請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98261完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊國鑫 | zh_TW |
| dc.contributor.advisor | Kuo-Hsin Yang | en |
| dc.contributor.author | 李宥安 | zh_TW |
| dc.contributor.author | You-An Li | en |
| dc.date.accessioned | 2025-07-31T16:08:54Z | - |
| dc.date.available | 2025-08-01 | - |
| dc.date.copyright | 2025-07-31 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-28 | - |
| dc.identifier.citation | AASHTO. (2020). Standard method of test for moisture-density relations of soils using a 4.54-kg (10-lb) rammer and a 457-mm (18-in.) drop (AASHTO T180-20). American Association of State Highway and Transportation Officials.
ASTM International. (2012). Standard test methods for laboratory compaction characteristics of soil using modified effort (ASTM D1557-12). ASTM International. ASTM International. (2014). Standard test methods for specific gravity of soil solids by water pycnometer (ASTM D854-14). ASTM International. ASTM International. (2015). Standard test method for unconsolidated-undrained triaxial compression test on cohesive soils (ASTM D2850-15). ASTM International. ASTM International. (2015). Standard test method for determining tensile properties of geogrids by the single or multi-rib tensile method (ASTM D6637/D6637M-15). ASTM International. ASTM International. (2017). Standard test methods for liquid limit, plastic limit, and plasticity index of soils (ASTM D4318-17e1). ASTM International. Bureau of Standards, Metrology and Inspection (BSMI). (n.d.). CNS 5090: 比重試驗法. Ministry of Economic Affairs, Taiwan. Bureau of Standards, Metrology and Inspection (BSMI). (n.d.). CNS 11776: 土壤粒徑分析試驗法. Ministry of Economic Affairs, Taiwan. Bureau of Standards, Metrology and Inspection (BSMI). (n.d.). CNS 5087: 液性限度試驗法. Ministry of Economic Affairs, Taiwan. Bureau of Standards, Metrology and Inspection (BSMI). (n.d.). CNS 5088: 塑性限度試驗法. Ministry of Economic Affairs, Taiwan. Bureau of Standards, Metrology and Inspection (BSMI). (n.d.). CNS 11777-1: 改良夯實試驗法. Ministry of Economic Affairs, Taiwan. Duncan, J. M., & Chang, C. Y. (1970). Nonlinear analysis of stress and strain in soils. Journal of the Soil Mechanics and Foundations Division, ASCE, 96(5), 1629–1653. FHWA. (2000). Mechanically stabilized earth walls and reinforced soil slopes design and construction guidelines (FHWA-NHI-00-043). Federal Highway Administration. FHWA. (2009). Shored mechanically stabilized earth (SMSE) wall systems design guidelines (FHWA-HIF-17-004). Federal Highway Administration. Janbu, N. (1963). Soil compressibility as determined by oedometer and triaxial tests. In Proc. European Conference on Soil Mechanics and Foundation Engineering (Vol. 1, pp. 19–25). Kondner, R. L., & Zelasko, J. S. (1963). Hyperbolic stress-strain response: Cohesive soils. Journal of the Soil Mechanics and Foundations Division, ASCE, 89(1), 115–143. [PLAXIS. (2018). PLAXIS 2D Reference Manual (2018 ed.). Bentley Systems. PLAXIS. (2018). PLAXIS 2D Material Models Manual (2018 ed.). Bentley Systems. Ren, F. F., Xu, H., Ji, Y. J., Huang, Q. Q., & Tian, X. (2022). Experimental study on the mechanical behavior of shored mechanically stabilized earth walls for widening existing reinforced embankments. Geotextiles and Geomembranes, 50(4), 737–750. Ren, J., Wang, Y., & Chen, R. (2019). Numerical comparison on deformation characteristics of reinforced retaining walls with different reinforcement lengths. Geotextiles and Geomembranes, 47(6), 745–757. Schanz, T., Vermeer, P. A., & Bonnier, P. G. (1999). The hardening soil model: Formulation and verification. In Beyond 2000 in Computational Geotechnics (pp. 281–296). Balkema. Yang, K. H., & Ching, J. Y. (2011). Reliability-based design for external stability of reinforced slopes. Engineering Geology, 117(3–4), 140–152. Yang, K. H., & Liu, C. N. (2007). Finite element analysis of earth pressures for MSE walls. Geotextiles and Geomembranes, 25(2), 111–123. Yang, K. H., Chen, J. T., & Lin, C. Y. (2011). Location of failure plane and design considerations for narrow geosynthetic reinforced soil walls. Geotextiles and Geomembranes, 29(6), 561–571. Yang, K. H., Chien, S. Y., & Liu, Y. F. (2024). Performance analysis of shored mechanically stabilized earth walls with wrapped facing using numerical simulations. Geotextiles and Geomembranes, 52, 121–137. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98261 | - |
| dc.description.abstract | 本研究針對連接穩定面之窄加勁擋土牆進行現地案例分析與數值模擬,探討受限空間條件下加勁牆體之變形行為與破壞機制。研究案例位於新竹科學園區,牆高約8公尺,採用加勁材與既有RC廠房結合之支撐系統,實測資料顯示牆體於滲水事件後發生沉陷與變形。試驗階段取得回填土與加勁材物理與力學性質,並以PLAXIS 2D建構數值模型,模擬完工階段與滲水階段之牆體行為,模型結果與監測資料具良好一致性。模擬觀察指出,連接型窄牆之破壞面呈雙線性特徵,受限加勁長度與尾端固定效應造成上部應力集中,下部則顯受力遞減。研究結果與文獻理論相符,並提出加勁材配置、破壞角度修正與錨栓用量優化等具體設計建議。本研究顯示,透過合理參數校正與分階模擬,可有效預測窄加勁牆在特殊條件下之行為,對日後設計與監測策略具參考價值。 | zh_TW |
| dc.description.abstract | This study investigates the deformation behavior and failure mechanism of a narrow geosynthetic-reinforced soil (GRS) wall with reinforcement connected to a stable facing. The case is located in the Hsinchu Science Park, where the retaining wall, approximately 8 meters in height, adopts a composite support system with geosynthetic reinforcements chemically anchored to an adjacent RC factory wall. Field monitoring revealed post-construction settlement and deformation induced by water infiltration. Laboratory tests were conducted to determine the physical and mechanical properties of the backfill soil and reinforcement. A numerical model was established using PLAXIS 2D to simulate the wall behavior at the end of construction and under infiltration conditions. The simulation results showed good agreement with field data. The plastic failure surface exhibited a bilinear pattern, characterized by stress concentration in the upper reinforcements due to the fixed-end connection, and reduced tensile forces in the lower reinforcements. The findings align with existing literature and support design recommendations, including modified failure angle, optimized reinforcement layout, and reduced anchor usage. This study demonstrates that phase-based numerical simulation with calibrated parameters can effectively predict the behavior of narrow GRS walls under constrained conditions, offering practical reference for future design and monitoring. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-31T16:08:54Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-31T16:08:54Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 I
摘要 II ABSTRACT III 目次 IV 圖次 VI 表次 XI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究架構與流程 4 第二章 文獻回顧 6 2.1 加勁擋土牆之設計基礎與穩定性理論 7 2.2 加勁材與穩定牆連接對結構行為的影響 9 2.3 窄加勁擋土牆之破壞機制與變形特性 12 2.4 窄加勁擋土牆之數值模擬分析與參數研究 15 2.5 窄加勁擋土牆之穩定性設計準則與可靠度分析 18 第三章 案例背景與監測系統配置 20 3.1 工程專案流程與整體概況 21 3.2 監測系統配置與感測項目 24 3.3 監測資料觀察與行為初步分析 27 第四章 參數取得及試驗方法 30 4.1 土壤物性試驗 30 4.1.1 比重試驗 30 4.1.2 土壤粒徑分佈試驗 32 4.1.3 阿太保限度試驗 36 4.1.4 改良夯實試驗 40 4.2 土壤剪力強度試驗 44 4.2.1 三軸不飽和不壓密不排水試驗 44 4.2.2 三軸飽和不壓密不排水試驗 50 4.3 加勁材料試驗介紹 57 4.3.1 加勁材料張力試驗 57 第五章 數值模型分析及驗證 59 5.1 數值分析方法 59 5.1.1 分析軟體 59 5.1.2 分析模式 62 5.1.3 回填土組成律模型 65 5.1.4 界面元素 71 5.2 輸入參數及校正 73 5.2.1 回填土參數校正 73 5.2.2 加勁材參數校正 80 5.3 數值模型建置 82 5.3.1 初始幾何與邊界條件設定 82 5.3.2 分階建造過程模擬及元素設定 84 5.4 模型驗證與監測資料比對 86 5.4.1 變形行為之模型驗證 86 5.4.2 力學行為之模型驗證 87 5.4.3 力學機制討論 92 5.5 設計建議 97 5.5.1 數值分析破壞面和規範值之比較 97 5.5.2 加勁材受力和規範計算值之比較 99 5.5.3 針對錨栓用量之設計建議 101 第六章 結論及建議 105 6.1 結論 105 6.2 建議 106 參考文獻 107 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 地工合成材 | zh_TW |
| dc.subject | 窄加勁擋土牆 | zh_TW |
| dc.subject | 數值模擬 | zh_TW |
| dc.subject | 破壞機制 | zh_TW |
| dc.subject | 錨栓設計 | zh_TW |
| dc.subject | 張力分布分析 | zh_TW |
| dc.subject | Numerical simulation | en |
| dc.subject | Geosynthetics | en |
| dc.subject | Narrow geosynthetic-reinforced soil wall | en |
| dc.subject | Tensile force distribution | en |
| dc.subject | Anchor design | en |
| dc.subject | Failure mechanism | en |
| dc.title | 加勁材後端連接穩定界面之窄加勁擋土牆的有限元素建模及案例分析 | zh_TW |
| dc.title | Narrow Geosynthetic-Reinforced Soil Wall with Connections to Shoring Wall:Field Monitoring and Numerical Analyses | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 何嘉浚;周南山;蔣榮 | zh_TW |
| dc.contributor.oralexamcommittee | Chia-Chun HO;Nelson N. S. Chou;Jung Chiang | en |
| dc.subject.keyword | 地工合成材,窄加勁擋土牆,數值模擬,破壞機制,錨栓設計,張力分布分析, | zh_TW |
| dc.subject.keyword | Geosynthetics,Narrow geosynthetic-reinforced soil wall,Numerical simulation,Failure mechanism,Anchor design,Tensile force distribution, | en |
| dc.relation.page | 109 | - |
| dc.identifier.doi | 10.6342/NTU202502589 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-30 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-08-01 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 16.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
