Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 社會科學院
  3. 經濟學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98282
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊睿中zh_TW
dc.contributor.advisorJui-Chung Yangen
dc.contributor.author丁宗謀zh_TW
dc.contributor.authorTsung-Mou Tingen
dc.date.accessioned2025-07-31T16:13:32Z-
dc.date.available2025-08-01-
dc.date.copyright2025-07-31-
dc.date.issued2025-
dc.date.submitted2025-07-25-
dc.identifier.citationAhmad, W. (2017). On the dynamic dependence and investment performance of crude oil and clean energy stocks. Research in International Business and Finance, 42, 376–389.
Baker, M. P., Bergstresser, D., Serafeim, G., & Wurgler, J. (2018). Financing the response to climate change: The pricing and ownership of U.S. green bonds. NBER Working Paper No. 25194. National Bureau of Economic Research.
Baruník, J., & Křehlík, T. (2018). Measuring the frequency dynamics of financial connectedness and systemic risk. Journal of Financial Econometrics, 16, 271–296.
Bondia, R., Ghosh, S., & Kanjilal, K. (2016). International crude oil prices and the stock prices of clean energy and technology companies: Evidence from non-linear cointegration tests with unknown structural breaks. Energy, 101, 558–565.
Broadstock, D. C., Chatziantoniou, I., & Gabauer, D. (2020). Minimum connectedness portfolios and the market for green bonds: Advocating socially responsible investment (SRI) activity. Available at SSRN 3793771.
Chen, G., Fang, S., Chen, Q., & Zhang, Y. (2023). Risk Spillovers and Network Connectedness between Clean Energy Stocks, Green Bonds, and Other Financial Assets: Evidence from China. Energies, 16(20), 7077.
Christoffersen, P., Errunza, V., Jacobs, K., & Jin, X. (2014). Correlation dynamics and international diversification benefits. International Journal of Forecasting, 30(3), 807–824.
Cogley, T., & Sargent, T. J. (2005). Drifts and volatilities: Monetary policies and outcomes in the post-WWII US. Review of Economic Dynamics, 8(2), 262–302.
Demiralay, S., Gencer, H. G., & Bayraci, S. (2022). Carbon credit futures as an emerging asset: Hedging, diversification and downside risks. Energy Economics, 113, 106196.
Demirer, M., Diebold, F., Liu, L., & Yilmaz, K. (2018). Estimating global bank network connectedness. Journal of Applied Econometrics, 33(1), 1–15.
Diebold, F., & Yilmaz, K. (2009). Measuring financial asset return and volatility spillovers, with application to global equity markets. Economic Journal, 119, 158–171.
Diebold, F., & Yilmaz, K. (2012). Better to give than to receive: Predictive measurement of volatility spillovers (with discussion). International Journal of Forecasting, 28, 57–66.
Diebold, F., & Yilmaz, K. (2014). On the network topology of variance decompositions: Measuring the connectedness of financial firms. Journal of Econometrics, 182, 119–134.
Ferrer, R., Shahzad, S. J. H., & Soriano, P. (2021). Are green bonds a different asset class? Evidence from time-frequency connectedness analysis. Journal of Cleaner Production, 292, 125988.
Ferrer, R., Shahzad, S. J. H., López, R., & Jareño, F. (2018). Time and frequency dynamics of connectedness between renewable energy stocks and crude oil prices. Energy Economics, 76, 1–20.
Gabauer, D. & Gupta, R. (2018). On the transmission mechanism of country-specific and international economic uncertainty spillovers: Evidence from a TVP-VAR connectedness decomposition approach, Economics Letters , Elsevier, vol. 171(C), pages 63-71.
Gabauer, D. (2021). Dynamic measures of asymmetric & pairwise connectedness within an optimal currency area: Evidence from the ERM I system. Journal of Multinational Financial Management, 60, 100680.
Henriques, I., & Sadorsky, P. (2008). Oil prices and the stock prices of alternative energy companies. Energy Economics, 30(3), 998–1010.
ICMA. (2021). Green Bond Principles: Voluntary process guidelines for issuing green bonds.
International Energy Agency. (2025). Global Energy Review 2025. IEA: Paris.
Jacomy M, Venturini T, Heymann S, Bastian M. (2014). ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS One. 9(6):e98679.
Kassouri, Y., Kacou, K. Y. T., & Alola, A. A. (2021). Are oil-clean energy and high technology stock prices in the same straits? Bubbles speculation and time-varying perspectives. Energy, 232, 121021.
Koop, G., Pesaran, M. H., & Potter, S. M. (1996). Impulse response analysis in nonlinear multivariate models. Journal of Econometrics, 74(1), 119–147.
Kumar, S., Managi, S., & Matsuda, A. (2012). Stock prices of clean energy firms, oil and carbon markets: A vector autoregressive analysis. Energy Economics, 34(1), 215–226.
Li, H., Zhou, D., Hu, J., & Guo, L. (2022). Dynamic linkages among oil price, green bond, carbon market and low-carbon footprint company stock price: Evidence from the TVP-VAR model. Energy Reports, 8, 11249–11258.
Maghyereh, A. I., Awartani, B., & Abdoh, H. (2019). The co-movement between oil and clean energy stocks: A wavelet-based analysis of horizon associations. Energy, 169, 895–913.
Managi, S., & Okimoto, T. (2013). Does the price of oil interact with clean energy prices in the stock market? Japan and the World Economy, 27, 1–9.
Markovitz, H. M. (1959). Portfolio selection: Efficient diversification of investments. New York: John Wiley.
Naeem, M. A., Karim, S., Uddin, G. S., & Junttila, J. (2022). Small fish in big ponds: Connections of green finance assets to commodity and sectoral stock markets. International Review of Financial Analysis, 83, 102283.
OECD (2024), OECD Review on Aligning Finance with Climate Goals: Assessing Progress to Net Zero and Preventing Greenwashing, Green Finance and Investment, OECD Publishing, Paris
Perkins, R. (2021). Governing for growth: Standards, emergent markets, and the lenient zone of qualification for green bonds. Annals of the American Association of Geographers, 111(7), 2044–2061.
Pesaran, H. H., & Shin, Y. (1998). Generalized impulse response analysis in linear multivariate models. Economics Letters, 58(1), 17–29.
Primiceri, G. E. (2005). Time varying structural vector autoregressions and monetary policy. Review of Economic Studies, 72(3), 821–852.
Reboredo, J. C., Ugolini, A., & Aiube, F. A. L. (2020). Network connectedness of green bonds and asset classes. Energy Economics, 86, 104629.
Ren, X., Li, Y., Yan, C., Wen, F., & Lu, Z. (2022). The interrelationship between the carbon market and the green bonds market: Evidence from wavelet quantile-on-quantile method. Technological Forecasting and Social Change, 179, 121611.
Reuters. (2024, February 12). Global carbon markets' value hit record $949 bln last year - LSEG. Reuters.
Sadorsky, P. (2012). Correlations and volatility spillovers between oil prices and the stock prices of clean energy and technology companies. Energy Economics, 34(1), 248–255.
Su, C.-W., Pang, L.-D., Qin, M., Lobonţ, O.-R., & Umar, M. (2023). The spillover effects among fossil fuel, renewables and carbon markets: Evidence under the dual dilemma of climate change and energy crises. Energy, 274, 127304.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 58, 267–288.
Tiwari, A. K., Abakah, E. J. A., Gabauer, D., & Dwumfour, R. A. (2022). Dynamic spillover effects among green bond, renewable energy stocks and carbon markets during COVID-19 pandemic: Implications for hedging and investments strategies. Global Finance Journal, 51, 100692.
van den Bergh, J. C. J. M., & Botzen, W. W. J. (2024). Assessing criticisms of carbon pricing. International Review of Environmental and Resource Economics, 18(3), 315–384.
Yousfi, M., & Bouzgarrou, H. (2024). Quantile network connectedness between oil, clean energy markets, and green equity with portfolio implications. Environmental Economics and Policy Studies. Advance online publication.
Zou, H. (2006). The adaptive Lasso and its oracle properties. J. Amer. Statist. Assoc. 101, 1418-1429.
Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. J. Roy. Statist. Soc. Ser. B 67, 301-320.
Zou, H., & Zhang, H. (2009). On the adaptive elastic net with a diverging number of parameters. Annals of Statistics, 37(4), 1733–1751.
徐士勛 和 李佳磬. (2019). 亞洲主要股市報酬波動的潛在鏈結程度衡量. 經濟論文叢刊, 47(4), 579–620.
郭維裕 (2013) 。全球隱含波動度指數之共動性。風險管理學報,15(1),31-56.
戴君杰 (2024) 。《台灣銀行信用卡外溢效果網絡分析》。國立臺灣大學經濟學系,在職專班碩士論文。doi:10.6342/NTU202402047
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98282-
dc.description.abstract本研究使用自適應彈性網路向量自我迴歸模型 (Adaptive Elastic-Net VAR),以及基於廣義預測誤差變異數分解的Diebold-Yilmaz鍵結指數,針對2015年1月至2024年11月期間綠色債券、綠色能源類股、碳權,以及債券市場、主要國家之股市、能源市場之間的報酬溢出效果進行研究。本研究首先針對全樣本以及子樣本透過ForceAtlas2引力導向模型進行靜態溢出效果,並使用滾動窗口法在成對層面進行動態溢出效果分析。針對估計結果,本研究同時透過最小鍵結法建立投資組合,與傳統的最小變異數法與最小相關法進行比較。研究結果顯示,1. 無論是綠色債券、碳權或是各種綠色能源類股,彼此間透過網路傳遞的方向性淨溢出效果,多數情形皆源自於各資產類型間彼此影響,並且不同資產類型間的互相影響通常由特殊事件 (如上證股災、英國脫歐、新冠疫情、烏俄戰事等) 所驅動。2. 綠色債券主要受美國中長期公債、投資等級債券市場的淨溢出效果影響,能夠對美元指數、黃金傳遞報酬淨溢出效果3. 碳權市場主要受到能源市場的影響,並且受到整體股市較微弱的負向淨溢出效果影響,且其與歐洲股市的鍵結並未明顯異於美國股市 4. 綠能類股表現與科技類股相似,且主要受到美國市場的淨溢出效果影響,並向亞洲市場傳遞淨溢出效果5. 最小鍵結法有著最高的報酬率以及夏普比率,而投資組合中碳權、太陽能類股以及核能類股有較高的資產權重。zh_TW
dc.description.abstractThis study employs the Adaptive Elastic-Net Vector Autoregression (Adaptive Elastic-Net VAR) model and the Diebold-Yilmaz connectedness index based on Generalized Forecast Error Variance Decomposition (GFEVD) to investigate the return spillover effects among green bonds, green energy stocks, carbon credits, as well as bond markets, major national stock markets, and energy markets during the period from January 2015 to November 2024. The analysis first examines the static spillover effects for the full sample and sub-sample periods using the ForceAtlas2 force-directed layout model, and then conducts dynamic spillover analysis on a pairwise level using a rolling-window approach. Based on the estimation results, this study constructs investment portfolios using the Minimum Connectedness approach and compares their performance with the traditional Minimum Variance and Minimum Correlation approaches. The empirical results show that (1) for green bonds, carbon credits, and various green energy stocks, directional net spillover effects within the network mostly originate from mutual influences among asset types, and are typically driven by specific events such as the 2015 Chinese stock market crash, Brexit, the COVID-19 pandemic, and the Russia-Ukraine war; (2) green bonds are primarily influenced by net spillovers from U.S. medium- to long-term Treasury bonds and investment-grade bond markets, while also transmitting net spillover effects to the U.S. dollar index and gold; (3) the carbon credit market is mainly influenced by the energy market, and experiences relatively weak negative net spillover effects from the overall stock market, with its connectedness with the European stock market not significantly different from that with the U.S. market; (4) green energy stocks are primarily affected by net spillovers from the U.S. market and transmit net spillover effects to Asian markets; (5) the Minimum Connectedness Portfolio achieves the highest return and Sharpe ratio within the sample period, with carbon credits, solar energy stocks, and nuclear energy stocks receiving higher portfolio weights.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-31T16:13:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-31T16:13:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
ABSTRACT iii
目次 v
圖次 vii
表次 ix
第一章 緒論 1
第二章 文獻回顧 4
2.1 綠色能源類股互動關係的實證研究 4
2.2 其他綠色資產互動關係的實證研究 6
2.3 衡量溢出效果之研究方法 8
2.4 小結 9
第三章 研究方法 10
3.1 廣義預測誤差變異數分解 10
3.2 鍵結指數(Connectedness Index) 12
3.3 自適應彈性網路向量自我迴歸模型((Adaptive Elastic-Net VAR)) 15
3.4 網路拓樸與ForceAtlas2力導向模型佈局 18
3.5 回測模型 21
第四章 實證結果 23
4.1 資料 23
4.2 靜態鍵結分析 28
4.3 動態鍵結分析 32
4.3.1 總鍵結指數 32
4.3.2 綠色債券 34
4.3.3 碳權 39
4.3.4 綠能類股 42
4.4 回測結果 49
第五章 結論 53
5.1 研究發現與討論 53
5.2 未來研究方向 55
第六章 參考文獻 56
-
dc.language.isozh_TW-
dc.subject自適應彈性網路zh_TW
dc.subject綠色資產zh_TW
dc.subject投資組合zh_TW
dc.subject網路分析zh_TW
dc.subject鍵結指數zh_TW
dc.subjectConnectedness indexen
dc.subjectNetwork analysisen
dc.subjectPortfolio constructionen
dc.subjectAdaptive elastic neten
dc.subjectGreen asseten
dc.title以稀疏性模型估計綠色金融資產之報酬溢出網路zh_TW
dc.titleEstimating Return Spillover Network of Green Equity with Sparsity Modelen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee謝志昇;莊家彰zh_TW
dc.contributor.oralexamcommitteeChih-Sheng Hsieh;Chia-Chang Chuangen
dc.subject.keyword綠色資產,自適應彈性網路,鍵結指數,網路分析,投資組合,zh_TW
dc.subject.keywordGreen asset,Adaptive elastic net,Connectedness index,Network analysis,Portfolio construction,en
dc.relation.page61-
dc.identifier.doi10.6342/NTU202501138-
dc.rights.note未授權-
dc.date.accepted2025-07-25-
dc.contributor.author-college社會科學院-
dc.contributor.author-dept經濟學系-
dc.date.embargo-liftN/A-
顯示於系所單位:經濟學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
2.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved