請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9822
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉振宇,林俊男 | |
dc.contributor.author | Hung-Yu Shieh | en |
dc.contributor.author | 謝宏育 | zh_TW |
dc.date.accessioned | 2021-05-20T20:43:27Z | - |
dc.date.available | 2010-07-23 | |
dc.date.available | 2021-05-20T20:43:27Z | - |
dc.date.copyright | 2008-07-23 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-18 | |
dc.identifier.citation | 台南市環境保護局中石化安順廠整治場址網站
http://140.116.244.95/main.asp,上網日期2008年6月7日。 王偉光,徑向收斂流場下延散效應之分析,碩士論文,國立臺灣大學生物環境系統工程工程研究所,台北,2007。 李維華,廣義泰勒延散理論於地下水之應用,碩士論文,國立臺灣大學農業工程研究所,台北,1994。 陳谷榕,改良式類神經網路方法於水文系統之研究,博士論文,國立臺灣大學土木工程學研究所,台北,2005。 陳瑞昇,徑向收斂流場追蹤劑試驗延散效應之解析,博士論文,國立臺灣大學農業工程研究所,台北,1997。 葉弘德,淺層地下水場址實測調查分析,國立交通大學環境工程研究所研究報告,1992。 張斐章,張麗秋,類神經網路,台北:臺灣東華書局股份有限公司,2005。 Akin, S., Tracer model identification using artificial neural networks, Water Resour. Res., vol. 41, 2005, W10421, doi:10.1029/2004WR003838. Aziz, A. R. A., and K. F. V. Wong, Neural network approach to the determination of aquifer parameters, Ground Water, vol. 30, no. 2, 1992, pp. 164-166. Bear, J., Hydraulics of Groundwater, New York: McGraw-Hill Inc, 1979. Carrera, J., and G. Walters, Theoretical developments regarding simulation and analysis of convergent flow tracer test. Sandia National Laboratories, 1985. Chen, J. S., C. S. Chen, H. S. Gau, and C. W. Liu, A two-well method to evaluate transverse dispersivity for tracer tests in a radially convergent flow field, J. Hydrol., vol. 223, 1999, pp. 175-197. Chen, J. S., C. W. Liu, H. T. Hsu, and C. M. Liao, A Laplace transform power series solution for solute transport in a convergent flow field with scale-dependent dispersion, Water Resour. Res., vol. 39, no. 8, 2003, doi:10.1029/2003WR002299. Chen, J. S., C. W. Liu, and C. P. Liang, Evaluation of longitudinal and transverse dispersivities/distance ratios for tracer test in a radially convergent flow field with scale-dependent dispersion, Adv. Water Resour., vol. 29, no. 6, 2006, pp. 887-898. Coppola Jr., E. A., A. J. Rana, M. M. Poulton, F. Szidarovszky, and V. W. Uhl, A neural network model for predicting aquifer water level elevations, Ground Water, vol. 43, no. 2, 2005, pp. 231-241. Daliakopoulos, I. N., P. Coulibaly, and I. K. Tsanis, Groundwater level forecasting using artificial neural networks, J. Hydrol., vol. 309, 2005, pp. 229-240. Domenico, P. A., and F. W. Schwartz, Physical and Chemical Hydrology, New York: John Wiley & Sons, 1990. Fiori, A., and G. Dagan, Concentration fluctuations in aquifer transport: A rigorous first-order solution and applications, J. Contam. Hydrol., vol. 45, no. 1, 2000, pp. 139-163. Gelhar, L. W., C. Welty, and K. R. Rehfeldt, A critical review of data on field-scale dispersioin aquifers, Water Resour. Res., vol. 28, no. 7, 1992, pp. 1955-1974. Guvanasen, V., and V. M. Guvanasen, An approximate semi-analytical solution for tracer injection tests in a confined aquifer with a radially convergent flow field and finite volume of tracer and chase fluid, Water Resour. Res., vol. 23, no. 8, 1987, pp. 1607-1619. Kapoor, V., and L. W. Gelhar, Transport in three-dimensionally heterogeneous aquifers: 1. Dynamics of concentration fluctuations, Water Resour. Res., vol. 30, no. 6, 1994, pp. 1775-1788. Kapoor, V., and P. K. Kitanidis, Concentration fluctuations and dilution in aquifers, Water Resour. Res., vol. 34, no. 5, 1998, pp. 1181-1193. Kitanidis, P. K., The concept of the dilution index, Water Resour. Res., vol. 30, no. 7, 1994, pp. 2011-2026. Leij, F. J., and J. H. Dane, The effect of transverse dispersion on solute transport in soils. J. Hydrol., vol. 122, 1991, pp. 407-422. Lin, G. F., and G. R. Chen, An improved neural network approach to the determination of aquifer parameters, J. Hydrol., vol. 316, 2006, pp. 281-289. Logan, J. D., Solute transport in porous media with scale-dependent dispersion and periodic boundary conditions. J Hydrol., vol. 184, 1996, pp. 261-276. McWorter, D. B., and D. K. Sunada, Groundwater Hydrology and Hydraulics, Water Resources Publications, Fort Collins, Colorado, 1977. Moench, A. F., Convergent radial dispersion: A Laplace transform solution for aquifer tracer testing, Water Resour. Res., vol. 25, no. 3, 1989, pp. 439-447. Neuman, S. P., Universal scaling of hydraulic conductivities and dispersivities in geologic media, Water Resour. Res., vol. 26, no. 8, 1990, pp. 1749-1758. Ogata, A., Theory of dispersion in a granular medium, Geological Survey Professional Paper, vol. 441-Ι, 1970. Pang, L., and B. Hunt, Solutions and verification of a scale-dependent dispersion model, J. Contam. Hydrol., vol. 53, 2001, pp. 21– 39. Pickens, J. F., and G. E. Grisak, Scale-dependent dispersion in a stratified granular aquifer, Water Resour. Res., vol. 17, no. 4, 1981a, pp. 1191-1211. Pickens, J. F., and G. E. Grisak, Modeling of scale-dependent dispersion in hydrogeologic systems, Water Resour. Res., vol. 17, no. 6, 1981b, pp. 1701-1711. Rizzo, D. M., and D. E. Dougherty, Characterization of aquifer properties using artificial neural networks: neural kriging, Water Resour. Res., vol. 30, no. 2, 1994, pp. 483-497. Samani, N., M. Gohari-Moghadam, and A. A. Safavi, A simple neural network model for the determination of aquifer parameters, J. Hydrol., vol. 340, 2007, pp. 1-11. Sauty, J. P., An analysis of hydrodispersive transfer in aquifer, Water Resour. Res., vol. 16, no. 1, 1980, pp. 145-158. Schulze-Makuch, D., Longitudinal dispersivity data and implications for scaling behavior, Ground Water, vol. 43, no. 3, 2005, pp. 443-456. Simunek, J., M. Sejna, and M. Th. van Genuchten, HYDRUS-2D, Simulating water flow and solute transport in two-dimensional variably saturated media (version 1.0), IGWMC, Golden, CO., 1996. Wang, H. Q., and N. Crampon, Method for interpreting tracer experiments in radial flow using modified analytical solutions, J. Hydrol., vol. 165, 1995, pp. 11-31. Yates, S. R., An analytical solution for one-dimensional transport in heterogeneous porous media, Water Resour. Res., vol. 26, no. 10, 1990, pp. 2331-2338. Yoon, H. S., Y. J. Hyun, and K. K. Lee, Forecasting solute breakthrough curves through the unsaturated zone using artificial neural networks, J. Hydrol., vol. 335, issue. 1-2, 2007, pp. 68-77. Zlotnik, V. A., and J. D. Logan, Boundary conditions for convergent radial tracer tests and the effect of well bore mixing volume, Water Resour. Res., vol. 32, no. 7, 1996, pp. 2323-2328. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9822 | - |
dc.description.abstract | 移流-延散方程式(advection-dispersion equation, ADE)為描述含水層污染溶質傳輸歷程之控制方程式,其中延散度(dispersivity)為模擬污染溶質傳輸主要傳輸參數。傳統上,以標準曲線套配法(type curve-fitting)套配現地追蹤劑試驗數據推估延散度需花費大量時間,且套配精確度不易掌握,故本研究應用倒傳遞類神經網路(back propagation neural network, BPN)結合二維徑向收斂流場追蹤劑試驗數學模式(scale-dependent dispersivity model, SDM),建立二維徑向收斂流場追蹤劑試驗套配模式(back propagation neural network fitting model, BPNFM),以提高推估延散度之精確度與效率。套配模式在訓練與驗證樣本之輸出誤差顯示,尺度縱向延散度套配模式在Peclet number介於0.5至100及有效孔隙率套配模式在有效孔隙率介於0.05至0.5之範圍推估誤差可保持在2%以內。而尺度側向延散度套配模式在尺度側向延散度介於0.3至10公尺之推估誤差為5%以內,在介於0.1至0.3公尺之推估誤差為8%以內,在介於0.03至0.1公尺之推估誤差為10%以內,在介於0.01至0.0.3公尺之推估誤差則為20%以內,各套配模式在其適用範圍內均可獲致良好之輸出精確度。在鹽寮核四廠址與假想追蹤劑試驗之數據套配結果顯示,二維徑向收斂流場追蹤劑試驗套配模式與標準曲線套配法在不同試驗場址之套配精確度相近。而套配效率上,二維徑向收斂流場追蹤劑試驗套配模式可大幅縮短標準曲線套配法套配過程花費之時間,因此二維徑向收斂流場追蹤劑試驗套配模式可在具備套配精確度下有效率地套配現地試驗數據,獲致可靠之延散度參數。 | zh_TW |
dc.description.abstract | Advection-dispersion equation (ADE) describes the solute transport process in saturated aquifer, the dispersivity is the main parameter of ADE. Traditionally, the use of type curve-fitting to estimate dispersivity by analyzing the field data generally requires to a large amount of time, and the analysis accuracy is difficult to control. This study applied the back propagation neural network (BPN) model to analyze two-dimensional radially convergent flow tracer tests. The developed back propagation neural network fitting model (BPNFM) incorporates the scale-dependent dispersivity model (SDM) to automatically estimate the longitudinal and transverse dispersivities as well as the effective porosity. The prediction errors of training and validation data show that the scale-dependent longitudinal dispersivity fitting model and the effective porosity fitting model can maintain the prediction errors within 2% while the Peclet number is between 0.5 to 100, the effective porosity is between 0.05 to 0.5, respectively. The scale-dependent transverse dispersivity fitting model can maintain the prediction errors within 5%, 8%, 10% and 20% while the scale-dependent transverse dispersivity is between 0.3 to 10 meters, 0.1 to 0.3 meters, 0.03 to 0.1 meters and 0.01 to 0.3 meters, respectively. Two field data were used to demonstrate the efficiency and accuracy of BPNFM. The BPNFM not only significantly reduces the analysis time but also yields accurate matching result by comparing to the manual type curve-fitting results. The developed BPNFM is an effective tool for analyzing the dispersivities of the field tracer tests. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:43:27Z (GMT). No. of bitstreams: 1 ntu-97-R95622003-1.pdf: 2929614 bytes, checksum: 276457e7bbdddd33744e9e6fab6f413b (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 摘要 ..................................................................................................................................i
Abstract ............................................................................................................................ii 目錄 ................................................................................................................................iii 圖目錄 .............................................................................................................................v 表目錄 ..........................................................................................................................viii 符號說明 ........................................................................................................................ix 第一章 前言.....................................................................................................................1 1.1 研究動機............................................................................................................1 1.2 研究目的............................................................................................................2 第二章 文獻回顧.............................................................................................................3 2.1 追蹤劑試驗........................................................................................................3 2.1.1 一維徑向收斂流場追蹤劑試驗數學模式.............................................4 2.1.2 二維徑向收斂流場追蹤劑試驗數學模式.............................................5 2.2 延散作用之尺度效應........................................................................................6 2.3 類神經網路於地下水領域之應用....................................................................9 第三章 溶質傳輸理論...................................................................................................11 3.1 溶質傳輸控制方程式......................................................................................12 3.1.1 移流-延散方程式...............................................................................14 3.1.2 溶質傳輸化學反應...............................................................................16 3.2 二維徑向收斂流場追蹤劑試驗數學模式......................................................19 第四章 類神經網路.......................................................................................................26 4.1 類神經網路概述..............................................................................................26 4.1.1 生物神經元...........................................................................................26 4.1.2 人工神經元...........................................................................................27 4.1.3 類神經網路架構...................................................................................30 4.2 倒傳遞類神經網路..........................................................................................33 第五章 二維徑向收斂流場追蹤劑試驗套配模式.......................................................39 5.1 尺度縱向延散度套配模式 ...........................................................40 5.2 有效孔隙率套配模式 .......................................................................44 5.3 尺度側向延散度套配模式 ...........................................................48 5.4 現地試驗數據套配流程..................................................................................57 5.5 案例研究-鹽寮核四廠址..............................................................................60 5.5.1 試驗場址描述.......................................................................................60 5.5.2 現地追蹤劑試驗...................................................................................62 5.5.3 試驗數據套配.......................................................................................63 5.6 案例研究-假想追蹤劑試驗..........................................................................67 5.7 綜合討論..........................................................................................................74 第六章 結論與建議.......................................................................................................78 6.1 結論..................................................................................................................78 6.2 建議..................................................................................................................79 參考文獻.........................................................................................................................80 附錄 二維徑向收斂流場追蹤劑試驗套配模式(BPNFM)..........................................84 | |
dc.language.iso | zh-TW | |
dc.title | 應用類神經網路推估二維徑向收斂流場追蹤劑試驗之延散度 | zh_TW |
dc.title | Application of Artificial Neural Network to Estimate Dispersivity for Tracer Test in Two-Dimensional Radially Convergent Flow Field | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李振誥,陳瑞昇,張誠信 | |
dc.subject.keyword | 追蹤劑試驗,類神經網路,尺度效應,縱向延散度,側向延散度,有效孔隙率, | zh_TW |
dc.subject.keyword | Tracer test,Artificial neural networks,Scale-dependent effect,Longitudinal dispersivity,Transverse dispersivity,Effective porosity, | en |
dc.relation.page | 108 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2008-07-18 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
顯示於系所單位: | 生物環境系統工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf | 2.86 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。