Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 統計與數據科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98262
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳裕庭zh_TW
dc.contributor.advisorYu-Ting Chenen
dc.contributor.author歐子瑄zh_TW
dc.contributor.authorTzu-Hsuan Ouen
dc.date.accessioned2025-07-31T16:09:07Z-
dc.date.available2025-08-01-
dc.date.copyright2025-07-31-
dc.date.issued2025-
dc.date.submitted2025-07-29-
dc.identifier.citationM. N. Ahmed, S. M. Yamany, N. Mohamed, A. A. Farag, and T. Moriarty. A modified fuzzy c-means algorithm for bias field estimation and segmentation of mri data. IEEE Transactions on Medical Imaging, 21(3):193–199, 2002. doi: 10.1109/42.996338.
Samanh Aminikhanghahi and Diane J. Cook. A survey of methods for time series change point detection. Knowledge and Information Systems, 51:339–367, 2017. doi: 10.1007/s10115-016-0987-z.
Alexander Aue, Siegfried Hörmann, Lajos Horváth, and Matthew Reimherr. Break detection in the covariance structure of multivariate time series models. The Annals of Statistics, 37(6B):4046–4087, 2009. doi: 10.1214/09-AOS707.
István Berkes, Lajos Horváth, and Piotr Kokoszka. Detecting changes in the mean of functional observations. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(5):927–946, 2009.
William Boniece, Lajos Horváth, and Lorenzo Trapani. On change point detection in functional data using empirical energy distance. The Annals of Statistics, 51(4):1319–1348, 2023.
M. Bosc, F. Heitz, J. P. Armspach, I. Namer, D. Gounot, and L. Rumbach. Automatic change detection in multimodal serial mri: Application to multiple sclerosis lesion evolution. NeuroImage, 20:643–656, 2003.
Jeng-Min Chiou and Pai-Hsien Li. Functional clustering and identifying substructures of longitudinal data. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(4):679–699, 2007. doi: 10.1111/j.1467-9868.2007.00609.x.
John B. Collins and Curtis E. Woodcock. An assessment of several linear change detection techniques for mapping forest mortality using multitemporal landsat TM data. Remote Sensing of Environment, 56(1):66–77, 1996. doi: 10.1016/0034-4257(95)00233-2. URL https://doi.org/10.1016/0034-4257(95)00233-2.
Pol R. Coppin and Marvin E. Bauer. The potential contribution of pixel-based canopy change information to stand-based forest management in the northern U.S. Journal of Environmental Management, 44(1):69–82, 1995.
Richard A Davis, Dunsong Huang, and Yuan Yao. Structural break estimation for nonstationary time series models. Journal of Econometrics, 134(2):477–502, 2006.
Paul H. C. Eilers and Brian D. Marx. Flexible smoothing with b-splines and penalties. Statistical Science, 11(2):89–121, 1996. doi: 10.1214/ss/1038425655.
Piotr Fryzlewicz. Wild binary segmentation for multiple change-point detection. The Annals of Statistics, 42(6):2243–2281, 2014. doi: 10.1214/14-AOS1245.
Yutong Gao and Shuang Chen. Unsupervised functional data clustering based on adaptive weights. Open Journal of Statistics, 13(2):212–221, 2023. doi: 10.4236/ojs.2023.132011.
Jan Gertheiss, David Rütigamer, Bernard X. W. Liew, and Sonja Greven. Functional data analysis: An introduction and recent developments. Biometrical Journal, 66(7), 2024. doi: 10.1002/bimj.202300363. First published online: 27 September 2024.
Jeff Goldsmith, Sonja Greven, and Ciprian M. Crainiceanu. Corrected confidence bands for functional data using principal components. Biometrics, 69(1):41–51, 2013. doi: 10.1111/j.1541-0420.2012.01808.x. URL https://doi.org/10.1111/j.1541-0420.2012.01808.x.
DV Hinkley. Inference about the change-point in a sequence of random variables. Biometrika, 57(1):1–17, 1970.
Lajos Horváth and Piotr Kokoszka. Inference for functional data with applications. Springer Science & Business Media, 2012.
A. Huertas and R. Nevatia. Detecting changes in aerial views of man-made structures. Image and Vision Computing, 18(8):583–596, May 2000.
Julien Jacques and Cristian Preda. Functional data clustering: A survey. Advances in Data Analysis and Classification, 8(3):231–255, 2014. doi: 10.1007/s11634-013-0158-y.
Shuhao Jiao, Ngai Hang Chan, and Chun Yip Yau. Enhanced structural break detection in functional means. Statistica Sinica, 2022. doi: 10.5705/ss.202022.0312. Advance online publication.
D. Lu, P. Mausel, E. Brondízio, and E. Moran. Change detection techniques. International Journal of Remote Sensing, 25(12):2365–2401, 2004. doi: 10.1080/0143116031000139863.
Alexandre Lung-Yut-Fong, Céline Lévy-Leduc, and Olivier Cappé. Homogeneity and change-point detection tests for multivariate data using rank statistics. Journal de la Société Française de Statistique, 156(4):133–162, 2015. URL https://www.numdam.org/item/JSFS_2015__156_4_133_0/.
David S Matteson and Nicholas A James. A nonparametric approach for multiple change point analysis of multivariate data. Journal of the American Statistical Association, 109 (505):334–345, 2014.
Fabrizio Maturo, John Ferguson, Tonio Di Battista, and Viviana Ventre. A fuzzy functional k-means approach for monitoring italian regions according to health evolution over time. Soft Computing, 24(24):13741–13755, 2020. doi: 10.1007/s00500-019-04505-2.
R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam. Image change detection algorithms: A systematic survey. IEEE Transactions on Image Processing, 14(3):294–307, 2005.
James O. Ramsay and Bernard W. Silverman. Functional Data Analysis. Springer, New
York, 2nd edition, 2005. ISBN 9780387400808.
Norihito Tokushige, Shin Nakayama, and Takio Kurita. Crisp and fuzzy k-means clustering algorithms for multivariate functional data. IEICE Transactions on Information and Systems, E90-D(9):1336–1344, 2007.
Charles Truong, Laurent Oudre, and Nicolas Vayatis. Selective review of offline change point detection methods. Signal Processing, 167:107299, 2020.
Xingchi Wang, Hansheng Wang, and Hans-Georg Müller. Elastic depths for detecting shape anomalies in functional data. Biometrika, 109(1):165–182, 2022.
Hao Yan, Kamran Paynabar, and Jianjun Shi. Anomaly detection in images with smooth background via smooth-sparse decomposition. Technometrics, 59(1):102–114, 2015.
Ding Yuan and Chris D. Elvidge. Nalc land cover change detection pilot study: Washington d.c. area experiments. Remote Sensing of Environment, 66(2):166–178, 1998. doi: 10.1016/S0034-4257(98)00068-6. URL https://doi.org/10.1016/S0034-4257(98)00068-6.
Jesin Zakaria, Abdullah Mueen, and Eamonn Keogh. Clustering time series using unsupervised shapelets. In 2012 IEEE 12th International Conference on Data Mining, pages 785–794. IEEE, 2012. doi: 10.1109/ICDM.2012.121.
Mimi Zhang and Andrew Parnell. Review of clustering methods for functional data. ACM Transactions on Knowledge Discovery from Data, 17(7):1–34, 2023. doi: 10.1145/3581789.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98262-
dc.description.abstract在函數型資料的轉折點分析中,分群是一種常見用以揭示資料結構變化的位置的方法。本方法提出結合模糊分群與移動窗口的變點偵測方法,旨在有效辨識資料中的結構改變。我們設計了兩種方法:第一種結合分群結果與隸屬值標準差的變異,用以偵測潛在轉折點,第二種則利用單邊窗口分群所獲得的隸屬值分佈,透過Kullback–Leibler 散度衡量差異程度,進一步找出變化位置。上述兩種方法皆透過分群結果與結構變異指標的交集,篩選出真實轉折點。此外,我們也提出投票機制來穩定分群數的選擇。透過五種模擬情境的驗證,本方法在面對變異幅度不一致與資料異質性時,仍展現良好的穩健性。最後,本研究亦應用於高維度空氣污染資料,顯示該方法在非函數型資料上仍具實用性。未來可進一步擴展至即時資料的應用,並探討其他分群方法,以提升於不同資料類型下的適應能力。zh_TW
dc.description.abstractClustering is a common approach in change point analysis for functional data, often used to identify structural variations within datasets. This paper proposes a novel method that integrates fuzzy clustering with a sliding window framework to detect potential change points. We develop two approaches: the first combines changes in cluster assignments with variations in the standard deviation of membership values to identify candidate change points. The second utilizes membership distributions derived from onesided window clustering and applies the Kullback–Leibler divergence to quantify differences, thereby locating mean shifts. Both approaches filter true change points by intersecting clustering results with indicators of structural change. Additionally, we introduce a voting-based mechanism to stabilize the selection of the number of clusters. Through extensive simulations under five scenarios, the proposed method demonstrates strong robustness, effectively handling uneven shift magnitudes and heterogeneous data structures. Finally, an empirical study using high dimensional air pollution data further illustrates the method's practical applicability. Future research may extend this framework to online settings and explore alternative clustering techniques to enhance adaptability across various data types.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-31T16:09:07Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-31T16:09:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要iii
Abstract v
Contents vii
Chapter 1 Introduction 1
Chapter 2 Proposed method 7
2.1 Fuzzy C-Means (FCM) . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Weighted FCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 The Proposed Fuzzy Clustering-Based Change Point Detection Method 15
2.4 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Chapter 3 Simulation results and real data 25
3.1 Evaluation Criteria and Comparative Methods . . . . . . . . . . . . . 25
3.2 Scenarios I and II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Scenario III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Scenario IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Scenario V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Chapter 4 Conclusion 45
References 47
-
dc.language.isoen-
dc.subject函數型數據zh_TW
dc.subject轉折點分析zh_TW
dc.subject模糊分群zh_TW
dc.subjectFuzzy C-Meansen
dc.subjectChange Point Detectionen
dc.subjectFunctional Dataen
dc.title結合鄰近資訊與模糊分群之函數型轉折點偵測方法zh_TW
dc.titleFunctional Change Point Detection via Neighboring Assisted Fuzzy Clusteringen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林書勤;蔡嘉仁zh_TW
dc.contributor.oralexamcommitteeShu-Chin Lin;Jia-Ren Tsaien
dc.subject.keyword轉折點分析,函數型數據,模糊分群,zh_TW
dc.subject.keywordChange Point Detection,Functional Data,Fuzzy C-Means,en
dc.relation.page51-
dc.identifier.doi10.6342/NTU202502651-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-30-
dc.contributor.author-college理學院-
dc.contributor.author-dept統計與數據科學研究所-
dc.date.embargo-lift2030-07-27-
顯示於系所單位:統計與數據科學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
820.17 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved