Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98255
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳建錦zh_TW
dc.contributor.advisorChien Chin Chenen
dc.contributor.author陳沛竹zh_TW
dc.contributor.authorPei-Chu Chenen
dc.date.accessioned2025-07-31T16:07:31Z-
dc.date.available2025-08-01-
dc.date.copyright2025-07-31-
dc.date.issued2025-
dc.date.submitted2025-07-23-
dc.identifier.citation[1] N. V. Alluri and N. Dheeraj Krishna. Multi Modal Analysis of memes for Sentiment extraction. In 2021 Sixth International Conference on Image Information Processing (ICIIP), pages 213–217, Shimla, India, Nov. 2021. IEEE.
[2] R. Cao, R. K.-W. Lee, W.-H. Chong, and J. Jiang. Prompting for Multimodal Hateful Meme Classification. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 321–332, Abu Dhabi, United Arab Emirates, 2022. Association for Computational Linguistics.
[3] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, Y. Li, X. Wang, M. Dehghani, S. Brahma, A. Webson, S. S. Gu, Z. Dai, M. Suzgun, X. Chen, A. Chowdhery, A. Castro-Ros, M. Pellat, K. Robinson, D. Valter, S. Narang, G. Mishra, A. Yu, V. Zhao, Y. Huang, A. Dai, H. Yu, S. Petrov, E. H. Chi, J. Dean, J. Devlin, A. Roberts, D. Zhou, Q. V. Le, and J. Wei. Scaling Instruction-Finetuned Language Models. Journal of Machine Learning Research, 25(70):1–53, 2024.
[4] T. Deshpande and N. Mani. An Interpretable Approach to Hateful Meme Detection. In Proceedings of the 2021 International Conference on Multimodal Interaction, pages 723–727, Montréal QC Canada, Oct. 2021. ACM.
[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In J. Burstein, C. Doran, and T. Solorio, editors, Proceedings of the 2019 Conference of the North Ameri- can Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.
[6] A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Let- man, A. Mathur, A. Schelten, A. Vaughan, A. Yang, A. Fan, A. Goyal, A. Hartshorn, A. Yang, A. Mitra, A. Sravankumar, A. Korenev, A. Hinsvark, A. Rao, A. Zhang, A. Rodriguez, A. Gregerson, A. Spataru, B. Roziere, B. Biron, B. Tang, B. Chern, C. Caucheteux, C. Nayak, C. Bi, C. Marra, C. McConnell, C. Keller, C. Touret, C. Wu, C. Wong, C. C. Ferrer, C. Nikolaidis, D. Allonsius, D. Song, D. Pintz, D. Livshits, D. Wyatt, D. Esiobu, D. Choudhary, D. Mahajan, D. Garcia-Olano, D. Perino, D. Hupkes, E. Lakomkin, E. AlBadawy, E. Lobanova, E. Dinan, E. M. Smith, F. Radenovic, F. Guzmán, F. Zhang, G. Synnaeve, G. Lee, G. L. Ander- son, G. Thattai, G. Nail, G. Mialon, G. Pang, G. Cucurell, H. Nguyen, H. Kore- vaar, H. Xu, H. Touvron, I. Zarov, I. A. Ibarra, I. Kloumann, I. Misra, I. Evtimov, J. Zhang, J. Copet, J. Lee, J. Geffert, J. Vranes, J. Park, J. Mahadeokar, J. Shah, J. van der Linde, J. Billock, J. Hong, J. Lee, J. Fu, J. Chi, J. Huang, J. Liu, J. Wang, J. Yu, J. Bitton, J. Spisak, J. Park, J. Rocca, J. Johnstun, J. Saxe, J. Jia, K. V. Al- wala, K. Prasad, K. Upasani, K. Plawiak, K. Li, K. Heafield, K. Stone, K. El-Arini, K. Iyer, K. Malik, K. Chiu, K. Bhalla, K. Lakhotia, L. Rantala-Yeary, L. van der Maaten, L. Chen, L. Tan, L. Jenkins, L. Martin, L. Madaan, L. Malo, L. Blecher, L. Landzaat, L. de Oliveira, M. Muzzi, M. Pasupuleti, M. Singh, M. Paluri, M. Kar- das, M. Tsimpoukelli, M. Oldham, M. Rita, M. Pavlova, M. Kambadur, M. Lewis, M. Si, M. K. Singh, M. Hassan, N. Goyal, N. Torabi, N. Bashlykov, N. Bo- goychev, N. Chatterji, N. Zhang, O. Duchenne, O. Çelebi, P. Alrassy, P. Zhang, P. Li, P. Vasic, P. Weng, P. Bhargava, P. Dubal, P. Krishnan, P. S. Koura, P. Xu, Q. He, Q. Dong, R. Srinivasan, R. Ganapathy, R. Calderer, R. S. Cabral, R. Sto- jnic, R. Raileanu, R. Maheswari, R. Girdhar, R. Patel, R. Sauvestre, R. Polidoro, R. Sumbaly, R. Taylor, R. Silva, R. Hou, R. Wang, S. Hosseini, S. Chennabasappa, S. Singh, S. Bell, S. S. Kim, S. Edunov, S. Nie, S. Narang, S. Raparthy, S. Shen, S. Wan, S. Bhosale, S. Zhang, S. Vandenhende, S. Batra, S. Whitman, S. Sootla, S. Collot, S. Gururangan, S. Borodinsky, T. Herman, T. Fowler, T. Sheasha, T. Geor- giou, T. Scialom, T. Speckbacher, T. Mihaylov, T. Xiao, U. Karn, V. Goswami, V. Gupta, V. Ramanathan, V. Kerkez, V. Gonguet, V. Do, V. Vogeti, V. Al- biero, V. Petrovic, W. Chu, W. Xiong, W. Fu, W. Meers, X. Martinet, X. Wang, X. Wang, X. E. Tan, X. Xia, X. Xie, X. Jia, X. Wang, Y. Goldschlag, Y. Gaur, Y. Babaei, Y. Wen, Y. Song, Y. Zhang, Y. Li, Y. Mao, Z. D. Coudert, Z. Yan, Z. Chen, Z. Papakipos, A. Singh, A. Srivastava, A. Jain, A. Kelsey, A. Shajn- feld, A. Gangidi, A. Victoria, A. Goldstand, A. Menon, A. Sharma, A. Boesen- berg, A. Baevski, A. Feinstein, A. Kallet, A. Sangani, A. Teo, A. Yunus, A. Lupu, A. Alvarado, A. Caples, A. Gu, A. Ho, A. Poulton, A. Ryan, A. Ramchandani, A. Dong, A. Franco, A. Goyal, A. Saraf, A. Chowdhury, A. Gabriel, A. Bharambe, A. Eisenman, A. Yazdan, B. James, B. Maurer, B. Leonhardi, B. Huang, B. Loyd, B. De Paola, B. Paranjape, B. Liu, B. Wu, B. Ni, B. Hancock, B. Wasti, B. Spence, B. Stojkovic, B. Gamido, B. Montalvo, C. Parker, C. Burton, C. Mejia, C. Liu, C. Wang, C. Kim, C. Zhou, C. Hu, C.-H. Chu, C. Cai, C. Tindal, C. Feichtenhofer, C. Gao, D. Civin, D. Beaty, D. Kreymer, D. Li, D. Adkins, D. Xu, D. Testuggine, D. David, D. Parikh, D. Liskovich, D. Foss, D. Wang, D. Le, D. Holland, E. Dowl- ing, E. Jamil, E. Montgomery, E. Presani, E. Hahn, E. Wood, E.-T. Le, E. Brinkman, E. Arcaute, E. Dunbar, E. Smothers, F. Sun, F. Kreuk, F. Tian, F. Kokkinos, F. Oz- genel, F. Caggioni, F. Kanayet, F. Seide, G. M. Florez, G. Schwarz, G. Badeer, G. Swee, G. Halpern, G. Herman, G. Sizov, Guangyi, Zhang, G. Lakshminarayanan, H. Inan, H. Shojanazeri, H. Zou, H. Wang, H. Zha, H. Habeeb, H. Rudolph, H. Suk, H. Aspegren, H. Goldman, H. Zhan, I. Damlaj, I. Molybog, I. Tufanov, I. Leon- tiadis, I.-E. Veliche, I. Gat, J. Weissman, J. Geboski, J. Kohli, J. Lam, J. Asher, J.-B. Gaya, J. Marcus, J. Tang, J. Chan, J. Zhen, J. Reizenstein, J. Teboul, J. Zhong, J. Jin, J. Yang, J. Cummings, J. Carvill, J. Shepard, J. McPhie, J. Torres, J. Ginsburg, J. Wang, K. Wu, K. H. U, K. Saxena, K. Khandelwal, K. Zand, K. Matosich, K. Veer- araghavan, K. Michelena, K. Li, K. Jagadeesh, K. Huang, K. Chawla, K. Huang, L. Chen, L. Garg, L. A, L. Silva, L. Bell, L. Zhang, L. Guo, L. Yu, L. Moshkovich, L. Wehrstedt, M. Khabsa, M. Avalani, M. Bhatt, M. Mankus, M. Hasson, M. Lennie, M. Reso, M. Groshev, M. Naumov, M. Lathi, M. Keneally, M. Liu, M. L. Seltzer, M. Valko, M. Restrepo, M. Patel, M. Vyatskov, M. Samvelyan, M. Clark, M. Macey, M. Wang, M. J. Hermoso, M. Metanat, M. Rastegari, M. Bansal, N. Santhanam, N. Parks, N. White, N. Bawa, N. Singhal, N. Egebo, N. Usunier, N. Mehta, N. P. Laptev, N. Dong, N. Cheng, O. Chernoguz, O. Hart, O. Salpekar, O. Kalinli, P. Kent, P. Parekh, P. Saab, P. Balaji, P. Rittner, P. Bontrager, P. Roux, P. Dol- lar, P. Zvyagina, P. Ratanchandani, P. Yuvraj, Q. Liang, R. Alao, R. Rodriguez, R. Ayub, R. Murthy, R. Nayani, R. Mitra, R. Parthasarathy, R. Li, R. Hogan, R. Bat- tey, R. Wang, R. Howes, R. Rinott, S. Mehta, S. Siby, S. J. Bondu, S. Datta, S. Chugh, S. Hunt, S. Dhillon, S. Sidorov, S. Pan, S. Mahajan, S. Verma, S. Yamamoto, S. Ra- maswamy, S. Lindsay, S. Feng, S. Lin, S. C. Zha, S. Patil, S. Shankar, S. Zhang, S. Wang, S. Agarwal, S. Sajuyigbe, S. Chintala, S. Max, S. Chen, S. Kehoe, S. Sat- terfield, S. Govindaprasad, S. Gupta, S. Deng, S. Cho, S. Virk, S. Subramanian, S. Choudhury, S. Goldman, T. Remez, T. Glaser, T. Best, T. Koehler, T. Robin- son, T. Li, T. Zhang, T. Matthews, T. Chou, T. Shaked, V. Vontimitta, V. Ajayi, V. Montanez, V. Mohan, V. S. Kumar, V. Mangla, V. Ionescu, V. Poenaru, V. T. Mi- hailescu, V. Ivanov, W. Li, W. Wang, W. Jiang, W. Bouaziz, W. Constable, X. Tang, X. Wu, X. Wang, X. Wu, X. Gao, Y. Kleinman, Y. Chen, Y. Hu, Y. Jia, Y. Qi, Y. Li, Y. Zhang, Y. Zhang, Y. Adi, Y. Nam, Yu, Wang, Y. Zhao, Y. Hao, Y. Qian, Y. Li, Y. He, Z. Rait, Z. DeVito, Z. Rosnbrick, Z. Wen, Z. Yang, Z. Zhao, and Z. Ma. The Llama 3 Herd of Models, 2024. Version Number: 3.
[7] M. S. Hee, R. K.-W. Lee, and W.-H. Chong. On Explaining Multimodal Hateful Meme Detection Models. In Proceedings of the ACM Web Conference 2022, pages 3651–3655, Virtual Event, Lyon France, Apr. 2022. ACM.
[8] A. Hu and S. Flaxman. Multimodal Sentiment Analysis To Explore the Structure of Emotions. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 350–358, London United Kingdom, July 2018. ACM.
[9] E. J. Hu, yelong shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. LoRA: Low-rank adaptation of large language models. In International Conference on Learning Representations, 2022.
[10] J. Huang and K. C.-C. Chang. Towards Reasoning in Large Language Models: A Survey. In Findings of the Association for Computational Linguistics: ACL 2023, pages 1049–1065, Toronto, Canada, 2023. Association for Computational Linguis- tics.
[11] N. J. Jackson. Understanding memetic media and collective identity through streamer persona on Twitch.TV. Persona Studies, 6(2):69–87, Oct. 2020. Place: Burwood, VIC, Australia Publisher: Deakin University - School of Communication and Creative Arts.
[12] Z. Jiang, F. F. Xu, J. Araki, and G. Neubig. How Can We Know What Language Models Know? Transactions of the Association for Computational Linguistics, 8:423–438, Dec. 2020.
[13] D. Kiela, H. Firooz, A. Mohan, V. Goswami, A. Singh, P. Ringshia, and D. Testug- gine. The Hateful Memes Challenge: Detecting Hate Speech in Multimodal Memes. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Ad- vances in Neural Information Processing Systems, volume 33, pages 2611–2624. Curran Associates, Inc., 2020.
[14] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa. Large Language Models are Zero-Shot Reasoners. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35, pages 22199–22213. Curran Associates, Inc., 2022.
[15] R. K.-W. Lee, R. Cao, Z. Fan, J. Jiang, and W.-H. Chong. Disentangling Hate in Online Memes. In Proceedings of the 29th ACM International Conference on Mul- timedia, pages 5138–5147, Virtual Event China, Oct. 2021. ACM.
[16] A. Lewkowycz, A. J. Andreassen, D. Dohan, E. Dyer, H. Michalewski, V. V. Ra- masesh, A. Slone, C. Anil, I. Schlag, T. Gutman-Solo, Y. Wu, B. Neyshabur, G. Gur- Ari, and V. Misra. Solving Quantitative Reasoning Problems with Language Mod- els. In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in Neural Information Processing Systems, 2022.
[17] C. Liu, G. Geigle, R. Krebs, and I. Gurevych. FigMemes: A Dataset for Figura- tive Language Identification in Politically-Opinionated Memes. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 7069–7086, Abu Dhabi, United Arab Emirates, 2022. Association for Computational Linguistics.
[18] H. Liu, C. Li, Y. Li, B. Li, Y. Zhang, S. Shen, and Y. J. Lee. LLaVA-NeXT: Improved reasoning, OCR, and world knowledge, Jan. 2024.
[19] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle- moyer, and V. Stoyanov. RoBERTa: A Robustly Optimized BERT Pretraining Ap- proach, 2019. Version Number: 1.
[20] H. T. Ng, S. M. Wu, T. Briscoe, C. Hadiwinoto, R. H. Susanto, and C. Bryant. The CoNLL-2014 Shared Task on Grammatical Error Correction. In Proceedings of the Eighteenth Conference on Computational Natural Language Learning: Shared Task, pages 1–14, Baltimore, Maryland, 2014. Association for Computational Linguistics.
[21] X. Pi, Q. Liu, B. Chen, M. Ziyadi, Z. Lin, Q. Fu, Y. Gao, J.-G. Lou, and W. Chen. Reasoning Like Program Executors. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 761–779, Abu Dhabi, United Arab Emirates, 2022. Association for Computational Linguistics.
[22] N. Prakash, H. Wang, N. K. Hoang, M. S. Hee, and R. K.-W. Lee. PromptMTopic: Unsupervised Multimodal Topic Modeling of Memes using Large Language Mod- els. In Proceedings of the 31st ACM International Conference on Multimedia, pages 621–631, Ottawa ON Canada, Oct. 2023. ACM.
[23] S. Pramanick, D. Dimitrov, R. Mukherjee, S. Sharma, M. S. Akhtar, P. Nakov, and T. Chakraborty. Detecting Harmful Memes and Their Targets. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 2783–2796, Online, 2021. Association for Computational Linguistics.
[24] R. R. Pranesh and A. Shekhar. MemeSem:A Multi-modal Framework for Senti- mental Analysis of Meme via Transfer Learning. In 4th Lifelong Machine Learning Workshop at ICML 2020, 2020.
[25] M. R. Qorib and H. T. Ng. System Combination via Quality Estimation for Grammat- ical Error Correction. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 12746–12759, Singapore, 2023. Association for Computational Linguistics.
[26] N. Reimers and I. Gurevych. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natu- ral Language Processing (EMNLP-IJCNLP), pages 3980–3990, Hong Kong, China, 2019. Association for Computational Linguistics.
[27] C. Sharma, D. Bhageria, W. Scott, S. Pykl, A. Das, T. Chakraborty, V. Pulabaigari, and B. Gambäck. SemEval-2020 Task 8: Memotion Analysis- the Visuo-Lingual Metaphor! In Proceedings of the Fourteenth Workshop on Semantic Evaluation, pages 759–773, Barcelona (online), 2020. International Committee for Computa- tional Linguistics.
[28] S. Sharma, S. Agarwal, T. Suresh, P. Nakov, M. S. Akhtar, and T. Chakraborty. What Do You MEME? Generating Explanations for Visual Semantic Role Labelling in Memes. Proceedings of the AAAI Conference on Artificial Intelligence, 37(8):9763– 9771, June 2023.
[29] T. Shin, Y. Razeghi, R. L. Logan Iv, E. Wallace, and S. Singh. AutoPrompt: Elicit- ing Knowledge from Language Models with Automatically Generated Prompts. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4222–4235, Online, 2020. Association for Computa- tional Linguistics.
[30] X. Sun, X. Li, J. Li, F. Wu, S. Guo, T. Zhang, and G. Wang. Text Classification via Large Language Models. In Findings of the Association for Computational Linguis- tics: EMNLP 2023, pages 8990–9005, Singapore, 2023. Association for Computa- tional Linguistics.
[31] S. Suryawanshi, B. R. Chakravarthi, M. Arcan, and P. Buitelaar. Multimodal Meme Dataset (MultiOFF) for Identifying Offensive Content in Image and Text. In R. Ku- mar, A. K. Ojha, B. Lahiri, M. Zampieri, S. Malmasi, V. Murdock, and D. Kadar, editors, Proceedings of the Second Workshop on Trolling, Aggression and Cyberbul- lying, pages 32–41, Marseille, France, May 2020. European Language Resources Association (ELRA).
[32] R. Taylor, M. Kardas, G. Cucurull, T. Scialom, A. Hartshorn, E. Saravia, A. Poulton, V. Kerkez, and R. Stojnic. Galactica: A Large Language Model for Science, 2022. Version Number: 1.
[33] J. Wei, X. Wang, D. Schuurmans, M. Bosma, b. ichter, F. Xia, E. Chi, Q. V. Le, and D. Zhou. Chain-of-Thought Prompting Elicits Reasoning in Large Language Mod- els. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, edi- tors, Advances in Neural Information Processing Systems, volume 35, pages 24824– 24837. Curran Associates, Inc., 2022.
[34] B. Xu, T. Li, J. Zheng, M. Naseriparsa, Z. Zhao, H. Lin, and F. Xia. MET-Meme: A Multimodal Meme Dataset Rich in Metaphors. In Proceedings of the 45th In- ternational ACM SIGIR Conference on Research and Development in Information Retrieval, pages 2887–2899, Madrid Spain, July 2022. ACM.
[35] P. Yu, T. Wang, O. Golovneva, B. AlKhamissi, S. Verma, Z. Jin, G. Ghosh, M. Diab, and A. Celikyilmaz. ALERT: Adapt Language Models to Reasoning Tasks. In Pro- ceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1055–1081, Toronto, Canada, 2023. Association for Computational Linguistics.
[36] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab, X. Li, X. V. Lin, T. Mihaylov, M. Ott, S. Shleifer, K. Shuster, D. Simig, P. S. Koura, A. Sridhar, T. Wang, and L. Zettlemoyer. OPT: Open Pre-trained Transformer Lan- guage Models, 2022. Version Number: 4.
[37] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang, J. Zhang, Z. Dong, Y. Du, C. Yang, Y. Chen, Z. Chen, J. Jiang, R. Ren, Y. Li, X. Tang, Z. Liu, P. Liu, J.-Y. Nie, and J.-R. Wen. A Survey of Large Language Models, 2023. Version Number: 16.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98255-
dc.description.abstract迷因能夠傳達情緒與幽默感,並在直播過程中有效促進觀眾之間的互動及參與。然而,目前鮮少有研究協助直播主在直播環境中適時展示合適的迷因。由於需整合多模態線索、具備對直播情境的細緻理解,在直播過程中即時推薦相關迷因是一項極具挑戰性的任務。為此,本研究提出一套創新的系統 StreaMeme(liveStream Meme category recommender),旨在於直播過程中為直播主推薦合適的迷因類別。StreaMeme 利用視覺語言模型(Visual Language Model, VLM)以分析迷因的幽默感與情緒,並透過大型語言模型(Large Language Model, LLM)理解直播情境,進而推理出推薦合適迷因類別之理由。本系統所訓練之大型語言模型,可有效利用直播主之口述內容與觀眾留言,生成迷因解釋及直播情境推理,並將其輸出用於迷因類別推薦。實驗結果顯示,在真實直播資料中,StreaMeme 之 F0.5 分數優於多種基準模型,包含直接使用 LLM 提示及微調後的語言模型。zh_TW
dc.description.abstractMemes convey sentiments and humor, and are useful to stimulate interactions and engagements of audiences during livestreaming. However, little research aids streamers in showing appropriate memes in livestreaming environments. Suggesting relevant memes timely in a livestream poses significant challenges as it requires multimodal cues and a nuanced understanding of the livestream context. This study proposes StreaMeme (liveStream Meme category recommender), a novel system that recommends meme categories for streamers during livestreaming. StreaMeme employs a visual language model (VLM) to analyze memes’ humor and sentiments, and digests livestreaming contexts with a large language model (LLM) to reason for meme recommendations. An LLM is fine-tuned to exploit streamer speeches, audience messages, meme explanations, and recommendation reasons; its output is then used for our meme category recommendation. Experimental results on real-world livestreams show that StreaMeme outperforms several baseline methods, including direct LLM prompting and fine-tuned language models in terms of the F0.5 scores.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-31T16:07:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-31T16:07:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員會審定書 i
謝辭 iii
摘要 v
Abstract vii
Contents ix
List of Figures xi
List of Tables xiii
Chapter 1 Introduction 1
Chapter 2 Related Work 5
2.1 Meme Analysis 5
2.2 Large Language Model Prompting and Reasoning 7
Chapter 3 Methodology 9
3.1 System Overview 9
3.2 Model Construction Phase 11
3.2.1 Livestream Preprocessing and Meme Category Annotation 11
3.2.2 Recommendation Reason Generation 11
3.2.3 Meme Explanation Generation 12
3.2.4 Large Language Model Fine-Tuning 13
3.2.5 Training Data Augmentation 14
3.3 Meme Category Recommendation Phase 15
Chapter 4 Experiments and Analysis 17
4.1 Dataset, Evaluation, and Metrics 17
4.2 Comparison with Baseline Methods 19
4.3 Effect of the Similarity Threshold 24
4.4 Effect of Meme Explanations 25
4.5 Recommendation Time Analysis 26
Chapter 5 Conclusion 27
References 29
-
dc.language.isoen-
dc.subject直播zh_TW
dc.subject大型語言模型zh_TW
dc.subject迷因推薦zh_TW
dc.subjectLarge Language Modelsen
dc.subjectLivestreamen
dc.subjectMeme Recommendationen
dc.titleStreaMeme:基於大型語言模型之直播迷因類別推薦zh_TW
dc.titleStreaMeme: Meme Category Recommendation of Livestreaming Using LLMsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張詠淳;陳孟彰zh_TW
dc.contributor.oralexamcommitteeYung-Chun Chang;Meng Chang Chenen
dc.subject.keyword直播,迷因推薦,大型語言模型,zh_TW
dc.subject.keywordLivestream,Meme Recommendation,Large Language Models,en
dc.relation.page38-
dc.identifier.doi10.6342/NTU202501843-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-24-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
dc.date.embargo-lift2025-08-01-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf1.95 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved