increasing attention, especially for cost reduction while maintaining sufficient thermal and electrical conductivities. Recently, the processes of Al-Cu dissimilar FSW have been heavily studied. However, the corrosion studies of Al-Cu dissimilar FSW are scarce. In this study, the effect of heterogeneous microstructures of friction stir welding 6061 Al/C1100 Cu joints on the corrosion in 3.5 wt. % NaCl was studied, including macro- and micro-galvanic corrosions. The stir zone was highly heterogeneous, including Cu particles embedded in Al, CuAl2, and Cu9Al4 intermetallic phases. The Al/Cu macro-galvanic coupling accelerated the corrosion of the stir zone. The Al/CuAl2/Cu9Al4/Cu micro-galvanic coupling resulted in a uniform coverage of Al oxide/hydroxide on Al; conversely, the surface of CuAl2 was porous and rich in Cu due to dealloying of Al. The corrosion was not uniform, concentrating in Al-rich phases (Al, CuAl2). Hexafluorozirconate conversion reaction is triggered via pH rise resulting from the reduction reactions. The fact that the standard electrode potential of Al and Cu is -1.676 and 0.340 VSHE, respectively, indicates the redox of Al/H+ is spontaneous, but that of Cu/H+ is impossible. As a result, the Cu/Al galvanic coupling impacts the uniformity of ZrO2 conversion coating. However, the effect of Cu and Al galvanic coupling on the conversion coating formation is less studied. This study investigated the microstructure and corrosion resistance of ZrO2 conversion coatings on 6061 Al alloy and C1000 Cu alloy, which were immersed separately or coupled. Therefore, the second part of this study focuses on 6061 aluminum alloy and C1100 copper alloy, immersed in a 15 g/L H2ZrF6 solution at pH 4 at room temperature for 5 minutes separately or coupled. The formation mechanism of ZrO2 conversion coatings on Al/Cu couples was discussed and their corrosion protection capability was confirmed. Under the conditions of individual conversion treatment, C1100 copper alloy could not undergo conversion processing. However, under coupled conversion conditions, the ZrO2 conversion film was deposited on its surface. This film was very uniform with a thickness of approximately 10 nm and inhibited the anodic kinetics. For 6061 aluminum alloy, whether subjected to individual or coupled conversion treatments, a ZrO2 conversion film could be deposited on its surface. Under both treatment conditions, there was a good anodic inhibition effect. The inhibition effect was better under coupled conversion conditions compared to individual conversion, but there was no significant difference in the cathodic region. During coupled conversion, electrons from 6061 aluminum alloy were conducted through a wire to the surface of C1100 copper alloy, where water reduction and hydrogen evolution reactions occurred. This process caused an increase in pH on the surface of C1100 copper alloy, further promoting the deposition of ZrO2 conversion film. Meanwhile, 6061 aluminum alloy facilitated the deposition of ZrO2 conversion film by dissolving aluminum in the acidic solution. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-01T16:04:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-01T16:04:48Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
致謝 ii 中文摘要 iii Abstract v 目次 viii 圖次 x 表次 xii 第一章 前言 1 第二章 文獻回顧 3 2.1 銅合金 3 2.1.1 銅合金概述 3 2.1.2 銅合金分類與命名 3 2.1.3銅合金腐蝕及形式 5 2.1.4銅合金腐蝕防護方式 6 2.2 鋁合金 7 2.2.1 鋁合金概述 7 2.2.2 鋁合金分類與命名 7 2.2.3 6061鋁合金 8 2.2.4 6061鋁合金腐蝕特性 10 2.3 銅鋁摩擦攪拌焊接 11 2.3.1 鋁銅焊接方式 11 2.3.2 銅鋁摩擦攪拌焊接 12 2.3.3 製程參數與常見缺陷 14 2.4 化成處理 15 2.4.1 化成處理概述 15 2.4.2 六氟鋯酸化成機制 16 2.4.3 化成參數與條件 18 2.4.4 六氟鋯酸化成膜抗腐蝕性能 18 第三章 實驗步驟與方法 19 3.1 實驗目的與流程 19 3.2 實驗材料與藥品 22 3.3 試片處理 23 3.3.1 微結構特徵 23 3.3.2 腐蝕測試 23 3.3.3 化成處理 (Conversion Coating) 25 3.4 分析方法 26 3.4.1 光學顯微鏡(OM) 26 3.4.2 掃描式電子顯微鏡(SEM) 26 3.4.3 能量散佈光譜(EDS) 27 3.4.4 電子背像散射繞射(EBSD) 27 3.4.5 穿透式電子顯微鏡(TEM) 27 3.4.6 X射線繞射儀(XRD) 28 3.4.7 X射線光電子能譜儀(XPS) 28 3.4.8 動電位極化曲線 28 3.4.9 電化學交流阻抗 29 3.4.10 表面電位顯微鏡(KPFM) 29 第四章 實驗結果與討論 30 4.1 銅鋁摩擦攪拌焊接試片微結構分析 30 4.1.1巨觀結構分析 30 4.1.2微觀結構分析 34 4.1.3相鑑定及分布 37 4.2 銅鋁摩擦攪拌焊接試片腐蝕行為 42 4.2.1 腐蝕後表面形貌分析 42 4.2.2 電化學分析 49 4.2.3 腐蝕機制 53 4.3 化成處理後微結構分析 55 4.3.1 化成處理開路電位量測 55 4.3.2微觀結構分析 57 4.4 化成處理後腐蝕行為 67 4.4.1 C1100銅合金電化學分析 67 4.4.2 6061鋁合金電化學分析 68 4.5化成膜沉澱機制 70 第五章 結論 73 第六章 未來展望 75 參考文獻 76 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | C1100銅合金 | zh_TW |
| dc.subject | 6061鋁合金 | zh_TW |
| dc.subject | 巨微觀伽凡尼效應 | zh_TW |
| dc.subject | 摩擦攪拌焊接 | zh_TW |
| dc.subject | 鋯化成處理 | zh_TW |
| dc.subject | Zr conversion coating | en |
| dc.subject | macro- and micro-galvanic corrosion | en |
| dc.subject | friction stir welding | en |
| dc.subject | C1100 Cu alloy | en |
| dc.subject | 6061 Al alloy | en |
| dc.title | C1100銅合金與6061鋁合金之摩擦攪拌焊接異質接合件腐蝕行為及耦合鋯化成機制研究 | zh_TW |
| dc.title | Corrosion Behavior of Friction Stir Welding between C1100 Copper Alloy and 6061 Aluminum Alloy and Formation Mechanism of Zr Conversion Coating on Galvanic Couple | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 林招松;李岳聯;葛明德;朱鵬維 | zh_TW |
| dc.contributor.oralexamcommittee | Chao-Sung Lin;Yueh-Lien Lee;Ming-Der Ger;Peng-Wei Chu | en |
| dc.subject.keyword | 6061鋁合金,C1100銅合金,摩擦攪拌焊接,巨微觀伽凡尼效應,鋯化成處理, | zh_TW |
| dc.subject.keyword | 6061 Al alloy,C1100 Cu alloy,friction stir welding,macro- and micro-galvanic corrosion,Zr conversion coating, | en |
| dc.relation.page | 81 | - |
| dc.identifier.doi | 10.6342/NTU202502690 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-31 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2025-08-02 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
