請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98263完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王俊豪 | zh_TW |
| dc.contributor.advisor | Jiun-Hao Wang | en |
| dc.contributor.author | 彭俊偉 | zh_TW |
| dc.contributor.author | Chun-Wei Peng | en |
| dc.date.accessioned | 2025-07-31T16:09:19Z | - |
| dc.date.available | 2025-08-01 | - |
| dc.date.copyright | 2025-07-31 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-22 | - |
| dc.identifier.citation | 中文參考文獻
洪長春 (2022)。精準健康科技前瞻論題之探討 [Exploration on foresight issues of precision health technology]。財團法人國家實驗研究院科技政策研究與資訊中心。https://doi.org/10.978.957619/3286 國立中興大學智慧永續新農業研究發展中心 (2024)。興大發表國際首創農業專用生成式AI「神農TAIDE」。國立中興大學智慧農業研發中心。https://www2.nchu.edu.tw/news-detail/id/57681 張錦俊、莊金樺 (2024)。生成式AI之科技風險管理與技術創新 [Exploring the technology risks management and technology innovation with focus on generative AI]。財團法人國家實驗研究院科技政策研究與資訊中心。https://doi.org/10.978.957619/3842 張錦俊、劉玳縈 (2021)。我國生技製藥產業之AI與大數據應用之質化分析:企業知識組合能力之紮根理論分析 [Qualitative study on the adoption of big data and AI analytics in Taiwan’s biopharmaceutical firms]。財團法人國家實驗研究院科技政策研究與資訊中心。 劉瑄儀、紀凱齡、羅良慧 (2024)。建構韌性與友善環境的食農系統 [Constructing resilient and eco-friendly agrifood systems]。財團法人國家實驗研究院科技政策研究與資訊中心。https://doi.org/10.978.957619/3712 英文參考文獻 Alvesson, M. (2001). Knowledge Work: Ambiguity, Image and Identity. Human Relations, 54(7), 863–886. https://doi.org/10.1177/0018726701547004 Amerani, E., Nastis, A. S., Loizou, E., & Michailidis, A. (2024). Cross-analysis of agricultural knowledge and innovation system of actors' interactions in Greece. Journal of Agricultural Extension, 28(2), 9–23. https://www.ajol.info/index.php/jae/article/view/268465 Ångström, R., Mähring, M., Wallin, M., Oborn, E., & Barrett, M. (2024). Amongst a multitude of algorithms: How distrust transfers between social and technical trust referents in the AI-driven organization. In Proceedings of the 57th Hawaii International Conference on System Sciences. https://scholarspace.manoa.hawaii.edu/items/e1e0fce8-f9f2-4d5c-aaee-c98fe4721005 Bahrini, A., Khamoshifar, M., Abbasimehr, H., Riggs, R. J., Esmaeili, M., Majdabadkohne, R. M., & Pasehvar, M. (2023). ChatGPT: Applications, Opportunities, and Threats (arXiv:2304.09103). arXiv. https://arxiv.org/abs/2304.09103 Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the Dangers of Stochastic: Can Language Model Be Too Big? Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 610–623. https://doi.org/10.1145/3442188.3445922 BIA. (2019). State of the Discovery Nation 2019. https://md.catapult.org.uk/wp-content/uploads/2019/05/sodn19-insights.pdf Birke, F. M., Bae, S., Schober, A., Wolf, S., Gerster-Bentaya, M., & Knierim, A. (2022, April). AKIS in European countries: Cross analysis of AKIS country. https://i2connect-h2020.eu/wp-content/uploads/2022/12/2022-12-02-AKIS-cross-analysis_updated.pdf Birks, M., & Mills, J. (2023). Grounded theory: A practical guide. Sage. Bokhari, S. A. A., & Myeong, S. (2022). Use of Artificial Intelligence in Smart Cities for Smart Decision-Making: A Social Innovation Perspective. Sustainability, 14(2), 620. https://doi.org/10.3390/su14020620 Broekhuizen, T., Dekker, H., de Faria, P., Firk, S., Nguyen, D. K., & Sofka, W. (2023). AI for managing open innovation: Opportunities, challenges, and a research agenda. Journal of Business Research, 167, 114196. https://doi.org/10.1016/j.jbusres.2023.114196 Brynjolfsson, E., Rock, D., & Syverson, C. (2019). Artificial Intelligence and the Modern Productivity Paradox: A Clash of Expectations and Statistics. In A. Agrawal, J. Gans, & A. Goldfarb (Eds.), The Economics of Artificial Intelligence: An Agenda (pp. 23–60). University of Chicago Press. https://www.degruyterbrill.com/document/doi/10.7208/9780226613475-003/ Caccamo, M., Pittino, D., & Tell, F. (2023). Boundary objects, knowledge integration, and innovation management: A systematic review of the literature. Technovation, 122, 102645. https://doi.org/10.1016/j.technovation.2022.102645 Caufield, J. H., Hegde, H., Emonet, V., Harris, N. L., Joachimiak, M. P., Matentzoglu, N., ... & Mungall, C. J. (2024). Structured prompt interrogation and recursive extraction of semantics (SPIRES): A method for populating knowledge bases using zero-shot learning. Bioinformatics, 40(3), btae104. https://doi.org/10.1093/bioinformatics/btae104 Cennamo, C., & Santaló, J. (2019). Generativity Tension and Value Creation in Platform Ecosystems. Organization Science, 30(3), 617–641. https://doi.org/10.1287/orsc.2018.1270 Charatsari, C., Michailidis, A., Francescone, M., De Rosa, M., Aidonis, D., Bartoli, L., ... & Lioutas, E. D. (2023). Do agricultural knowledge and innovation systems have the dynamic capabilities to guide the digital transition of short food supply chains? Information, 15(1), 22. https://doi.org/10.3390/info15010022 Chen, L., Jiang, M., Jia, F., & Liu, G. (2022). Artificial intelligence adoption in business-to-business marketing: Toward a conceptual framework. Journal of Business & Industrial Marketing, 37(5), 1025–1044. https://doi.org/10.1108/JBIM-09-2020-0448 Chhikara, P., Chaurasia, D., Jiang, Y., Masur, O., & Ilievski, F. (2024). Fire: Food Image to REcipe generation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, January 3–8, 2024 (pp. 8184–8194). https://openaccess.thecvf.com/content/WACV2024/papers/Chhikara_FIRE_Food_Image_to_REcipe_Generation_WACV_2024_paper.pdf Christensen, C. M., McDonald, R., Altman, E. J., & Palmer, J. E. (2018). Disruptive Innovation: An Intellectual History and Directions for Future Research. Journal of Management Studies, 55, 1043–1078. https://doi.org/10.1111/joms.12349 Chubb, J., Cowling, P., & Reed, P. (2022). Speeding up to keep up: Exploring the use of AI in the research process. AI & Society, 37, 1439–1457. https://doi.org/10.1007/s00146-021-01259-0 CNBC. (2025, May 28). Nvidia CEO Jensen Huang says you'll lose your job to somebody who uses AI. https://www.cnbc.com/2025/05/28/nvidia-ceo-jensen-huang-youll-lose-your-job-to-somebody-who-uses-ai.html Coeckelbergh, M. (2023). Narrative responsibility and artificial intelligence: How AI challenges human responsibility and sense-making. AI & Society, 38(6), 2437–2450. https://doi.org/10.1007/s00146-021-01375-x Cram, W. A., Wiener, M., Tarafdar, M., & Benlian, A. (2022). Examining the Impact of Algorithmic Control on Uber Drivers’ Technostress. Journal of Management Information Systems, 39(2), 426–453. https://doi.org/10.1080/07421222.2022.2063556 Crisci, F., & Romanello, R. (2023). How Matter Matters: Translations, Boundary Objects, and Digital Innovation in the Public Reforms. In Sinergie-SIMA 2023 Management Conference Proceedings: Rediscovering local roots and interactions in management (pp. 533–540). https://doi.org/10.7433/SRECP.EA.2023.01 Cross, R., & Baird, L. (2000). Technology is Not Enough: Improving Performance by Building Organization Memory. Sloan Management Review, 41(3), 69–78. https://www.proquest.com/scholarly-journals/technology-is-not-enough-improving-performance/docview/224965690/se-2 Davenport, T. H., & Bean, R. (2023). The Impact of Generative AI on Hollywood and Entertainment. MIT Sloan Management Review, 19. https://www.proquest.com/docview/2827311108?accountid=14229&sourcetype=Blogs,%20Podcasts,%20&%20Websites Davenport, T. H., De Long, D. W., & Beers, M. C. (1998). Successful Knowledge Management Projects. Sloan Management Review, 39(2), 43–57. https://www.proquest.com/scholarly-journals/successful-knowledge-management-projects/docview/224965392/se-2 Davenport, T.H., & Prusak, L. (1998). Working knowledge: How organization manage what they know. Boston, MA: Harvard Business School Press. Demarest, M. (1997). Understanding Knowledge Management. Long Range Planning, 30(3), 374–384. https://doi.org/10.1016/S0024-6301(97)90250-8 Dhavale, C., Pawar, T., Singh, A., Pole, S., & Sabat, K. (2024). Revolutionizing farming: GAN-enhanced imaging, CNN disease detection, and LLM farmer assistant. In 2024 2nd International Conference on Computer, Communication and Control, Indore, India (pp. 1–6). https://doi.org/10.1109/IC457434.2024.10486501 Djelassi, S., & Decoopman, I. (2016). Innovation through interactive crowdsourcing: The role of boundary objects. Recherche et Applications En Marketing (English Edition), 31(3), 131–152. https://doi.org/10.1177/2051570716650160 Dockès, A. C., Tisenkopfs, T., & Bock, B. (2011). WP1: Reflection paper on AKIS. SCAR Collaborative Working Group on AKIS. https://edepot.wur.nl/193703 Drew, S. (1999). Building KM into strategy: Making sense of a new perspective. Long Range Planning, 32(1), 130–136. https://doi.org/10.1016/S0024-6301(98)00142-3 Dunay, A., & Jakab, Á. G. (2024). 373 Presentation of Agricultural Knowledge and Innovation Systems – The Role of Knowledge Transfer in (Interactive) Innovation. In 14th WORLD CONGRESS (p. 319). https://www.researchgate.net/profile/Saverio-Di-Giorno/publication/382116302_Fair_Transition_and_Environmental_Tax_Avoidance_The_Issue_of_Carbon_Leakage_and_Regional_Competitiveness/links/668e62db3e0edb1e0fda19f8/Fair-Transition-and-Environmental-Tax-Avoidance-The-Issue-of-Carbon-Leakage-and-Regional-Competitiveness.pdf#page=321 European Commission. (2017). Directorate-General for Research and Innovation. Interim evaluation of Horizon 2020 : Commission staff working document. Publications Office. https://data.europa.eu/doi/10.2777/220768 European Commission. (2024). Internal Market, Industry, Entrepreneurship and SMEs: SME definition. https://single-market-economy.ec.europa.eu/smes/sme-definition_en Fayyad, U. M., Piatetsky-Shapiro, G., & Smyth, P. (1996). From Data Mining to Knowledge Discovery in Databases. AI Magazine, Fall 1996, 37–54. https://doi.org/10.1609/aimag.v17i3.1230 Feuerriegel, S., Hartmann, J., Janiesch, C., & Zschech, P. (2024). Generative AI. Business & Information Systems Engineering, 66(1), 111–126. https://doi.org/10.1007/s12599-023-00834-7 Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., ... & Wang, H. (2023). Retrieval-augmented generation for large language models: A survey. arXiv preprint arXiv:2312.10997, 2(1). https://simg.baai.ac.cn/paperfile/25a43194-c74c-4cd3-b60f-0a1f27f8b8af.pdf Garcia, M. B. (2023). ChatGPT as a Virtual Dietitian: Exploring Its Potential as a Tool for Improving Nutrition Knowledge. Applied System Innovation, 6(5), 96. https://doi.org/10.3390/asi6050096 Gebler, M., Juraschek, M., Thiede, S., Cerdas, F., & Herrmann, C. (2022). Defining the Positive Impact of socio-technical systems for absolute sustainability: A literature review based on the identification of system design principles and management functions. Sustainability Science, 17(6), 2597–2613. https://doi.org/10.1007/s11625-022-01168-1 Goel, M., Agarwal, A., Agrawal, S., Kapuriya, J., Konam, A. V., Gupta, R., ... & Bagler, G. (2024). Deep learning based named entity recognition models for recipes. arXiv preprint arXiv:2402.17447. https://doi.org/10.48550/arXiv.2402.17447 Goldstein, J. A., Sastry, G., Musser, M., DiResta, R., Gentzel, M., & Sedova, K. (2023). Generative Language Models and Automated Influence Operations: Emerging Threats and Potential Mitigations (arXiv:2301.04246). arXiv. http://arxiv.org/abs/2301.04246 Google. (2025, June 12). Google Cloud Summit Taipei 2025. Google Blog. https://blog.google/intl/zh-tw/company-news/technology/google-cloud-summit-taipei-2025/ Goyanes, M., Lopezosa, C., & Jordá, B. (2024). Thematic analysis of interview data with ChatGPT: Designing and testing a reliable research protocol for qualitative research. Center for Open Science. https://osf.io/8mr2f/download Grønsund, T., & Aanestad, M. (2020). Augmenting the algorithm: Emerging human-in-the-loop work configurations. The Journal of Strategic Information Systems, 29(2), 101614. https://doi.org/10.1016/j.jsis.2020.101614 Gupta, V. (2024). An Empirical Evaluation of a Generative Artificial Intelligence Technology Adoption Model from Entrepreneurs’ Perspectives. Systems, 12, 103. https://doi.org/10.3390/systems12030103 Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California Management Review, 61, 5–14. https://doi.org/10.1177/0008125619864925 Haki, K., Blaschke, M., Aier, S., Winter, R., & Tilson, D. (2024). Dynamic Capabilities for Transitioning from Product Platform Ecosystem to Innovation Platform Ecosystem. European Journal of Information Systems, 33(2), 181–199. https://doi.org/10.1080/0960085X.2022.2136542 Hammond, M. (2018). An interesting paper but not sufficiently theoretical: What does theorising in social research look like? Methodological Innovations, 11(2), 1–10. https://doi.org/10.1177/2059799118787756 Henrichs, E., Noack, T., Pinzon Piedrahita, A. M., Salem, M. A., Stolz, J., & Krupitzer, C. (2022). Can a byte improve our bite? An analysis of digital twins in the food industry. Sensors, 22, 115. https://doi.org/10.3390/s22010115 Hermans, F., Klerkx, L., & Roep, D. (2015). Structural conditions for collaboration and learning in innovation networks: Using an innovation system performance lens to analyse agricultural knowledge systems. The Journal of Agricultural Education and Extension, 21(1), 35–54. https://doi.org/10.1080/1389224X.2014.991113 Ingram, J., & Maye, D. (2020). What are the implications of digitalisation for agricultural knowledge? Frontiers in Sustainable Food Systems, 4, 66. https://doi.org/10.3389/fsufs.2020.00066 Ishtiaq, A., Munir, K., Raza, A., Samee, N. A., Jamjoom, M. M., & Ullah, Z. (2024). Product helpfulness detection with novel transformer based BERT embedding and class probability features. IEEE Access, 12, 55905–55917. https://doi.org/10.1109/ACCESS.2024.3390605 Jarrahi, M. H., Askay, D., Eshraghi, A., & Smith, P. (2023). Artificial intelligence and knowledge management: A partnership between human and AI. Business Horizons, 66(1), 87–99. https://doi.org/10.1016/j.bushor.2022.03.002 Jarrahi, M. H., Lutz, C., & Newlands, G. (2022). Artificial intelligence, human intelligence and hybrid intelligence based on mutual augmentation. Big Data & Society, 9(2). https://doi.org/10.1177/20539517221142824 Jarvenpaa, S., & Klein, S. (2024). New Frontiers in Information Systems Theorizing: Human-GAI Collaboration. Journal of the Association for Information Systems, 25(1), 110–121. https://doi.org/10.17705/1jais.00868 Knierim, A., Labarthe, P., Laurent, C., Prager, K., Kania, J., Madureira, L., & Ndah, T. H. (2017). Pluralism of agricultural advisory service providers – Facts and insights from Europe. Journal of Rural Studies, 55, 45–58. https://doi.org/10.1016/j.jrurstud.2017.07.018 Krupitzer, C. (2024). Generative artificial intelligence in the agri-food value chain-overview, potential, and research challenges. Frontiers in Food Science and Technology, 4, 1473357. https://doi.org/10.3389/frfst.2024.1473357 Krupitzer, C., & Stein, A. (2024). Unleashing the potential of digitalization in the agri-food chain for integrated food systems. Annual Review of Food Science and Technology, 15, 307–328. https://doi.org/10.1146/annurev-food-012422-024649 Krupitzer, C., Noack, T., & Borsum, C. (2022). Digital food twins combining data science and food science: System model, applications, and challenges. Processes, 10, 1781. https://doi.org/10.3390/pr10091781 Kuang, A. C. L., Lim, T. M., Tan, C. W., Ho, C. F., & Husaini, N. A. (2024). AI ads: Practicability of text generation for f&b marketing. Journal of Logistics, Informatics and Service Science, 11, 324–345. https://doi.org/10.33168/JLISS.2024.0220 Kvam, G. T., Hårstad, R. M. B., & Stræte, E. P. (2022). The role of farmers’ microAKIS at different stages of uptake of digital technology. The Journal of Agricultural Education and Extension, 28(5), 671–688. https://doi.org/10.1080/1389224X.2022.2046617 LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444. https://doi.org/10.1038/nature14539 Liu, B., Zhang, H., Liu, J., & Wang, Q. (2023a). ACIGS: An automated large-scale crops image generation system based on large visual language multi-modal models. In 2023 20th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Madrid, Spain (pp. 7–13). https://doi.org/10.1109/SECON58729.2023.10287530 Liu, J., Zhou, Y., Li, Y., Li, Y., Hong, S., Li, Q., ... & Wang, X. (2023b). Exploring the integration of digital twin and generative AI in agriculture. In 2023 15th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC) (pp. 223-228). IEEE. https://ieeexplore.ieee.org/document/10261616 Lou, B., & Wu, L. (2021). AI on drugs: Can artificial intelligence accelerate drug development? Evidence from a large-scale examination of bio-pharma firms. MIS Quarterly, 45(3), 1451–1482. https://dx.doi.org/10.2139/ssrn.3524985 Lu, H., Setiono, R., & Liu, H. (1996). Effective data mining using neural networks. IEEE Transactions on Knowledge and Data Engineering, 8(6), 957–961. https://doi.org/10.1109/69.553163 Lysyakov, M., & Viswanathan, S. (2022). Threatened by AI: Analyzing users responses to the introduction of AI in a crowd-sourcing platform. Information Systems Research, 34(3), 1191–1210. https://doi.org/10.1287/isre.2022.1184 Madureira, L., Sutherland, L. A., Labarthe, P., Beck, M., & Triboulet, P. (2022). The privatisation paradox of contemporary agricultural advice in Europe. EuroChoices, 21(1), 30–31. https://doi.org/10.1111/1746-692X.12341 Majumder, S., & Khandelwal, Y. (2024). Computer vision and generative AI for yield prediction in digital agriculture. In 2024 2nd International Conference on Networking and Communications (ICNWC), Chennai, India (pp. 1–6). https://doi.org/10.1109/ICNWC60771.2024.10537337 Marino, D., Jaime, G. L., & Tebala, D. (2023). Innovations and development of artificial intelligence in Europe: Some empirical evidences. European Journal of Management and Business Economics, 32(5), 620–636. https://doi.org/10.1108/EJMBE-03-2023-0085 Maslej, N., Fattorini, L., Brynjolfsson, E., Rock, D., Pachidi, S., & Barrett, T. (2023). Generative artificial intelligence technology adoption model from entrepreneurs’ perspectives. AI Index Report 2023. https://doi.org/10.48550/arXiv.2310.03715 McAfee, A., & Brynjolfsson, E. (2018). Machine, platform, crowd: Harnessing our digital future. W. W. Norton & Company. https://www.futureforwork.com/assets/uploads/2018/10/Rese%C3%B1as-FFWi-N%C3%BAmero-003.pdf McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955. AI Magazine, 27(4), 12. https://doi.org/10.1609/aimag.v27i4.1904 McKinsey & Company. (2023). The state of AI in 2023: Generative AI’s breakout year. https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2023-generative-ais-breakout-year Microsoft Research. (2024). GraphRAG. https://www.microsoft.com/en-us/research/project/graphrag/ Morgan, D. L. (2023). Exploring the use of artificial intelligence for qualitative data analysis: The case of ChatGPT. International Journal of Qualitative Methods, 22, 16094069231211248. https://doi.org/10.1177/16094069231211248 Niszczota, P., & Rybicka, I. (2023). The credibility of dietary advice formulated by ChatGPT: Robo-diets for people with food allergies. Nutrition, 112, 112076. https://doi.org/10.1016/j.nut.2023.112076 Nonaka, I., & Takeuchi, H. (1995). The knowledge-creating company. Oxford University Press. Noy, S., & Zhang, W. (2023). Experimental evidence on the productivity effects of generative artificial intelligence. Science, 381, 187–192. https://doi.org/10.1126/science.adh2586 Nripendra, R., Kar, A. K., Gupta, M., Pappas, I. O., & Papadopoulos, T. (2023). Unravelling the dark side of sharing economy – Managing and sustaining B2B relationships on digital platforms. Industrial Marketing Management, 113, 4–10. https://doi.org/10.1016/j.indmarman.2023.06.002 O’Leary, D. E. (2023). Enterprise large language models: Knowledge characteristics, risks, and organizational activities. Intelligent Systems in Accounting, Finance & Management, 30(3), 113–119. https://doi.org/10.1002/isaf.1541 OECD. (2023). Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI. OECD Digital Economy Papers, No. 349. https://doi.org/10.1787/2448f04b-en Pakarinen, P., & Huising, R. (2023). Relational expertise: What machines can’t know. Journal of Management Studies. https://doi.org/10.1111/joms.12915 Pitsilou, V., Papadakis, G., & Skoutas, D. (2024). Using LLMs to extract food entities from cooking recipes. In 2024 IEEE 40th International Conference on Data Engineering Workshops (ICDEW), Utrecht, Netherlands, pp. 21–28. https://doi.org/10.1109/ICDEW61823.2024.00008 Preiksaitis, C., & Rose, C. (2023). Opportunities, challenges, and future directions of generative artificial intelligence in medical education: Scoping review. JMIR Medical Education, 9, e48785. https://doi.org/10.2196/48785 Qi, Z., Yu, Y., Tu, M., Tan, J., & Huang, Y. (2023). FoodGPT: A large language model in food testing domain with incremental pre-training and knowledge graph prompt. arXiv:2308.10173. https://doi.org/10.48550/arXiv.2308.10173 Rai, A., Constantinides, P., & Sarker, S. (2019). Next generation digital platforms: Toward human-AI hybrids. MIS Quarterly, 43(1), iii–ix. http://wrap.warwick.ac.uk/113653 Raisch, S., & Krakowski, S. (2021). Artificial intelligence and management: The automation–augmentation paradox. Academy of Management Review, 46(1), 192–210. https://doi.org/10.5465/amr.2018.0072 Raj, J. M., VM, K., Warrier, H., & Gupta, Y. (2024). Fine-tuning LLM for enterprise: Practical guidelines and recommendations. arXiv:2404.10779. https://doi.org/10.48550/arXiv.2404.10779 Rajaram, K., & Tinguely, P. N. (2024). Generative artificial intelligence in small and medium enterprises. Business Horizons, 67(5), 629–648. https://doi.org/10.1016/j.bushor.2024.05.008 Reinhardt, T. (2023). The farm to fork strategy and the digital transformation of the agrifood sector: An assessment from the perspective of innovation systems. Applied Economic Perspectives and Policy, 45(2), 819–838. https://doi.org/10.1002/aepp.13246 Reinhardt, W., Schmidt, B., Sloep, P., & Drachsler, H. (2011). Knowledge worker roles and actions: Results of two empirical studies. Knowledge and Process Management, 18(3), 150–174. https://doi.org/10.1002/kpm.378 Rijswijk, K., Klerkx, L., & Turner, J. A. (2019). Digitalisation in the New Zealand Agricultural Knowledge and Innovation System: Initial understandings and emerging organisational responses to digital agriculture. NJAS-Wageningen Journal of Life Sciences, 90, 100313. https://doi.org/10.1016/j.njas.2019.100313 Rivera, W. M., Qamar, M. K., & Mwandemere, H. K. (2005). Enhancing coordination among AKIS/RD actors: An analytical and comparative review of country studies on agricultural knowledge and information systems for rural development (AKIS/RD). http://hdl.handle.net/10919/66592 Rodríguez-de-Vera, J. M., Villacorta, P., Estepa, I. G., Bolaños, M., Sarasúa, I., Nagarajan, B., & Radeva, P. (2023). Dining on details: LLM-guided expert networks for fine-grained food recognition. In Proceedings of the 8th International Workshop on Multimedia Assisted Dietary Management (pp. 43–52). https://doi.org/10.1145/3607828.3617797 Sammon, D., McCarthy, S., Thummadi, B. V., Wibisono, A., & Fitzgerald, B. (2024). Exploring the potential of large language models (LLMs) for grounded theorizing: A human-in-the-loop configuration. ICIS 2024 Proceedings, 3. https://aisel.aisnet.org/icis2024/adv_theory/adv_theory/3 Sarker, S., Susarla, A., Gopal, R., & Thatcher, J. B. (2024). Democratizing knowledge creation through human-AI collaboration in academic peer review. Journal of the Association for Information Systems, 25(1), 158–171. https://doi.org/10.17705/1jais.00872 Selva Kumar, S., Khan, A. K. M. A., Banday, I. A., Gada, M., & Shanbhag, V. V. (2024). Overcoming LLM challenges using rag-driven precision in coffee leaf disease remediation. In 2024 International Conference on Emerging Technologies in Computer Science for Interdisciplinary Applications (ICETCS), 1–6. https://doi.org/10.1109/ICETCS61022.2024.10543859 Sezgin, E. (2023). Artificial intelligence in healthcare: Complementing, not replacing doctors and healthcare providers. Digital Health, 9. https://doi.org/10.1177/20552076231186520 Stoyanov, S., Kumurdjieva, M., Tabakova-Komsalova, V., & Doukovska, L. (2023). Using LLMs in cyber-physical systems for agriculture - Zemela. In 2023 International Conference on Big Data, Knowledge and Control Systems Engineering (BdKCSE), 1–6. https://doi.org/10.1109/BdKCSE59280.2023.10339738 Sutherland, L. A., Banks, E., Boyce, A., & Martinat, S. (2023). Establishing an agricultural knowledge and innovation system. The James Hutton Institute. http://dx.doi.org/10.7488/era/3426 Szymanski, A., Wimer, B. L., Anuyah, O., Eicher-Miller, H. A., & Metoyer, R. A. (2024). Integrating expertise in LLMs: Crafting a customized nutrition assistant with refined template instructions. In Proceedings of the CHI Conference on Human Factors in Computing Systems, 1–22. https://doi.org/10.1145/3613904.3641924 Veggel, N., Engward, H., Birks, M., & Mills, J. (2024). Using AI in Grounded Theory research–a proposed framework for a ChatGPT-based research assistant. SocArXiv. https://doi.org/10.31235/osf.io/a2dc4 Wachinger, J., Bärnighausen, K., Schäfer, L. N., Scott, K., & McMahon, S. A. (2024). Prompts, pearls, imperfections: Comparing ChatGPT and a human researcher in qualitative data analysis. Qualitative Health Research. https://doi.org/10.1177/10497323241244669 Walke, F., Klopfers, L., & Winkler, T. J. (2025). Leveraging Generative AI and ChatGPT in SMEs: A Grounded Model. In Proceedings of the 58th Hawaii International Conference on System Sciences (p. 5474). https://hdl.handle.net/10125/109506 Wang, J., Xing, Z., & Zhang, R. (2023). AI technology application and employee responsibility. Humanities & Social Sciences Communications, 10, 356. https://doi.org/10.1057/s41599-023-01843-3 Weick, K. E. (1995). What theory is not, theorizing is. Administrative Science Quarterly, 40(3), 385–390. https://doi.org/10.2307/2393789 Wessel, M., Adam, M., Benlian, A., & Thies, F. (2023). Generative AI and its transformative value for digital platforms. Journal of Management Information Systems. https://www.jmis-web.org/cfps/JMIS_SI_CfP_Generative_AI.pdf Winkler, M., Huber, T., & Dibbern, J. (2014). The software prototype as digital boundary object – A revelatory longitudinal innovation case. In Thirty Fifth International Conference on Information Systems, Auckland, New Zealand. https://boris.unibe.ch/59153/1/ICIS_Final_.pdf Yang, T., Mei, Y., Xu, L., Yu, H., & Chen, Y. (2024). Application of question answering systems for intelligent agriculture production and sustainable management: A review. Resources, Conservation & Recycling, 204, 107497. https://doi.org/10.1016/j.resconrec.2024.107497 Zhu, Y., Wang, X., Chen, J., Qiao, S., Ou, Y., Yao, Y., ... & Zhang, N. (2024). LLMs for knowledge graph construction and reasoning: Recent capabilities and future opportunities. World Wide Web, 27(5), 58. https://doi.org/10.1007/s11280-024-01297-w Zhuang, Y., Wu, F., Chen, C., & Pan, Y. (2017). Challenges and opportunities: From big data to knowledge in AI 2.0. Frontiers of Information Technology & Electronic Engineering, 18(1), 3–14. https://doi.org/10.1631/FITEE.1601883 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98263 | - |
| dc.description.abstract | 本研究「生成式人工智慧應用於食農知識創新服務與管理」旨在探討生成式人工智慧如何應用於食農產業的知識管理,及在臺灣既有食農知識體系之窠臼下,如何善用此破壞式創新科技加速數位轉型,以及專業知識服務如何以此槓桿借力使力提升領域知識與服務能量以支持食農產業創新。本研究深度訪談產、學、研之學者專家、進行文本分析與開放性、軸向性、選擇性之三階段編碼、並整合知識圖譜視覺化驗證技術,以多角度、多層次探討生成式AI(尤其是大型語言模型)應用於臺灣食農知識體系之現況與挑戰,並以某食農技術服務業者為案例,示範企業知識圖譜建模,及其整合檢索增強技術(RAG)應用於知識管理以降低AI幻覺,並提升專業度之實務價值,並進行多元資料交叉分析及比對。歸納出本研究核心現象之理論模型 - 「AGILE by AI:敏捷智能組織互動模型」以貫穿整個研究,並說明生成式AI應用於食農知識創新服務與管理之施行要項如下:
(一) 生成式AI作為提升食農知識服務與管理之新動能。 (二) 加速臺灣食農知識體系之數位化與創新進程。 (三) 知識圖譜是提升生成式AI在食農產業知識管理應用可靠度之關鍵。 (四) 臺灣食農產業導入生成式AI需考量其產業特性與挑戰。 (五) 人機協作是發揮生成式AI在知識管理之最有價值與有效途徑。 基於以上核心主題,本研究以生成式AI透過與知識圖譜的有效整合,並在人機協作的架構下,提升食農產業的知識創新與服務管理效能,解決產業長期面臨知識分散、傳承困難等問題,進而促進臺灣食農知識體系的數位轉型與智慧升級,但在導入過程中需充分考量產業的特性與挑戰,積極應對潛在的風險。此分析結果呈現於文獻探討中關於生成式AI應用於食農創新服務與知識管理研究的主要面向和核心觀點。後續的研究基於此進行更深入的探討與驗證,以歸納具理論基礎之實證架構,為未來相關領域的應用與研究提供參考依據,並期望成為食農中小企業未來應用或導入生成式AI於知識管理之系統性指引。 | zh_TW |
| dc.description.abstract | This study aims to explore how Generative Artificial Intelligence (GenAI) can be adopted on Knowledge Management (KM) for Agrifood Knowledge Innovation Services, and to analyze benefits and risks of such deployment. The research method utilizes multiple approaches of Qualitative Analysis, starts with Literature Review, then by Textual Analysis following In-Depth Interviews of stakeholders of Agrifood industries and experts in GenAI. As the third pillar, taking an Agrifood Tech company for case-study, analyzing its corporate and industrial knowledge involved with Agrifood industrial value chain. Furthermore, cross-indexing extracted concepts and thematic entities by constructing Knowledge Graph (KG), which can be further utilized as a Visualization Tool of respected contexts of known or unknown knowledge, and a Validation Technique for finetuning GenAI outputs for knowledge creation and management. Ultimately, to draw a conclusion with the “AGILE” Model, which is the acronym to best describe the Model as “AI driven knowledge Grounding Interactions Leveraged by workforce Empowerment”. The key issues derived from the study are as follows:
1. GenAI as a Technical Driver for enhancing knowledge creation, sharing and management for industries. 2. GenAI is the Engine for Digital Transformation of Taiwan existing Agrifood Knowledge Innovation System (AKIS). 3. Knowledge Graphs as the Key to improve the reliability of GenAI implementation in Knowledge Management within organization. 4. Industry-specific Challenges to be considered for adoption of GenAI in Taiwan's Agrifood sector. 5. Human-AI Collaboration as an effective approach to maximizing the benefits of GenAI in knowledge management maneuver. Based on these key issues, the study anticipates, by integrating Knowledge Graphs and leveraging Human-In-The-Loop Configuration, the positive circulation of knowledge creation can be greatly promoted. This collaboration aims to address long-standing challenges such as dispersive and fragmented natures of Business Intelligence and difficulties in communicating and sharing. The anticipated findings will contribute to the literatures outlining key perspectives and insights on GenAI and Knowledge Management within the Agrifood sector, Future studies can build upon these grounds for further exploration. Additionally, it aims to offer a systematic guideline for small and medium-sized enterprises seeking to adopt GenAI for boosting productivity and creativity. However, it’s highly dependent to the leaderships who wish to integrate GenAI into their workflows with a mindset of transformation both digitally and organizationally. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-31T16:09:19Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-31T16:09:19Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝 辭 i
中文摘要 ii 英文摘要 iii 目次 v 圖次 vii 表次 viii 第一章 、緒論 1 第一節、研究背景與動機 1 第二節、研究目的 7 第三節、研究流程 12 第二章 、文獻探討 13 第一節、生成式AI的興起及其應用與發展趨勢 13 第二節、食農知識創新系統服務之演進與數位轉型 21 第三節、食農產業知識管理之現狀與發展 33 第四節、知識圖譜於知識管理與生成式 AI之協同作用 51 第五節、文獻回顧總結 56 第三章 、研究設計與方法 57 第一節、研究架構 57 第二節、研究方法 61 第三節、生成式AI輔助質性研究並驗證生成式AI應用於知識管理之探討 70 第四章 、資料分析 77 第一節、訪談與分析背景說明 77 第二節、文本分析編碼 81 第三節、個案研究知識圖譜建構分析範例 119 第四節、導入模型與企業指引建構 138 第五章 、結論與建議 171 第一節、研究結論 171 第二節、研究建議與貢獻 175 第三節、研究限制 181 第四節、未來研究方向 182 中文參考文獻 184 英文參考文獻 185 附錄ㄧ:專有名詞索引 198 附錄二:文本分析編碼對照表 207 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 人工智慧 | zh_TW |
| dc.subject | 生成式AI | zh_TW |
| dc.subject | 數位轉型 | zh_TW |
| dc.subject | 食農知識體系 | zh_TW |
| dc.subject | 知識管理 | zh_TW |
| dc.subject | 知識圖譜 | zh_TW |
| dc.subject | 人機迴圈 | zh_TW |
| dc.subject | 人機協作 | zh_TW |
| dc.subject | 組織轉型 | zh_TW |
| dc.subject | Artificial Intelligence | en |
| dc.subject | Organizational Transformation | en |
| dc.subject | Human-AI Collaboration | en |
| dc.subject | Human-In-The-Loop | en |
| dc.subject | Knowledge Graph | en |
| dc.subject | Knowledge Management | en |
| dc.subject | AKIS | en |
| dc.subject | Agrifood Knowledge Innovation System | en |
| dc.subject | Digital Transformation | en |
| dc.subject | GenAI | en |
| dc.subject | Generative AI | en |
| dc.title | 生成式人工智慧應用於食農知識創新服務與管理之研究 | zh_TW |
| dc.title | Studies on Adoption of Generative Artificial Intelligence on Agrifood Knowledge Innovation Services and Managements | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李元和;陳玠廷 | zh_TW |
| dc.contributor.oralexamcommittee | Yuan-He Lee;Jie-Ting Chen | en |
| dc.subject.keyword | 人工智慧,生成式AI,數位轉型,食農知識體系,知識管理,知識圖譜,人機迴圈,人機協作,組織轉型, | zh_TW |
| dc.subject.keyword | Artificial Intelligence,Generative AI,GenAI,Digital Transformation,Agrifood Knowledge Innovation System,AKIS,Knowledge Management,Knowledge Graph,Human-In-The-Loop,Human-AI Collaboration,Organizational Transformation, | en |
| dc.relation.page | 247 | - |
| dc.identifier.doi | 10.6342/NTU202502078 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-23 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物產業傳播暨發展學系 | - |
| dc.date.embargo-lift | 2025-08-01 | - |
| 顯示於系所單位: | 生物產業傳播暨發展學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 21.13 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
