請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98249完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孔令傑 | zh_TW |
| dc.contributor.advisor | Ling-Chieh Kung | en |
| dc.contributor.author | 游山逸 | zh_TW |
| dc.contributor.author | Shan-Yi Yu | en |
| dc.date.accessioned | 2025-07-31T16:06:13Z | - |
| dc.date.available | 2025-08-01 | - |
| dc.date.copyright | 2025-07-31 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-24 | - |
| dc.identifier.citation | 一、中文文獻
1. ASUS AICS (2024),華碩推動智慧醫療虛實整合以Gen AI賦能醫療解決方案,取自https://aics.asus.com/journal_air_genai/。 2. ASUS AICS (2025),ASUS xHIS次世代智慧醫療資訊平台,取自https://aics.asus.com/xhis/?cookie-state-change=1746963258347。 3. ASUS Pressroom (2025),推動智慧醫療虛實整合Gen AI賦能未來醫療解決方案(上):醫療院所,取自https://press.asus.com/tw/blog/empowering-smart-healthcare-with-generative-ai-part-1-healthcare-institutions-zh/。 4. DeepQ (2025),醫療解決方案,取自https://www.deepq.com/productssolution。 5. Dr.AI (2024a),Dr. AI開啟全球醫療照護新時代,取自https://www.draiai.com/tw/news/drai_press_conference_yahoo。 6. Dr.AI (2024b),德煌生醫攜手北極星藥業打造「Dr.AI」智能平台 掀醫療照護革命,取自https://www.draiai.com/tw/news/drai_press_conference_ctee。 7. Microsoft (2023a),Microsoft與Epic擴大策略合作,整合Azure OpenAI服務,取自https://news.microsoft.com/zh-tw/features/microsoft-epic-azure-openai/。 8. Microsoft (2023b),中醫大附醫與台灣微軟聯手共創未來智慧醫院引領創新「智海系統-生成式語音智慧醫療」,取自https://news.microsoft.com/zh-tw/generativeai-medical/。 9. Microsoft (2024),奇美醫院以Copilot全面啟動數位醫療轉型,解決醫護人力短缺困境,取自https://news.microsoft.com/zh-tw/chi-meimedicalcenter-copilot/。 10. NTU永續辦公室(2024),臺大醫院攜手NVIDIA輝達發展AI智慧醫療,取自https://sustainable.ntu.edu.tw/ntu-sdgs/actions/6674e751ccb06/detail。 11. OOSGA (2024),電子病歷(EMR)的定義為何?,取自https://zh.oosga.com/docs/emr/。 12. 大林慈濟醫院(2024),嘉義大林慈濟攜手華碩-杏碩開發生成式AI病歷紀錄,取自https://dalin.tzuchi-healthcare.org.tw/index.php/te-se-zhong-xin/bedah-mikro-fluoresensi/jia-yi-da-lin-ci-ji-xie-shou-hua-shuo-xing-shuo-kai-fa-sheng-cheng-shiai-bing-li-ji-lu-sheng-cheng-shiai-bing-li-zhai-yao-xi-tong-shi-yi-hu-ren-yuan-geng-neng-quan-xin-tou-ru-bing-huan-zhi-liao-ti-sheng-zheng-ti-yi-liao-zhao-hu-shui-zhun。 13. 中華民國醫師公會全國聯合會(2012),會務報導:中央健保局函知ICD-10-CM/PCS往後展延至民國104年實施,取自https://web.archive.org/web/20121108125355/http://www.tma.tw/meeting/meeting_01_info.asp?meete_id=4309。 14. 今週刊(2024),另類輝達概念股!黃仁勳拉開戰線結盟長庚醫院「從客戶變夥伴」…他們開會上百次、究竟合作什麼?,取自https://www.businesstoday.com.tw/article/category/183015/post/202405310052/。 15. 王宏仁(2022),17年來最大修法,電子病歷新法四大重點帶來根本性變革,iThome,取自https://www.ithome.com.tw/news/152054。 16. 王若樸(2021),衛福部揭露醫療IT兩大新進展,電子病歷上雲考慮放寬境外、醫學中心可成電子病歷交換平臺,iThome,取自https://www.ithome.com.tw/news/146893。 17. 王若樸(2023a),Google醫用生成式AI準確率92.6%與臨床醫師相當,iThome MedTech醫療科技雙周報第23期,取自https://www.ithome.com.tw/news/157887。 18. 王若樸(2023b),新光醫院HIS一次全面大換新,大力發展對外應用瞄準微服務,iThome,取自https://www.ithome.com.tw/people/159392。 19. 王若樸(2023c),衛福部揭露次世代數位醫療平臺更多細節,4大架構聚焦PaaS、數據中臺和混合雲架構,iThome,取自https://www.ithome.com.tw/news/158929。 20. 王若樸(2024a),【奇美醫院GAI應用實例】GAI分工走進診間成虛擬照護團隊,靠多層次提示克服幻覺難題,iThome,取自https://www.ithome.com.tw/news/165914。 21. 王若樸(2024b),自建智慧助理加速病歷摘要等4大領域應用,臺中榮總聯手陽明交大打造Healthcare GPT,iThome,取自https://www.ithome.com.tw/news/162388。 22. 王若樸(2024c),奇美醫院如何從預測型AI走到生成式AI,iThome,取自https://www.ithome.com.tw/news/165913。 23. 王若樸(2024d),衛福部資訊處揭次世代數位醫療平臺計畫進展,還自建LLM標準轉換器,iThome,取自https://www.ithome.com.tw/news/165634。 24. 台大醫院新竹台大分院(2024a),新竹臺大分院運用微軟Azure OpenAI服務推出「iSee」生成式AI智能衛教平台首創「無形無礙」概念建立全台AI無牆智慧醫院,取自https://www.hch.gov.tw/?aid=503&iid=329&page_name=detail&pid=0。 25. 台大醫院新竹台大分院(2024b),新竹臺大分院攜手華碩、奇勤科技與光研智能 結合AI語音病歷系統打造全新視訊看診醫療服務,取自https://www.hch.gov.tw/?aid=71&iid=670&page_name=detail&pid=106。 26. 台大醫院新竹台大分院(2025),新竹臺大分院再次攜手台灣微軟運用AI及Copilot Studio加速醫療數位轉型,台大醫院新竹台大分院官網,取自https://www.hch.gov.tw/?aid=503&iid=345&page_name=detail。 27. 台灣健康資訊交換第七層協定(HL7)協會(2025),關於協會沿革,取自http://www.hl7.org.tw/publicUI/A/A101.aspx。 28. 何之行(2023),AI醫療與個資隱私是兩難課題?,台灣網路講堂,取自https://twsig.tw/20230731hl/。 29. 吳儀文(2023),亞洲第一!中醫大附醫、Google Cloud合作引進最新模型AI智慧醫療再升級,健康醫療網,取自https://www.healthnews.com.tw/article/60270。 30. 李林璦(2024),北醫3個月HIS 3.0實現系統升級生成式AI融入醫護日常,環球生技。 31. 行政院(2024),重要施政成果/產業創新,取自https://www.ey.gov.tw/achievement/3906C00A86AC287C?utm_source=chatgpt.com 32. 杜蕙蓉(2023),搶攻智慧醫療商機長佳智能生成式AI三箭齊發,工商時報,取自https://www.ctee.com.tw/news/20230726701078-439803。 33. 亞東紀念醫院(2023),亞東攜手遠傳轉型智慧醫院從醫療到諮詢全面科技化,取自https://www.femh.org.tw/research/news_detail.aspx?Class=1&NewsNo=16049。 34. 林口長庚醫療人工智能核心實驗室(2024),NVIDIA拜會長庚醫院強強聯手深化合作關係共同推動AI智慧醫療產業引領台灣技術創新和發展,取自https://www.cgmh.org.tw/tw/News/PressNews/240605002。 35. 林琮恩(2024),新光醫院與學研界簽MOU生成式AI助判斷肺癌篩檢影像,聯合新聞網,取自https://udn.com/news/story/7266/8354507。 36. 國家生技醫療產業策進會(2023),病歷秒生成!微軟Nuance攜手Epic推AI醫療文書應用,取自https://ibmi.taiwan-healthcare.org/zh/news_detail.php?PageNO=0&REFDOCID=0rwxvpiciotftf5p&REFDOCTYPID=0o4dd9ctwhtyumw。 37. 國家發展委員會(2023),高齡化,取自https://www.ndc.gov.tw/Content_List.aspx?n=2688C8F5935982DC 38. 許寶仁(2024),護理人員大出逃!「AI護理師」協助減輕工作 中醫大附醫智慧醫療獲殊榮,健康2.0,取自https://health.tvbs.com.tw/medical/345227。 39. 郭乃禎(2023),Goolge Med-PaLM 2展開實測生成式AI進入醫療場域(1),新電子,取自https://www.mem.com.tw/goolge-med-palm-2展開實測%E3%80%80生成式ai進入醫療場域1/。 40. 郭羽漫(2023),我可以不分享我的病歷嗎?建構醫療大數據的難題—醫療數據共享與個人隱私,科技魅癮,取自https://www.charmingscitech.nat.gov.tw/post/sts11-records。 41. 郭美惠(2012),我國電子病歷現況調查與影響因素之研究,臺北醫學大學醫學科技學院醫學資訊研究所碩士論文。 42. 陳如頤(2024),衛福部推動次世代醫療平台計畫電子病歷轉型刻不容緩,NOW健康,取自https://today.line.me/tw/v2/article/vX60aV0。 43. 陳冠榮(2024),視訊看診結合醫療語音AI「Agility」,自動生成病歷資料,科技新報,取自https://technews.tw/2024/11/29/asus-and-hsin-chu-branch-of-ntuh-2024-11-28/。 44. 陳昱安(2024),面對人工智慧醫療器材的興起,台灣該注意什麼?,科技、民主與社會研究中心,取自https://dset.tw/research/00019/。 45. 黃曼瑩(2024),台灣醫療科技展亮點:大林慈濟醫院展示九項智慧醫療創新成果!,華人健康網,取自https://www.top1health.com/article/95507。 46. 黃維民(2022),雲端電子病歷交換的挑戰和隱憂,月旦醫事法報告第74期。 47. 臺中榮民總醫院(2024),病歷書寫規範,取自https://www.vghtc.gov.tw/UnitPage/UnitContentView?WebMenuID=6a69bd85-62d7-47fe-9147-255f3628ff40&UnitDefaultTemplate=1。 48. 衛生福利部(2020),公告「人工智慧/機器學習技術之醫療器材軟體查驗登記技術指引」,取自https://www.fda.gov.tw/tc/siteListContent.aspx?sid=3787&id=34961 49. 衛生福利部(2024),「電子病歷FHIR資料標準化與跨院轉換試辦計畫」徵求說明書,公告徵求辦理本部113年度「電子病歷FHIR資料標準化與跨院轉換試辦計畫」,取自https://www.mohw.gov.tw/cp-18-80459-1.html。 50. 衛生福利部(2025),電子病歷推動專區,取自https://emr.mohw.gov.tw/myemr_old/introduction.html。 51. 衛生福利部醫事司(2025),醫院評鑑及教學醫院評鑑相關業務,取自https://dep.mohw.gov.tw/DOMA/np-945-106.html。 52. 蕭佳敏(2024),運用人工智慧技術於醫療的法律風險與隱憂—利幣互現,靜宜法學第十三期。 二、英文文獻 1. Adams, Katie (2021). 31 Numbers That Show How Big Epic, Cerner, Allscripts & Meditech Are in Healthcare. Becker's Health IT. Retrieved from: https://www.beckershospitalreview.com/healthcare-information-technology/31-numbers-that-show-how-big-epic-cerner-allscripts-meditech-are-in-healthcare.html. 2. Centers for Medicare & Medicaid Services (2023), CMS Fast Facts March 2023 Version. Retrieved from: https://data.cms.gov/sites/default/files/2023-03/CMSFastFactsMar2023.pdf. 3. Fierce Healthcare (2024), Epic touts new AI applications to streamline charting and bring research insights to the point of care. Retrieved from: https://www.fiercehealthcare.com/ai-and-machine-learning/epic-touts-new-ai-applications-streamline-charting-and-bring-research. 4. Fierce Healthcare (2025a), Digital health venture funding hit $10.1B in 2024 as investors focused on earlier-stage dealmaking. Retrieved from: https://www.fiercehealthcare.com/digital-health/digital-health-venture-funding-hit-101b-2024-investors-focused-earlier-stage-deals?utm_source=chatgpt.com. 5. Fierce Healthcare. (2025b). HIMSS25: Epic building out agentic AI as the health IT giant also broadens focus beyond EHRs. Retrieved from: https://www.fiercehealthcare.com/ai-and-machine-learning/epic-building-out-agentic-ai-it-also-broadens-focus-beyond-ehrs. 6. Food and Drug Administration (FDA) (2021). Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan. Retrieved from https://www.fda.gov/media/145022/download. 7. Google Cloud (2023). A responsible path to generative AI in healthcare. Google Cloud Blog. Retrieved from: https://cloud.google.com/blog/topics/healthcare-life-sciences/sharing-google-med-palm-2-medical-large-language-model. 8. Karan Singhal at al. (2023). Large language models encode clinical knowledge. Nature, 621, 172–180. Retrieved from: https://doi.org/10.1038/s41586-023-06291-2. 9. Mckinsey & Company (2021), Telehealth: A quarter-trillion-dollar post-COVID-19 reality? Retrieved from https://www.mckinsey.com/industries/healthcare/our-insights/telehealth-a-quarter-trillion-dollar-post-covid-19-reality 10. National Institutes of Health (NIH) (2025). Bridge to Artificial Intelligence (Bridge2AI). Retrieved from https://commonfund.nih.gov/bridge2ai. 11. Northwell Health (2023). Northwell selects Epic to deliver next-generation electronic health record. Retrieved from: https://www.northwell.edu/news/the-latest/northwell-selects-next-generation-electronic-health-record. 12. Office of the National Coordinator for Health Information Technology (ONC) (2021). Connecting Health and Care for the Nation: A Shared Nationwide Interoperability Roadmap. Retrieved from https://www.healthit.gov/sites/default/files/hie-interoperability/nationwide-interoperability-roadmap-final-version-1.0.pdf. 13. Patricia Garcia at al. (2024). Artificial Intelligence–Generated Draft Replies to Patient Inbox Messages, JAMA Network Open. Retrieved from: https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2816494. 14. Pew Research Center (2023), 60% of Americans Would Be Uncomfortable With Provider Relying on AI in Their Own Health Care. Retrieved from: https://www.pewresearch.org/science/2023/02/22/60-of-americans-would-be-uncomfortable-with-provider-relying-on-ai-in-their-own-health-care/. 15. U.S. Department of Health & Human Services (HHS) (2017). HITECH Act Enforcement Interim Final Rule. Retrieved from https://www.hhs.gov/hipaa/for-professionals/special-topics/hitech-act-enforcement-interim-final-rule/index.html. 16. U.S. Department of Health & Human Services (HHS) (2024). HIPAA for Professionals. Retrieved from https://www.hhs.gov/hipaa/for-professionals/index.html. 17. UC San Diego Health (2024). Study Reveals AI Enhances Physician-Patient Communication. Retrieved from: https://health.ucsd.edu/news/releases/2023-05-30-epic-generative-ai-medical-notes-tool.aspx. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98249 | - |
| dc.description.abstract | 隨著生成式人工智慧(Generative AI)技術的快速發展,其於醫療領域中的應用日益受到關注,特別是在電子病歷(Electronic Medical Record, EMR)撰寫、資料整理與臨床決策支援等面向展現出高度潛力。然生成式AI的臨床落地仍面臨法規限制、資料整合困難與臨床信任不足等多重挑戰。
本研究旨在探討生成式人工智慧(Generative AI)於醫療病歷應用的發展現況,並結合PESTEL分析法與個案研究法進行質性研究,從政治、經濟、社會、科技、環境與法律六大構面,深入分析美國與台灣在生成式AI醫療應用上的產業環境差異。藉由比較兩國具代表性的企業—美國EPIC Systems與台灣ASUS華碩之導入經驗,歸納其推動歷程中的成功作法與挑戰,進而提出具體且可行的策略與政策建議,作為台灣未來發展生成式AI醫療應用之參考依據。 本研究結果針對政府、醫療機構與企業三個關鍵角色分別提出具體建議。 在政府層面,應加速建立相關法規與責任歸屬制度,推動醫療AI監理沙盒與試點制度,並整合全國EHR平台與資料標準化政策,以奠定制度基礎。同時,政府亦應主導語料庫建置與本土語言模型開發,推動公私協作的資料共享機制,並整合跨部會資源,制定中長期政策藍圖。 對醫療機構而言,則須強化病歷書寫標準化與術語規範,推動AI應用試點與效益評估,促進臨床醫師參與模型導入與驗證流程,並培育跨域應用人才與建立品質追蹤機制。 至於企業,則應聚焦於特定醫療場域的垂直整合應用,深化模組化工具開發,並透過跨業合作與平台聯盟擴展生態系,同時積極參與語料與模型訓練計畫,並建立臨床驗證與產品認證機制,以提升產品實用性與合規性。 本研究期望能為台灣在推動生成式AI於醫療病歷應用之發展提供策略性參考,並為未來政策規劃與學術研究提供理論基礎與實務指引。 | zh_TW |
| dc.description.abstract | With the rapid advancement of Generative Artificial Intelligence (Generative AI), its applications in the healthcare sector have garnered increasing attention - particularly in electronic medical record (EMR) documentation, data summarization, and clinical decision support. Despite its promising potential, the clinical adoption of generative AI still faces multiple challenges, including regulatory restrictions, data integration issues, and lack of trust among healthcare professionals.
This study aims to explore the current development of Generative Artificial Intelligence (Generative AI) in the application of electronic medical records. It adopts a qualitative research approach by integrating the PESTEL analysis and case study methodology to examine the industrial environment differences between the United States and Taiwan across six dimensions: Political, Economic, Social, Technological, Environmental, and Legal. By comparing the implementation experiences of two representative companies - EPIC Systems in the U.S. and ASUS in Taiwan - this research identifies key success factors and challenges encountered during the adoption process. Based on these findings, the study proposes concrete and actionable strategies and policy recommendations to serve as a reference for the future development of generative AI in Taiwan's healthcare sector. The findings of this study offer concrete recommendations for three key stakeholders: the government, healthcare institutions, and enterprises. At the government level, efforts should be made to accelerate the establishment of relevant regulations and accountability frameworks, promote AI regulatory sandboxes and pilot programs for healthcare, and integrate the national Electronic Health Record (EHR) platform with data standardization policies to lay a solid institutional foundation. Furthermore, the government should take the lead in developing medical corpora and local language models, foster data-sharing mechanisms through public-private collaboration, and coordinate inter-ministerial resources to formulate a mid- to long-term policy roadmap. For healthcare institutions, it is essential to enhance the standardization of medical record documentation and terminology, promote AI application pilots and benefit evaluations, and encourage clinical physicians to participate in model implementation and validation processes. Institutions should also cultivate interdisciplinary talents and establish mechanisms for quality monitoring. As for enterprises, the focus should be on vertically integrated applications in specific medical domains, advancing the development of modular tools, and expanding ecosystems through cross-industry collaborations and platform alliances. Additionally, companies should actively engage in corpus construction and model training initiatives, and establish clinical validation and product certification mechanisms to enhance the practicality and regulatory compliance of their offerings. This study aims to provide strategic insights for Taiwan’s future advancement of generative AI in EMR applications and to offer theoretical and practical guidance for policy formulation and academic research. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-31T16:06:13Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-31T16:06:13Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
口試委員會審定書 I 中文摘要 II THESIS ABSTRACT III 目次 V 圖次 VI 表次 VII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 預期成果 4 第二章 文獻回顧 5 2.1 台灣醫療病歷數位化發展的現況與面臨挑戰 5 2.2 美國電子病歷在生成式AI應用的發展 9 2.3 台灣電子病歷在生成式AI應用的推動現況 13 第三章 研究方法 22 3.1 研究流程 22 3.2 研究方法 23 第四章 資料分析與探討 24 4.1 產業環境分析 24 4.2 個案研究 29 第五章 結論與建議 39 5.1 研究結論與建議 39 5.2 未來展望 43 參考文獻 44 圖次 圖3-1:研究流程圖 22 表次 表4-1:美國與台灣生成式AI醫療應用之PESTEL產業環境比較 28 表4-2:EPIC Systems與ASUS在生成式AI應用於醫療病歷的比較分析 37 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 電子病歷 | zh_TW |
| dc.subject | 生成式人工智慧 | zh_TW |
| dc.subject | 個案研究 | zh_TW |
| dc.subject | PESTEL分析 | zh_TW |
| dc.subject | AI醫療應用 | zh_TW |
| dc.subject | AI in Healthcare | en |
| dc.subject | PESTEL Analysis | en |
| dc.subject | Case Study | en |
| dc.subject | Electronic Medical Records | en |
| dc.subject | Generative AI | en |
| dc.title | 從美國經驗探討:台灣生成式AI於醫療病歷應用之發展與挑戰 | zh_TW |
| dc.title | Exploring the Development and Challenges of Generative AI in Medical Records Applications in Taiwan: Insights from the U.S. Experience | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 畢南怡;陳建錦;郭佳瑋 | zh_TW |
| dc.contributor.oralexamcommittee | Nan-Yi Bi;Chien-Chin Chen;Chia-Wei Kuo | en |
| dc.subject.keyword | 生成式人工智慧,電子病歷,AI醫療應用,PESTEL分析,個案研究, | zh_TW |
| dc.subject.keyword | Generative AI,Electronic Medical Records,AI in Healthcare,PESTEL Analysis,Case Study, | en |
| dc.relation.page | 51 | - |
| dc.identifier.doi | 10.6342/NTU202501882 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-25 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 碩士在職專班資訊管理組 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 資訊管理組 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
