Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98253
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林政道zh_TW
dc.contributor.advisorCheng-Tao Linen
dc.contributor.author黃奕儒zh_TW
dc.contributor.authorI-Ju Huangen
dc.date.accessioned2025-07-31T16:07:05Z-
dc.date.available2025-08-01-
dc.date.copyright2025-07-31-
dc.date.issued2025-
dc.date.submitted2025-07-25-
dc.identifier.citation何春蓀 (1986)臺灣地質概論: 臺灣地質圖說明書
林政道、劉以誠、郭礎嘉 (2024) 臺灣高海拔山區草原生態系調查與監測-第4次調查(2/4) 農業部林業及自然保育署113年度科技計畫研究報告
星野卓二、正木智美 (2011)日本カヤツリグサ科植物図譜。平凡社
陳志輝、廖顯淳、林哲宇、葉修溢、吳聖傑 (2017) 台灣原生植物全圖鑑第三卷:禾本科—溝繁縷科
張石角 (1995)雪霸國家公園武稜地區災害敏感區之調查與防範之研究。國家公園學報 6(1): 1-24。
許晃雄、王嘉琪、陳正達、李明旭、詹士樑 (2024)國家氣候變遷科學報告2024:現象、衝擊與調適[許晃雄、李明旭 主編]。國家科學及技術委員會與環境部。
黃明萬、潘以文、廖志中 (2014)玉山國家公園玉山地體構造與地質演變-第1年地質地層與區域構造調查。內政部營建署玉山國家公園管理處。
劉和義、劉以誠 (2010)高海拔山區草原生態系動態調查。行政院農業委員會林務局。
歐辰雄. (2002)雪霸國家公園植群生態調查—大雪山地區。內政部營建署雪霸國家公園管理處九十一年度研究報告。
Abdaladze, O. (2015). Sensitive alpine plant communities to the global environmental changes (Kazbegi Region, the Central Great Caucasus). American Journal of Environmental Protection, 4(3). https://doi.org/10.11648/j.ajep.s.2015040301.25
Basnett, S., & Devy, S. M. (2021). Phenology determines leaf functional traits across
species in the Sikkim Himalaya. Alpine Botany, 131(1), 63–72. https://doi.org/10.1007/s00035-020-00244-5
Blenkinsop, S., Alves, L. M., & Smith, A. J. P. (2021). Climate change increases extreme rainfall and the chance of floods. Zenodo. https://doi.org/10.5281/zenodo.4779119
Blumenthal, D. M., Mueller, K. E., Kray, J. A., Ocheltree, T. W., Augustine, D. J., & Wilcox, K. R. (2020). Traits link drought resistance with herbivore defence and plant economics in semi-arid grasslands: The central roles of phenology and leaf dry matter content. Journal of Ecology, 108(6), 2336–2351. https://doi.org/10.1111/1365-2745.13454
Chen, J.-J., Sun, Y., Kopp, K., Oki, L., Jones, S. B., & Hipps, L. (2022). Effects of water availability on leaf trichome density and plant growth and development of Shepherdia×utahensis. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.855858
Colwell, R. K., Brehm, G., CardelúS, C. L., Gilman, A. C., & Longino, J. T. (2008). Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science, 322(5899), 258-261. https://doi.org/10.1126/science.1162547
Cui, H. J., Töpper, J. P., Yang, Y., Vandvik, V., & Wang, G. X. (2018). Plastic population effects and conservative leaf traits in a reciprocal transplant experiment simulating climate warming in the Himalayas. Frontiers in Plant Science, 9. https://doi.org/ARTN 106910.3389/fpls.2018.01069
De Boeck, H. J., Bassin, S., Verlinden, M., Zeiter, M., & Hiltbrunner, E. (2016). Simulated heat waves affected alpine grassland only in combination with drought. New Phytologist, 209(2), 531–541. https://doi.org/10.1111/nph.13601
De Boeck, H. J., Hiltbrunner, E., Verlinden, M., Bassin, S., & Zeiter, M. (2018). Legacy effects of climate extremes in alpine grassland. Frontiers in Plant Science, 9. https://doi.org/ARTN 158610.3389/fpls.2018.01586
Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, P. B., Moles, A. T., Dickie, J., Gillison, A. N., Zanne, A. E., Gorné, L. D. (2016). The global spectrum of plant form and function. Nature, 529(7585), 167–171. https://doi.org/10.1038/nature16489
Domínguez, E., Cuartero, J., & Heredia, A. (2011). An overview on plant cuticle biomechanics. Plant Science, 181(2), 77–84. https://doi.org/10.1016/j.plantsci.2011.04.016
Dong, N., Prentice, I. C., Wright, I. J., Evans, B. J., Togashi, H. F., Caddy-Retalic, S., McInerney, F. A., Sparrow, B., Leitch, E., & Lowe, A. J. (2020). Components of leaf-trait variation along environmental gradients. New Phytologist, 228(1), 82–94. https://doi.org/10.1111/nph.16558
Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Björk, R. G., Bjorkman, A. D., Callaghan, T. V., Collier, L. S., Cooper, E. J., Cornelissen, J. H. C., Day, T. A., Fosaa, A. M., Gould, W. A., Grétarsdóttir, J., Harte, J., Hermanutz, L., Hik, D. S., Hofgaard, A., Jarrad, F., Jónsdóttir, I. S.,Wookey, P. A. (2012). Global assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and time. Ecology Letters, 15(2), 164–175. https://doi.org/10.1111/j.1461-0248.2011.01716.x
Eviner, V. T., & Chapin, F. S. (2003). Functional matrix: A conceptual framework for predicting multiple plant effects on ecosystem processes. Annual Review of Ecology Evolution and Systematics, 34, 455–485. https://doi.org/10.1146/annurev.ecolsys.34.011802.132342
Fang, Y. J., & Xiong, L. Z. (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 72(4), 673–689. https://doi.org/10.1007/s00018-014-1767-0
Gallagher, R. V., Allen, S., & Wright, I. J. (2019). Safety margins and adaptive capacity of vegetation to climate change. Scientific Reports, 9 https://doi.org/ARTN 8241
10.1038/s41598-019-44483-x
Gong, H. D., Cui, Q. J., & Gao, J. (2020). Latitudinal, soil and climate effects on key leaf traits in northeastern China. Global Ecology and Conservation, 22. https://doi.org/ARTN e0090410.1016/j.gecco.2020.e00904
Gottfried, M., Pauli, H., Futschik, A., Akhalkatsi, M., Barancok, P., Alonso, J. L. B., Coldea, G., Dick, J., Erschbamer, B., Calzado, M. R. F., Kazakis, G., Krajci, J., Larsson, P., Mallaun, M., Michelsen, O., Moiseev, D., Moiseev, P., Molau, U., Merzouki, A., Grabherr, G. (2012). Continent-wide response of mountain vegetation to climate change. Nature Climate Change, 2(2), 111–115. https://doi.org/10.1038/Nclimate1329
Grabherr, G., Gottfried, M., & Pauli, H. (1994). Climate effects on mountain plants. Nature, 369(6480), 448–448. https://doi.org/DOI 10.1038/369448a0
Harrison, S. P., Gornish, E. S., & Copeland, S. (2015). Climate-driven diversity loss in a grassland community. Proceedings of the National Academy of Sciences, 112(28), 8672-8677. https://doi.org/10.1073/pnas.1502074112
Heilmeier, H. (2019). Functional traits explaining plant responses to past and future climate changes. Flora, 254, 1–11. https://doi.org/10.1016/j.flora.2019.04.004
Henn, J. J., Buzzard, V., Enquist, B. J., Halbritter, A. H., Klanderuds, K., Maitner, B. S., Michaletz, S. T., Potschs, C., Seltzer, L., Telford, R. J., Yang, Y., Zhang, L., & Vandvik, V. (2018). Intraspecific trait variation and phenotypic plasticity mediate alpine plant species response to climate change. Frontiers in Plant Science, 9. https://doi.org/ARTN 154810.3389/fpls.2018.01548
Hoffmann, A. A., & Sgrò, C. M. (2011). Climate change and evolutionary adaptation. Nature, 470(7335), 479–485. https://doi.org/10.1038/nature09670
Hooper, D. U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A. J., Vandermeer, J., & Wardle, D. A. (2005). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs, 75(1), 3–35. https://doi.org/Doi 10.1890/04-0922
IPCC. (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change, 35–115. https://doi.org/10.59327/ipcc/ar6-9789291691647
Johnstone, J. (2021). Alpine plant life: functional plant ecology of high mountain ecosystems. Mountain Research and Development, 41(4), M1–M2. https://doi.org/10.1659/mrd.mm265.1
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4(1), 170122. https://doi.org/10.1038/sdata.2017.122
Kluge, J., & Kessler, M. (2007). Morphological characteristics of fern assemblages along an elevational gradient: Patterns and causes. Ecotropica, 13, 27–44.
Kraft, N. J. B., Adler, P. B., Godoy, O., James, E. C., Fuller, S., & Levine, J. M. (2015). Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 29(5), 592–599. https://doi.org/10.1111/1365-2435.12345
Lambers, H. (2008). Plant Physiological Ecology. Springer New York. https://doi.org/10.1007/978-0-387-78341-3
Lavorel, S., & Garnier, E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology, 16(5), 545–556. https://doi.org/DOI 10.1046/j.1365-2435.2002.00664.x
Lavorel, S., McIntyre, S., Landsberg, J., & Forbes, T. D. A. (1997). Plant functional classifications: From general groups to specific groups based on response to disturbance. Trends in Ecology & Evolution, 12(12), 474–478. https://doi.org/Doi 10.1016/S0169-5347(97)01219-6
Lawlor, J. A., Comte, L., Grenouillet, G., Lenoir, J., Baecher, J. A., Bandara, R. M. W. J., Bertrand, R., Chen, I. C., Diamond, S. E., Lancaster, L. T., Moore, N., Murienne, J., Oliveira, B. F., Pecl, G. T., Pinsky, M. L., Rolland, J., Rubenstein, M., Scheffers, B. R., Thompson, L. M., Sunday, J. (2024). Mechanisms, detection and impacts of species redistributions under climate change. Nature Reviews Earth & Environment, 5(5), 351–368. https://doi.org/10.1038/s43017-024-00527-z
Li, H. L., Li, X. L., & Zhou, X. L. (2020). Trait means predict performance under water limitation better than plasticity for seedlings of Poaceae species on the eastern Tibetan Plateau. Ecology and Evolution, 10(6), 2944–2955. https://doi.org/10.1002/ece3.6108
Llerena-Zambrano, M., Ordoñez, J. C., Llambí, L. D., van der Sande, M., Pinto, E., Salazar, L., & Cuesta, F. (2021). Minimum temperature drives community leaf trait variation in secondary montane forests along a 3000 m elevation gradient in the tropical Andes. Plant Ecology & Diversity, 14(1-2), 47–63. https://doi.org/10.1080/17550874.2021.1903604
Lubbe, F. C., Bitomský, M., Bartoš, M., Marešová, I., Martínková, J., & Klimešová, J. (2023). Trash or treasure: Rhizome conservation during drought. Functional Ecology, 37(9), 2300–2311. https://doi.org/10.1111/1365-2435.14385
Luo, W. T., Zuo, X. A., Griffin-Nolan, R. J., Xu, C., Ma, W., Song, L., Helsen, K., Lin, Y. C., Cai, J. P., Yu, Q., Wang, Z. W., Smith, M. D., Han, X. G., & Knapp, A. K. (2019). Long term experimental drought alters community plant trait variation, not trait means, across three semiarid grasslands. Plant and Soil, 442(1-2), 343–353. https://doi.org/10.1007/s11104-019-04176-w
Madsen-Hepp, T. R., Franklin, J., McFaul, S., Schauer, L., & Spasojevic, M. J. (2023). Plant functional traits predict heterogeneous distributional shifts in response to climate change. Functional Ecology, 37(5), 1449–1462. https://doi.org/10.1111/1365-2435.14308
Mason, N. W. H., Mouillot, D., Lee, W. G., & Wilson, J. B. (2005). Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos, 111(1), 112-118. https://doi.org/DOI 10.1111/j.0030-1299.2005.13886.x
Moles, A. T., Laffan, S. W., Keighery, M., Dalrymple, R. L., Tindall, M. L., & Chen, S. C. (2020). A hairy situation: Plant species in warm, sunny places are more likely to have pubescent leaves. Journal of Biogeography, 47(9), 1934–1944. https://doi.org/10.1111/jbi.13870
Moles, A. T., Perkins, S. E., Laffan, S. W., Flores-Moreno, H., Awasthy, M., Tindall, M. L., Sack, L., Pitman, A., Kattge, J., Aarssen, L. W., Anand, M., Bahn, M., Blonder, B., Cavender-Bares, J., Cornelissen, J. H. C., Cornwell, W. K., Díaz, S., Dickie, J. B., Freschet, G. T., Bonser, S. P. (2014). Which is a better predictor of plant traits: temperature or precipitation? Journal of Vegetation Science, 25(5), 1167–1180. https://doi.org/10.1111/jvs.12190
Moseley, R. K. (2011). Revisiting Shangri-La: Photographing a Century of Environmental and Cultural Change in the Mountains of Southwest China. China Intercontinental Press. https://books.google.com.tw/books?id=3MhAMwEACAAJ
Nilsen, E. T., Arora, R., & Upmanyu, M. (2014). Thermonastic leaf movements in Rhododendron during freeze–thaw events: Patterns, functional significances, and causes. Environmental and Experimental Botany, 106, 34–43. https://doi.org/https://doi.org/10.1016/j.envexpbot.2014.01.005
Nitta, J. H., Meyer, J. Y., Taputuarai, R., & Davis, C. C. (2017). Life cycle matters: DNA barcoding reveals contrasting community structure between fern sporophytes and gametophytes. Ecological Monographs, 87(2), 278–296. https://doi.org/10.1002/ecm.1246
Noble, I. R., & Gitay, H. (1996). A functional classification for predicting the dynamics of landscapes. Journal of Vegetation Science, 7(3), 329–336. https://doi.org/Doi 10.2307/3236276
Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37–42. https://doi.org/10.1038/nature01286
Pauchard, A., Milbau, A., Albihn, A., Alexander, J., Nun, M. A., Daehler, C., Englund, G., Essl, F., Evengård, B., Greenwood, G. B., Haider, S., Lenoir, J., McDougall, K., Muths, E., Nuñez, M. A., Olofsson, J., Pellissier, L., Rabitsch, W., Rew, L. J., . . . Kueffer, C. (2016). Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: New challenges for ecology and conservation. Biological Invasions, 18(2), 345–353. https://doi.org/10.1007/s10530-015-1025-x
Pauli, H., Gottfried, M., Lamprecht, A., Niessner, S., Rumpf, S., Winkler, M., Steinbauer, K., & Grabherr, G. (2015). The GLORIA field manual – Standard Multi-Summit Approach, Supplementary Methods and Extra Approaches.
Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe, N., Fowler, H., Greenwood, G., Hashmi, M. Z., Liu, X. D., Miller, J. R., Ning, L., Ohmura, A., Palazzi, E., Rangwala, I., Schöner, W., Severskiy, I., Shahgedanova, M., Wang, M. B., . . . Grp, M. R. I. E. W. (2015). Elevation-dependent warming in mountain regions of the world. Nature Climate Change, 5(5), 424–430. https://doi.org/10.1038/Nclimate2563
Perez-Estrada, L. B., Cano-Santana, Z., & Oyama, K. (2000). Variation in leaf trichomes of Wigandia urens: Environmental factors and physiological consequences. Tree Physiology, 20(9), 629–632. https://doi.org/10.1093/treephys/20.9.629
Petchey, O. L., & Gaston, K. J. (2002). Functional diversity (FD), species richness and community composition. Ecology Letters, 5(3), 402–411. https://doi.org/DOI 10.1046/j.1461-0248.2002.00339.x
Pugnaire, F. I., Morillo, J. A., Peñuelas, J., Reich, P. B., Bardgett, R. D., Gaxiola, A., Wardle, D. A., & Van Der Putten, W. H. (2019). Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Science Advances, 5(11), eaaz1834. https://doi.org/10.1126/sciadv.aaz1834
Reich, P. B., Walters, M. B., & Ellsworth, D. S. (1992). Leaf life‐span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs, 62(3), 365–392. https://doi.org/10.2307/2937116
Rodríguez-Alarcón, S., Tamme, R., & Carmona, C. P. (2022). Intraspecific trait changes in response to drought lead to trait convergence between-but not within-species. Functional Ecology, 36(8), 1900-1911. https://doi.org/10.1111/1365-2435.14099
Salick, J., Fang, Z., & Hart, R. (2019). Rapid changes in eastern Himalayan alpine flora with climate change. American Journal of Botany, 106(4), 520–530. https://doi.org/10.1002/ajb2.1263
Salick, J., Ghimire, S. K., Fang, Z. D., Dema, S., & Konchar, K. M. (2014). Himalayan Alpine Vegetation, Climate Change and Mitigation. Journal of Ethnobiology, 34(3), 276-293. https://doi.org/10.2993/0278-0771-34.3.276
Salick, J., Yang, Y. P., & Amend, A. (2005). Tibetan land use and change near Khawa Karpo, Eastern Himalayas. Economic Botany, 59(4), 312-325. https://doi.org/Doi 10.1663/0013-0001(2005)059[0312:Tluacn]2.0.Co;2
Sandel, B., & Low, R. (2019). Intraspecific trait variation, functional turnover and trait differences among native and exotic grasses along a precipitation gradient. Journal of Vegetation Science, 30(4), 633–643. https://doi.org/10.1111/jvs.12756
Silveira, M. F., da Silva, A. C., Duarte, E., Muzeka, L. M., Larsen, J. G., dos Santos, V., Lovatel, Q. C., & Higuchi, P. (2021). Functional composition of subtropical highland forests in different successional stages in southern Brazil. Bosque, 42(3), 333–341. https://doi.org/10.4067/S0717-92002021000300333
Soheili, F., Heydari, M., Woodward, S., & Naji, H. R. (2023). Adaptive mechanism in Quercus brantii Lindl. leaves under climatic differentiation: morphological and anatomical traits. Scientific Reports, 13(1), 3580. https://doi.org/10.1038/s41598-023-30762-1
Stein, B. A., Staudt, A., Cross, M. S., Dubois, N. S., Enquist, C., Griffis, R., Hansen, L. J., Hellmann, J. J., Lawler, J. J., Nelson, E. J., & Pairis, A. (2013). Preparing for and managing change: Climate adaptation for biodiversity and ecosystems. Frontiers in Ecology and the Environment, 11(9), 502–510. https://doi.org/10.1890/120277
Steinbauer, K., Lamprecht, A., Semenchuk, P., Winkler, M., & Pauli, H. (2019). Dieback and expansions: Species-specific responses during 20 years of amplified warming in the high Alps. Alpine Botany, 130. https://doi.org/10.1007/s00035-019-00230-6
Steinbauer, M. J., Field, R., Grytnes, J. A., Trigas, P., Ah-Peng, C., Attorre, F., Birks, H. J. B., Borges, P. A. V., Cardoso, P., Chou, C. H., De Sanctis, M., de Sequeira, M. M., Duarte, M. C., Elias, R. B., Fernández-Palacios, J. M., Gabriel, R., Gereau, R. E., Gillespie, R. G., Greimler, J., Beierkuhnlein, C. (2016). Topography-driven isolation, speciation and a global increase of endemism with elevation. Global Ecology and Biogeography, 25(9), 1097-1107. https://doi.org/10.1111/geb.12469
Su, H. J. (1985). Studies on the climate and vegetation types of the natural forests in Taiwan. (III). A scheme of geographical climatic regions. Quarterly Journal of Chinese Forestry, 18:3, 33–44.
Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., de Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L., & Williams, S. E. (2004). Extinction risk from climate change. Nature, 427(6970), 145–148. https://doi.org/10.1038/nature02121
Valliere, J. M., Nelson, K. C., & Martinez, M. C. (2023). Functional traits and drought strategy predict leaf thermal tolerance. Conservation Physiology, 11(1) https://doi.org/10.1093/conphys/coad085
Vicente-Serrano, S., Beguería, S., & López-Moreno, J. I. (2010). A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. Journal of Climate, 23, 1696–1718. https://doi.org/10.1175/2009JCLI2909.1
Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007). Let the concept of trait be functional! Oikos, 116(5), 882–892. https://doi.org/10.1111/j.2007.0030-1299.15559.x
Walker, B., Kinzig, A., & Langridge, J. (1999). Plant attribute diversity, resilience, and ecosystem function: The nature and significance of dominant and minor species. Ecosystems, 2(2), 95–113. https://doi.org/DOI 10.1007/s100219900062
Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J. M., Hoegh-Guldberg, O., & Bairlein, F. (2002). Ecological responses to recent climate change. Nature, 416(6879), 389–395. https://doi.org/DOI 10.1038/416389a
Wang, H., Nilsen, E. T., & Upmanyu, M. (2020). Mechanical basis for thermonastic movements of cold-hardy Rhododendron leaves. Journal of The Royal Society Interface, 17(164), 20190751. https://doi.org/10.1098/rsif.2019.0751
Weiskopf, S. R., Rubenstein, M. A., Crozier, L. G., Gaichas, S., Griffis, R., Halofsky, J. E., Hyde, K. J. W., Morelli, T. L., Morisette, J. T., Muñoz, R. C., Pershing, A. J., Peterson, D. L., Poudel, R., Staudinger, M. D., Sutton-Grier, A. E., Thompson, L., Vose, J., Weltzinn, J. F., & Whyte, K. P. (2020). Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science of the Total Environment, 733. https://doi.org/ARTN 13778210.1016/j.scitotenv.2020.137782
Wigley, B. J., Charles-Dominique, T., Hempson, G. P., Stevens, N., te Beest, M., Archibald, S., Bond, W. J., Bunney, K., Coetsee, C., Donaldson, J., Fidelis, A., Gao, X., Gignoux, J., Lehmann, C., Massad, T. J., Midgley, J. J., Millan, M., Schwilk, D., Siebert, F., Kruger, L. M. (2021). A handbook for the standardised sampling of plant functional traits in disturbance-prone ecosystems, with a focus on open ecosystems. Australian Journal of Botany, 69(2),. https://doi.org/10.1071/Bt20048_Co
Wigley, B. J., Charles-Dominique, T., Hempson, G. P., Stevens, N., TeBeest, M., Archibald, S., Bond, W. J., Bunney, K., Coetsee, C., Donaldson, J., Fidelis, A., Gao, X., Gignoux, J., Lehmann, C., Massad, T. J., Midgley, J. J., Millan, M., Schwilk, D., Siebert, F., Kruger, L. M. (2020). A handbook for the standardised sampling of plant functional traits in disturbance-prone ecosystems, with a focus on open ecosystems. Australian Journal of Botany, 68(8), 473–531. https://doi.org/10.1071/Bt20048
Woodward, F. I., & Cramer, W. (1996). Plant functional types and climatic change: Introduction. Journal of Vegetation Science, 7(3), 306–308. https://doi.org/10.1111/j.1654-1103.1996.tb00489.x
Wright, I. J., Dong, N., Maire, V., Prentice, I. C., Westoby, M., Díaz, S., Gallagher, R. V., Jacobs, B. F., Kooyman, R., Law, E. A., Leishman, M. R., Niinemets, Ü., Reich, P. B., Sack, L., Villar, R., Wang, H., & Wilf, P. (2017). Global climatic drivers of leaf size. Science, 357(6354), 917. https://doi.org/10.1126/science.aal4760
Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., Villar, R. (2004). The worldwide leaf economics spectrum. Nature, 428(6985), 821–827. https://doi.org/10.1038/nature02403
Yavas, I., Jamal, M. A., Ul Din, K., Ali, S., Hussain, S., & Farooq, M. (2023). Drought-induced changes in leaf morphology and anatomy: Overview, implications and perspectives. Polish Journal of Environmental Studies. https://doi.org/10.15244/pjoes/174476
Zhou, R., & Zhao, H. (2004). Seasonal pattern of antioxidant enzyme system in the roots of perennial forage grasses grown in alpine habitat, related to freezing tolerance. Physiologia Plantarum, 121(3), 399–408. https://doi.org/10.1111/j.0031-9317.2004.00313.x
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98253-
dc.description.abstract氣候變遷導致高山地區升溫及極端乾旱事件增加,對高山生態系統造成植群生產力下降及特有物種減少等負面影響。高山植物因應逆境演化出如葉片增厚、具毛葉表及發達地下根莖等功能性狀。本研究假設,隨乾旱逆境加劇,具降低水分散失及地下存活策略的物種在高山植群中將增加。
本研究分析2008至2024年間臺灣大水窟與雪山區域的監測樣區之植群資料,探討氣候變遷對高山植群組成結構的改變的影響。此外透過文獻建構臺灣高山植物功能性狀資料庫結合植物分布、氣候區位和4次調查的物種豐度數據,使用典型對應分析並建立植物抗性評分系統以評估氣候變遷對於高山植群功能群之影響。結果顯示兩個區域均經歷顯著升溫 (每年0.042-0.066°C)及2019年後的持續水分不足。草本植物可分為4個功能群,木本植物分為2群,對乾旱的反應各異。葉緣反捲、葉質和葉表毛狀體等功能性狀與年均溫、年降水量、季節降水標準差等特定氣候因子存在相關性。研究證實具有耐旱及耐熱功能性狀的物種在面對乾旱時豐度波動較小,而生長在低溫區位的木本物種,如玉山杜鵑 (Rhododendron pseudochrysanthum)則大量枯死。本研究顯示植物功能性狀是預測高山植群對氣候變遷反應的有效指標,強調以功能群為單位反映植群結構動態的重要性,可為高山生態系保育提供科學依據。
zh_TW
dc.description.abstractClimate change has led to rising temperatures and increased extreme drought events in alpine regions, resulting in negative impacts such as reduced plant productivity and a decline in endemic species. Alpine plants have evolved functional traits to cope with harsh conditions, such as thicker leaves, hairy leaf surfaces, and well-developed underground rhizomes. This study hypothesizes that as drought stress intensifies, species with traits that reduce water loss and enhance underground survival will become more prevalent in alpine plant communities.
This research analyzes vegetation data from monitoring plots in the Dashueiku and Hsuehshan regions of Taiwan, collected between 2008 and 2024, to investigate the effects of climate change on the composition and structure of alpine plant communities. In addition, a database of functional traits of Taiwan’s alpine plants was constructed through literature review, and combined with data on plant distributions, climatic niches, and species abundance from four surveys. Canonical correspondence analysis and a plant resistance scoring system were used to assess the impact of climate change on functional groups within alpine plant communities. The results indicate that both regions have experienced significant warming (0.042—0.066°C per year) and persistent water deficits since 2019. Herbaceous plants were classified into four functional groups and woody plants into two, each responding differently to drought. Traits such as leaf margin curling, leaf texture, and leaf pubescence were found to correlate with specific climatic factors, including mean annual temperature, annual precipitation, and the standard deviation of seasonal precipitation. The study confirms that species with drought- and heat-resistant traits exhibited less fluctuation in abundance during drought events, while woody species occupying colder niches (e.g., Rhododendron pseudochrysanthum) experienced significant dieback. This research demonstrates that plant functional traits are effective indicators for predicting alpine plant community responses to climate change, and highlights the importance of using functional groups to reflect vegetation dynamics. The findings provide a scientific basis for the conservation of alpine ecosystems.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-31T16:07:05Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-31T16:07:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝誌 i
摘要 iii
Abstract iv
目次 vi
表次 viii
圖次 ix
第一章、前言 1
第二章、文獻回顧 4
一、 氣候變遷及對於高山植群之影響 4
二、 適應高山環境之植物功能性狀 5
第三章、材料與方法 10
一、 研究區域選擇與位置 10
二、 GLORIA多峰調查法 (multi summit approach)區域樣區設置 11
三、 GLORIA 區域樣區調查方法 12
四、 氣象資料 13
五、 分析方法 13
(一) 植群與生物多樣性指數分析 13
(二) 植物功能性狀表 13
(三) 物種抗性評分 14
(四) 物種氣候區位 15
第四章、結果與討論 16
一、 氣候變遷趨勢 16
二、 植群組成變化 17
三、 物種功能性狀表 19
四、 以典型對應分析分群 20
五、 物種抗性評分分群 22
第五章、結論 24
第六章、參考文獻 25
圖表 38
-
dc.language.isozh_TW-
dc.subject氣候變遷zh_TW
dc.subject高海拔山區zh_TW
dc.subject植物功能性狀zh_TW
dc.subject逆境zh_TW
dc.subject乾旱zh_TW
dc.subject全球高山觀測研究計畫 (GLORIA)zh_TW
dc.subjectGlobal Observation Research Initiative in Alpine Environments (GLORIA)en
dc.subjecthigh-elevation mountainsen
dc.subjectplant functional traitsen
dc.subjectstressen
dc.subjectdroughten
dc.subjectclimate changeen
dc.title以植物功能性狀評估氣候變遷對高山植群造成之影響 — 以大水窟山及雪山山域為例zh_TW
dc.titlempact Assessment of Climate Change on Alpine Plant Communities Based on Plant Functional Traits — A Case Study of Mountain Dashueiku and Hsuehshan Areasen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王俊能;曾喜育zh_TW
dc.contributor.oralexamcommitteeChun-Neng Wang;Hsy-Yu Tzengen
dc.subject.keyword氣候變遷,高海拔山區,植物功能性狀,逆境,乾旱,全球高山觀測研究計畫 (GLORIA),zh_TW
dc.subject.keywordclimate change,high-elevation mountains,plant functional traits,stress,drought,Global Observation Research Initiative in Alpine Environments (GLORIA),en
dc.relation.page75-
dc.identifier.doi10.6342/NTU202502423-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-28-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
dc.date.embargo-lift2025-08-01-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf3.51 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved