請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98227完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 闕居振 | zh_TW |
| dc.contributor.advisor | Chu-Chen Chueh | en |
| dc.contributor.author | 張嘉富 | zh_TW |
| dc.contributor.author | Jia-Fu Chang | en |
| dc.date.accessioned | 2025-07-30T16:24:49Z | - |
| dc.date.available | 2025-07-31 | - |
| dc.date.copyright | 2025-07-30 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-24 | - |
| dc.identifier.citation | [1] Wang B-Y, Lee E-S, Oh Y-J, Kang HW. A silver nanowire mesh overcoated protection layer with graphene oxide as a transparent electrode for flexible organic solar cells. Rsc Advances. 2017;7(83):52914-22.
[2] Li S, Li Z, Wan X, Chen Y. Recent progress in flexible organic solar cells. Escience. 2023;3(1):100085. [3] Seri M, Mercuri F, Ruani G, Feng Y, Li M, Xu Z-X, et al. Toward real setting applications of organic and perovskite solar cells: A comparative review. Energy Technology. 2021;9(5):2000901. [4] Park S, Heo SW, Lee W, Inoue D, Jiang Z, Yu K, et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature. 2018;561(7724):516-21. [5] Liu C, Xiao C, Xie C, Li W. Flexible organic solar cells: Materials, large-area fabrication techniques and potential applications. Nano Energy. 2021;89:106399. [6] Warren R, Privitera A, Kaienburg P, Lauritzen AE, Thimm O, Nelson J, et al. Controlling energy levels and Fermi level en route to fully tailored energetics in organic semiconductors. Nature communications. 2019;10(1):5538. [7] Köhler A, Bässler H. Electronic processes in organic semiconductors: An introduction: John Wiley & Sons, 2015. [8] Tress W, Beyer B, Ashari Astani N, Gao F, Meloni S, Rothlisberger U. Extended Intermolecular Interactions Governing Photocurrent–Voltage Relations in Ternary Organic Solar Cells. The journal of physical chemistry letters. 2016;7(19):3936-44. [9] Xie Y, Wu H. Balancing charge generation and voltage loss toward efficient nonfullerene organic solar cells. Materials Today Advances. 2020;5:100048. [10] Schwarz C, Milan F, Hahn T, Reichenberger M, Kümmel S, Köhler A. Ground state bleaching at donor–acceptor interfaces. Advanced Functional Materials. 2014;24(41):6439-48. [11] Kokil A, Yang K, Kumar J. Techniques for characterization of charge carrier mobility in organic semiconductors. Journal of polymer science part b: polymer physics. 2012;50(15):1130-44. [12] Chen C, Wang L, Xia W, Qiu K, Guo C, Gan Z, et al. Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20%. Nature Communications. 2024;15(1):6865. [13] Qiu D, Adil MA, Lu K, Wei Z. The crystallinity control of polymer donor materials for high-performance organic solar cells. Frontiers in Chemistry. 2020;8:603134. [14] Koerner C, Elschner C, Cates N, Fitzner R, Selzer F, Reinold E, et al. Probing the effect of substrate heating during deposition of DCV4T: C60 blend layers for organic solar cells. Organic Electronics. 2012;13(4):623-31. [15] Zhang W, Zhang K, Hao X. Multilength‐Scale Morphological Engineering for Stable Organic Solar Cells. Small. 2025;21(15):2412230. [16] Irfan A, Mahmood A, Al-Sehemi AG, Ahmad F. Experimental and theoretical study of planar small molecule acceptor for organic solar cells. Journal of Molecular Structure. 2019;1196:169-75. [17] Luo Z, Yan H, Yang C. End-group engineering of nonfullerene acceptors for high-efficiency organic solar cells. Accounts of Materials Research. 2023;4(11):968-81. [18] Chen Z, Zhang S, Zhang T, Dai J, Yu Y, Li H, et al. Simplified fabrication of high-performance organic solar cells through the design of self-assembling hole-transport molecules. Joule. 2024;8(6):1723-34. [19] Liu F, Hou T, Xu X, Sun L, Zhou J, Zhao X, et al. Recent advances in nonfullerene acceptors for organic solar cells. Macromolecular Rapid Communications. 2018;39(3):1700555. [20] Xue P, Cheng P, Han RP, Zhan X. Printing fabrication of large-area non-fullerene organic solar cells. Materials Horizons. 2022;9(1):194-219. [21] Panidi J, Mazzolini E, Eisner F, Fu Y, Furlan F, Qiao Z, et al. Biorenewable solvents for high-performance organic solar cells. ACS Energy Letters. 2023;8(7):3038-47. [22] Xu X, Feng K, Yu L, Yan H, Li R, Peng Q. Highly efficient all-polymer solar cells enabled by p-doping of the polymer donor. ACS Energy Letters. 2020;5(7):2434-43. [23] Xiong W, Meng X, Liu T, Cai Y, Xue X, Li Z, et al. Rational design of perylenediimide-based polymer acceptor for efficient all-polymer solar cells. Organic Electronics. 2017;50:376-83. [24] Du J, Hu K, Zhang J, Meng L, Yue J, Angunawela I, et al. Polymerized small molecular acceptor based all-polymer solar cells with an efficiency of 16.16% via tuning polymer blend morphology by molecular design. Nature communications. 2021;12(1):5264. [25] Wang J, Han C, Wen S, Bi F, Hu Z, Li Y, et al. Achieving 17.94% efficiency all-polymer solar cells by independently induced d/a orderly stacking. Energy & Environmental Science. 2023;16(5):2327-37. [26] Hu L, Qiao W, Han J, Zhou X, Wang C, Ma D, et al. Naphthalene diimide–diketopyrrolopyrrole copolymers as non-fullerene acceptors for use in bulk-heterojunction all-polymer UV–NIR photodetectors. Polymer Chemistry. 2017;8(3):528-36. [27] Li Y, Song J, Dong Y, Jin H, Xin J, Wang S, et al. Polymerized small molecular acceptor with branched side chains for all polymer solar cells with efficiency over 16.7%. Advanced Materials. 2022;34(14):2110155. [28] Zhang ZG, Li Y. Polymerized small‐molecule acceptors for high‐performance all‐polymer solar cells. Angewandte Chemie International Edition. 2021;60(9):4422-33. [29] Li Y, Huang W, Zhao D, Wang L, Jiao Z, Huang Q, et al. Recent progress in organic solar cells: a review on materials from acceptor to donor. Molecules. 2022;27(6):1800. [30] Yin H, Yan C, Hu H, Ho JKW, Zhan X, Li G, et al. Recent progress of all-polymer solar cells–From chemical structure and device physics to photovoltaic performance. Materials Science and Engineering: R: Reports. 2020;140:100542. [31] Sun C, Lee JW, Seo S, Lee S, Wang C, Li H, et al. Synergistic engineering of side chains and backbone regioregularity of polymer acceptors for high‐performance all‐polymer solar cells with 15.1% efficiency. Advanced Energy Materials. 2022;12(3):2103239. [32] Li Y. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Accounts of chemical research. 2012;45(5):723-33. [33] Zhao J, Yao C, Ali MU, Miao J, Meng H. Recent advances in high-performance organic solar cells enabled by acceptor–donor–acceptor–donor–acceptor (A–DA′ D–A) type acceptors. Materials Chemistry Frontiers. 2020;4(12):3487-504. [34] Lüer L, Wang R, Liu C, Dube H, Heumüller T, Hauch J, et al. Maximizing performance and stability of organic solar cells at low driving force for charge separation. Advanced science. 2024;11(6):2305948. [35] Yu R, Wei X, Wu G, Tan Za. Layer‐by‐layered organic solar cells: Morphology optimizing strategies and processing techniques: Photovoltaics: Special Issue Dedicated to Professor Yongfang Li. Aggregate. 2022;3(3):e107. [36] Han G, Guo Y, Song X, Wang Y, Yi Y. Terminal π–π stacking determines three-dimensional molecular packing and isotropic charge transport in an A–π–A electron acceptor for non-fullerene organic solar cells. Journal of Materials Chemistry C. 2017;5(20):4852-7. [37] Tao J, Zhao C, Wang Z, Chen Y, Zang L, Yang G, et al. Suppressing non-radiative recombination for efficient and stable perovskite solar cells. Energy & Environmental Science. 2025;18(2):509-44. [38] Xu M, Zhang D, Wang Z, Liu Z, Gao X, He J, et al. Highly stretchable All-polymer solar cells enabled by Siloxane-terminated side chains and molecular weight control. Chemical Engineering Journal. 2022;440:135829. [39] Lee T, Song CE, Lee SK, Shin WS, Lim E. Alkyl-side-chain engineering of nonfused nonfullerene acceptors with simultaneously improved material solubility and device performance for organic solar cells. ACS omega. 2021;6(7):4562-73. [40] Mooney M, Nyayachavadi A, Awada A, Iakovidis E, Wang Y, Chen M-N, et al. Asymmetric side-chain engineering in semiconducting polymers: A platform for greener processing and post-functionalization of organic electronics. Polymer Chemistry. 2023;14(5):562-72. [41] Lee Y, Raju TB, Yeom H, Gopikrishna P, Kim K, Cho HW, et al. Alkyl Chain Engineering of Low Bandgap Non-Fullerene Acceptors for High-Performance Organic Solar Cells: Branched vs. Linear Alkyl Side Chains. Polymers. 2022;14(18):3812. [42] Mei J, Wu HC, Diao Y, Appleton A, Wang H, Zhou Y, et al. Effect of Spacer Length of Siloxane‐Terminated Side Chains on Charge Transport in Isoindigo‐Based Polymer Semiconductor Thin Films. Advanced Functional Materials. 2015;25(23):3455-62. [43] Shin J, Kim M, Kang B, Lee J, Kim HG, Cho K. Impact of side-chain fluorination on photovoltaic properties: fine tuning of the microstructure and energy levels of 2D-conjugated copolymers. Journal of Materials Chemistry A. 2017;5(32):16702-11. [44] Li S, Yang X, Zhang L, An J, Cai B, Wang X. Effect of fluorine substituents on benzothiadiazole-based D–π–A′–π–A photosensitizers for dye-sensitized solar cells. RSC advances. 2020;10(16):9203-9. [45] Wei W, Zhou X, Pang S, Zhou J, Yuan X, Li J, et al. A–D–A'–D–A type nonfused ring electron acceptors for efficient organic solar cells via synergistic molecular packing and orientation control. Aggregate. 2024;5(2):e488. [46] Luo D, Li L, Zhou E, Wong W-Y, Kyaw AKK. Additive engineering for high-performance P3HT: non-fused ring electron acceptor organic solar cell. Materials Advances. 2023;4(19):4444-54. [47] Kim W, Kim JK, Kim E, Ahn TK, Wang DH, Park JH. Conflicted effects of a solvent additive on PTB7: PC71BM bulk heterojunction solar cells. The Journal of Physical Chemistry C. 2015;119(11):5954-61. [48] Pan J, Zhang Q, Guan J, Gao H, Li L, Zhang R, et al. Enhancing molecular aggregation and decreasing the optical gap by a dual-additive to reduce the energy loss of all-polymer organic solar cells. Journal of Materials Chemistry C. 2025;13(3):1457-68. [49] Li Y, Xu X, Shi C, Chen W, Fu Y, Liu W, et al. Triazine derivative as volatile solid additive for non‐halogenated solvent and thermal annealing‐free processed organic solar cells with over 18% efficiency. Information & Functional Materials. 2024;1(3):323-30. [50] Hou Y, Wang Q, Yang Y, Yang C, Shen W, Tang J. Morphology Regulation Is Achieved by Volatile Solid Additives in Halogen-Free Solvents to Fabricate Efficient Polymer Solar Cells. ACS Applied Materials & Interfaces. 2025;17(10):15728-40. [51] Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L. Recent advances in bulk heterojunction polymer solar cells. Chemical Reviews. 2015;115(23):12666–731. [52] Cheng P, Li G, Zhan X, Yang Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nature Photonics. 2018;12(3):131–42. [53] Liang N, Jiang W, Hou J, Wang Z. New developments in non-fullerene small molecule acceptors for polymer solar cells. Materials Chemistry Frontiers. 2017;1(7):1291–303. [54] Lipomi DJ, Tee BCK, Vosgueritchian M, Bao Z. Stretchable organic solar cells. Advanced Materials. 2011;23(15):1771–5. [55] Guo X, Zhou N, Lou SJ, Smith J, Tice DB, Hennek JW, et al. Polymer solar cells with enhanced fill factors. Nature Photonics. 2013;7(10):825–33. [56] Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, et al. Single-junction organic photovoltaic cells with approaching 18% efficiency. Advanced Materials. 2020;32(19):1908205. [57] Luo Z, Ma R, Liu T, Yu J, Xiao Y, Sun R, et al. Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17. Joule. 2020;4(6):1236–47. [58] Zhang ZG, Wang J. Structures and properties of conjugated Donor–Acceptor copolymers for solar cell applications. Journal of Materials Chemistry. 2012;22(10):4178–87. [59] Holliday S, Li Y, Luscombe CK. Recent advances in high performance donoracceptor polymers for organic photovoltaics. Progress in Polymer Science. 2017;70:34–51. [60] Ajayaghosh A. Donor–acceptor type low band gap polymers: polysquaraines and related systems. Chemical Society Reviews. 2003;32(4):181–91. [61] Van Mullekom H, Vekemans J, Havinga E, Meijer E. Developments in the chemistry and band gap engineering of donor–acceptor substituted conjugated polymers. Materials Science and Engineering R: Reports. 2001;32(1):1–40. [62] Yang J, Xiao B, Tajima K, Nakano M, Takimiya K, Tang A, et al. Comparison among perylene diimide (Pdi), naphthalene diimide (Ndi), and Naphthodithiophene diimide (Ndti) based N-type polymers for all-polymer solar cells application. Macromolecules. 2017;50(8):3179–85. [63] Lee C, Lee S, Kim G-U, Lee W, Kim BJ. Recent advances, design guidelines, and prospects of all-polymer solar cells. Chemical Reviews. 2019;119(13):8028–86. [64] Zhou N, Facchetti A. Naphthalenediimide (NDI) polymers for all-polymer photovoltaics. Materials Today. 2018;21(4):377–90. [65] Qu S, Tian H. Diketopyrrolopyrrole (DPP)-based materials for organic photovoltaics. Chemical Communications. 2012;48(25):3039–51. [66] Deng P, Zhang Q. Recent developments on isoindigo-based conjugated polymers. Polymer Chemistry. 2014;5(10):3298–305. [67] Wei X, Zhang W, Yu G. Semiconducting polymers based on isoindigo and its derivatives: synthetic tactics, structural modifications, and applications. Advanced Functional Materials. 2021:2010979. [68] Gu H, Ming S, Lin K, Chen S, Liu X, Lu B, et al. Isoindigo as an electron-deficient unit for high-performance polymeric electrochromics. Electrochimica Acta. 2018; 260:772–82. [69] Lin Y-C, Chen F-H, Chiang Y-C, Chueh C-C, Chen W-C. Asymmetric side-chain engineering of isoindigo-based polymers for improved stretchability and applications in field-effect transistors. ACS Applied Materials & Interfaces. 2019;11(37):34158–70. [70] Zhou Y, Kurosawa T, Ma W, Guo Y, Fang L, Vandewal K, et al. High performance all-polymer solar cell via polymer side-chain engineering. Advanced Materials. 2014;26(22):3767–72. [71] Mei J, Bao Z. Side chain engineering in solution-processable conjugated polymers. Chemistry of Materials. 2014;26(1):604–15. [72] Liu T, Pan X, Meng X, Liu Y, Wei D, Ma W, et al. Alkyl side-chain engineering in wide-bandgap copolymers leading to power conversion efficiencies over 10. Advanced Materials. 2017;29(6):1604251. [73] Back JY, Yu H, Song I, Kang I, Ahn H, Shin TJ, et al. Investigation of structure–property relationships in diketopyrrolopyrrole-based polymer semiconductors via side-chain engineering. Chemistry of Materials. 2015;27(5):1732–9. [74] Lei T, Wang J-Y, Pei J. Roles of flexible chains in organic semiconducting materials. Chemistry of Materials. 2014;26(1):594–603. [75] Wang T, Coropceanu V, Br´edas J-L. All-polymer solar cells: impact of the length of the branched alkyl side chains on the polymer acceptors on the interchain packing and electronic properties in amorphous blends. Chemistry of Materials. 2019;31(16):6239–48. [76] Yang S-F, Liu Z-T, Cai Z-X, Luo H-W, Qi P-L, Zhang G-X, et al. Conjugated donor–acceptor polymers entailing Pechmann Dye-derived acceptor with siloxaneterminated side chains exhibiting balanced ambipolar semiconducting behavior. Macromolecules. 2016;49(16):5857–65. [77] Kim Y, Long DX, Lee J, Kim G, Shin TJ, Nam K-W, et al. A balanced face-on to edgeon texture ratio in naphthalene diimide-based polymers with hybrid siloxane chains directs highly efficient electron transport. Macromolecules. 2015;48(15):5179–87. [78] Lee J, Han A-R, Yu H, Shin TJ, Yang C, Oh JH. Boosting the ambipolar performance of solution-processable polymer semiconductors via hybrid side-chain engineering. Journal of the American Chemical Society. 2013;135(25):9540–7. [79] Lee J, Han A-R, Kim J, Kim Y, Oh JH, Yang C. Solution-processable ambipolar diketopyrrolopyrrole–selenophene polymer with unprecedentedly high hole and electron mobilities. Journal of the American Chemical Society. 2012;134(51):20713–21. [80] Kamatham N, Ibraikulov OA, Durand P, Wang J, Boyron O, Heinrich B, et al. On the impact of linear siloxanated side chains on the molecular self-assembling and charge transport properties of conjugated polymers. Advanced Functional Materials. 2021;31(6):2007734. [81] Feng S, Zhang Ce, Liu Y, Bi Z, Zhang Z, Xu X, et al. Fused-ring acceptors with asymmetric side chains for high-performance thick-film organic solar cells. Advanced Materials. 2017;29(42):1703527. [82] Chen X, Kan B, Kan Y, Zhang M, Jo SB, Gao K, et al. As-cast ternary organic solar cells based on an asymmetric side-chains featured acceptor with reduced voltage loss and 14.0% efficiency. Advanced Functional Materials. 2020;30(11):1909535. [83] Kan B, Chen X, Gao K, Zhang M, Lin F, Peng X, et al. Asymmetrical side-chain engineering of small-molecule acceptors enable high-performance nonfullerene organic solar cells. Nano Energy. 2020;67:104209. [84] Chao P, Liu L, Qu J, He Q, Gan S, Meng H, et al. Overcoming the trade-off between Voc and Jsc: asymmetric chloro-substituted two-dimensional benzo [1, 2-b: 4, 5-b′ ] dithiophene-based polymer solar cells. Dyes and Pigments. 2019;162:746–54. [85] Tang Z, Xu X, Li R, Yu L, Meng L, Wang Y, et al. Asymmetric siloxane functional side chains enable high-performance donor copolymers for photovoltaic applications. ACS Applied Materials & Interfaces. 2020;12(15):17760–8. [86] An Q, Ma X, Gao J, Zhang F. Solvent additive-free ternary polymer solar cells with 16.27% efficiency. Science Bulletin. 2019;64(8):504–6. [87] Zhou H, Yang L, Stuart AC, Price SC, Liu S, You W. Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency. Angewandte Chemie. 2011;123(13):3051–4. [88] Zhang M, Guo X, Zhang S, Hou J. Synergistic effect of fluorination on molecular energy level modulation in highly efficient photovoltaic polymers. Advanced Materials. 2014;26(7):1118–23. [89] Peng F, An K, Zhong W, Li Z, Ying L, Li N, et al. A universal fluorinated polymer acceptor enables all-polymer solar cells with> 15% efficiency. ACS Energy Letters. 2020;5(12):3702–7. [90] Meyer F. Fluorinated conjugated polymers in organic bulk heterojunction photovoltaic solar cells. Progress in Polymer Science. 2015;47:70–91. [91] Leclerc N, Ch´avez P, Ibraikulov OA, Heiser T, L´evˆeque P. Impact of backbone fluorination on π-conjugated polymers in organic photovoltaic devices: a review. Polymers. 2016;8(1):11. [92] Deng D, Zhang Y, Zhang J, Wang Z, Zhu L, Fang J, et al. Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells. Nature Communications. 2016;7(1):1–9. [93] Fan Q, M´endez-Romero UA, Guo X, Wang E, Zhang M, Li Y. Fluorinated photovoltaic materials for high-performance organic solar cells. Chemistry-An Asian Journal. 2019;14(18):3085–95. [94] Cowan SR, Roy A, Heeger AJ. Recombination in polymer-fullerene bulk heterojunction solar cells. Physical Review B. 2010;82(24):245207. [95] Xu X, Li Z, Bi Z, Yu T, Ma W, Feng K, et al. Highly efficient nonfullerene polymer solar cells enabled by a copper (I) coordination strategy employing a 1, 3, 4- Oxadiazole-containing wide-bandgap copolymer donor. Advanced Materials. 2018;30(28):1800737. [96] Lakhwani G, Rao A, Friend RH. Bimolecular recombination in organic photovoltaics. Annual Review of Physical Chemistry. 2014;65:557–81. [97] Wetzelaer G, Kuik M, Lenes M, Blom P. Origin of the dark-current ideality factor in polymer: fullerene bulk heterojunction solar cells. Applied Physics Letters. 2011;99(15):153506. [98] Cowan SR, Leong WL, Banerji N, Dennler G, Heeger AJ. Identifying a threshold impurity level for organic solar cells: enhanced first-order recombination via well-defined PC84BM traps in organic bulk heterojunction solar cells. Advanced Functional Materials. 2011;21(16):3083–92. [99] Kang H, Uddin MA, Lee C, Kim K-H, Nguyen TL, Lee W, et al. Determining the role of polymer molecular weight for high-performance all-polymer solar cells: its effect on polymer aggregation and phase separation. Journal of the American Chemical Society. 2015;137(6):2359–65. [100] Fan B, Ying L, Zhu P, Pan F, Liu F, Chen J, et al. All-polymer solar cells based on a conjugated polymer containing siloxane-functionalized side chains with efficiency over 10. Advanced Materials. 2017;29(47):1703906. [101] Jia T, Zhang J, Zhang K, Tang H, Dong S, Tan C-H, et al. All-polymer solar cells with efficiency approaching 16% enabled using a dithieno [3′, 2′: 3, 4; 2′′, 3′′: 5, 6] benzo [1, 2-c][1, 2, 5] thiadiazole (fDTBT)-based polymer donor. Journal of Materials Chemistry A. 2021;9(14):8975-83. [102] Wang J, Li Y, Han C, Chen L, Bi F, Hu Z, et al. All-polymer solar cells with 19% efficiency via introducing pincer-shaped non-covalent bond interactions. Energy & Environmental Science. 2024;17(12):4216-27. [103] Fan B, Ying L, Zhu P, Pan F, Liu F, Chen J, et al. All‐polymer solar cells based on a conjugated polymer containing siloxane‐functionalized side chains with efficiency over 10%. Advanced materials. 2017;29(47):1703906. [104] Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, et al. Molecular optimization enables over 13% efficiency in organic solar cells. Journal of the American Chemical Society. 2017;139(21):7148-51. [105] Yi C, Hu X, Liu HC, Hu R, Hsu C-H, Zheng J, et al. Efficient polymer solar cells fabricated from solvent processing additive solution. Journal of Materials Chemistry C. 2015;3(1):26-32. [106] Wang T, Chen M, Sun R, Min J. Recent research progress of all-polymer solar cells based on PSMA-type polymer acceptors. Chem. 2023;9(7):1702-67. [107] Li Y, Li Q, Cai Y, Jin H, Zhang J, Tang Z, et al. An efficient polymer acceptor via a random polymerization strategy enables all-polymer solar cells with efficiency exceeding 17%. Energy & Environmental Science. 2022;15(9):3854-61. [108] Sun R, Wang W, Yu H, Chen Z, Xia X, Shen H, et al. Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors. Joule. 2021;5(6):1548-65. [109] Zhang L, Yao Z, Wang H, Zhang J, Ma X, Zhang F. Recent progress of all polymer solar cells with efficiency over 15%. Solar RRL. 2023;7(12):2300219. [110] Majhi J, Ghosh S, Priya K, Sharma S, Bandyopadhyay A. A critical review on the progress of emerging active and substrate materials for organic solar cells and device level fabrication techniques by solution process method. Next Materials. 2025;8:100595. [111] Zhou K, Xian K, Ye L. Morphology control in high‐efficiency all‐polymer solar cells. InfoMat. 2022;4(4):e12270. [112] Yue Y, Zheng B, Ni J, Yang W, Huo L, Wang J, et al. All‐Polymer Solar Cells with 17% Efficiency Enabled by the “End‐Capped” Ternary Strategy. Advanced Science. 2022;9(32):2204030. [113] Yu R, Yao H, Hong L, Qin Y, Zhu J, Cui Y, et al. Design and application of volatilizable solid additives in non-fullerene organic solar cells. Nature communications. 2018;9(1):4645. [114] Shen W, Chen W, Zhu D, Zhang J, Xu X, Jiang H, et al. High-performance ternary polymer solar cells from a structurally similar polymer alloy. Journal of Materials Chemistry A. 2017;5(24):12400-6. [115] Jeon J, Doi K, Kim HD, Ogawa H, Takenaka M, Ohkita H. Correlating the structures and photovoltaic properties in phase-separated blends of conjugated donor polymers and acceptors. Polymer Journal. 2023;55(4):477-87. [116] Memon WA, Deng Z, He F. Recent development in solid additives enables high-performance organic solar cells. EnergyChem. 2024:100129. [117] Liang Q, Li H, Xu W, Lu J, Ma R, Bai Q, et al. Dual‐Asymmetric Solid Additive Enables Eco‐friendly All‐Polymer Solar Cells with Over 19% Efficiency and Excellent Stability. Angewandte Chemie International Edition. 2025;64(14):e202425267. [118] McDowell C, Abdelsamie M, Toney MF, Bazan GC. Solvent additives: key morphology‐directing agents for solution‐processed organic solar cells. Advanced Materials. 2018;30(33):1707114. [119] Mishra A, Bhuyan NN, Xu H, Sharma GD. Advances in layer-by-layer processing for efficient and reliable organic solar cells. Materials Advances. 2023;4(23):6031-63. [120] Choi JY, Han YW, Jeon SJ, Ko EJ, Moon DK. Introduction of co-additives to form well dispersed photoactive layer to improve performance and stability of organic solar cells. Solar Energy. 2019;185:1-12. [121] Xiong Y, Ye L, Zhang C. Eco‐friendly solution processing of all‐polymer solar cells: Recent advances and future perspective. Journal of Polymer Science. 2022;60(6):945-60. [122] Tremolet de Villers BJ, O’Hara KA, Ostrowski DP, Biddle PH, Shaheen SE, Chabinyc ML, et al. Removal of residual diiodooctane improves photostability of high-performance organic solar cell polymers. Chemistry of Materials. 2016;28(3):876-84. [123] Tournebize A, Rivaton A, Peisert H, Chassé T. The crucial role of confined residual additives on the photostability of P3HT: PCBM active layers. The Journal of Physical Chemistry C. 2015;119(17):9142-8. [124] Liang Q, Li W, Lu H, Yu Z, Zhang X, Dong Q, et al. Recent advances of solid additives used in organic solar cells: toward efficient and stable solar cells. ACS Applied Energy Materials. 2022;6(1):31-50. [125] Huang X, Sun Y, Zhao Z, Chung S, Cho K, Kan Z. Triggering the Donor–Acceptor Phase Segregation with Solid Additives Enables 16.5% Efficiency in All-Polymer Solar Cells. ACS Applied Materials & Interfaces. 2023;15(37):44012-21. [126] Zhang G, Hu D, Tang H, Song H, Duan S, Kan Z, et al. Volatile Additive Strategy Triggering 17.48% Efficient Post‐Treatment‐Free Organic Solar Cells. Solar RRL. 2023;7(4):2200994. [127] Corzo D, Rosas-Villalva D, Tostado-Blázquez G, Alexandre EB, Hernandez LH, Han J, et al. High-performing organic electronics using terpene green solvents from renewable feedstocks. Nature Energy. 2023;8(1):62-73. [128] Moon Y, Han N, Lee M, Song GC, Yang D, Beak J, et al. Improving the efficiency of all-polymer solar cells through morphology control via a combination approach: polar solvent additives and external electric field. Journal of Materials Chemistry C. 2025. [129] Liu S, You Z, Wu T, Feng Y, Cao J, Hou L, et al. Toward Eco-Friendly Solvent-Processable DPP-Based Conjugated Polymers with Siloxane Branched Side Chains: Synthesis, Properties, and Ambipolar Field-Effect Transistor Characteristics. ACS Applied Electronic Materials. 2025. [130] Buckley A. Analysing space charge limited currents in organic light emitting diodes. Synthetic metals. 2010;160(5-6):540-3. [131] Zhang X, Li C, Xu J, Wang R, Song J, Zhang H, et al. High fill factor organic solar cells with increased dielectric constant and molecular packing density. Joule. 2022;6(2):444-57. [132] Liu T, Yang T, Ma R, Zhan L, Luo Z, Zhang G, et al. 16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend. Joule. 2021;5(4):914-30. [133] Wanderley RR, Knuutila HK. Evaluating the possibility of high-pressure desorption of CO2 via volatile co-solvent injection. Chemical Engineering Research and Design. 2021;169:116-34. [134] Ling F, Li S, Song X, Wang Y, Long J, Zhang B. Femtosecond time-resolved observation of butterfly vibration in electronically excited o-fluorophenol. Scientific Reports. 2017;7(1):15362. [135] Sun G, Jiang X, Li X, Meng L, Zhang J, Qin S, et al. High performance polymerized small molecule acceptor by synergistic optimization on π-bridge linker and side chain. Nature Communications. 2022;13(1):5267. [136] Liu B, Gámez-Valenzuela S, Lee J-W, Li B, Yang W, Wang K, et al. High-Performance Annealing-Free Polythiophene-Based Organic Solar Cells Enabled by Volatile Solid Additive. ACS Energy Letters. 2024;9(8):3727-36. [137] Müller-Buschbaum P. GISAXS and GISANS as metrology technique for understanding the 3D morphology of block copolymer thin films. European Polymer Journal. 2016;81:470-93. [138] Chang J-F, Hsieh C-T, Su L-Y, Chueh C-C. Reducing the side-chain influences of isoindigo-based polymer donors by backbone fluorination in photovoltaic applications. Dyes and Pigments. 2022;199:110038. [139] Du M, Chen Y, Li J, Geng Y, Ji H, Li G, et al. Wide-band-gap phthalimide-based D-π-A polymers for nonfullerene organic solar cells: the effect of conjugated π-bridge from thiophene to thieno [3, 2-b] thiophene. The Journal of Physical Chemistry C. 2019;124(1):230-6. [140] Tseng Y-C, Kato A, Chang J-F, Chen W-C, Higashihara T, Chueh C-C. Impact of the segment ratio on a donor–acceptor all-conjugated block copolymer in single-component organic solar cells. Nanoscale. 2022;14(14):5472-81. [141] Wang Y, Yu H, Wu X, Zhao D, Zhang S, Zou X, et al. Boosting the Fill Factor through Sequential Deposition and Homo Hydrocarbon Solvent toward Efficient and Stable All‐Polymer Solar Cells. Advanced Energy Materials. 2022;12(48):2202729. [142] Cui F, Qiao J, Xu Y, Fu Z, Gui R, Zhang C, et al. Using an external electric field to tune active layer morphology enabling high-efficiency organic solar cells via ambient blade coating. Science Advances. 2024;10(26):eado5460. [143] Yu H, Wang Y, Zou X, Han H, Kim HK, Yao Z, et al. Effects of Halogenation of Small‐Molecule and Polymeric Acceptors for Efficient Organic Solar Cells. Advanced Functional Materials. 2023;33(22):2300712. [144] Yu H, Wang Y, Kim HK, Wu X, Li Y, Yao Z, et al. A vinylene‐linker‐based polymer acceptor featuring a coplanar and rigid molecular conformation enables high‐performance all‐polymer solar cells with over 17% efficiency. Advanced Materials. 2022;34(27):2200361. [145] Rey G, Spindler C, Babbe F, Rachad W, Siebentritt S, Nuys M, et al. Absorption coefficient of a semiconductor thin film from photoluminescence. Physical Review Applied. 2018;9(6):064008. [146] Wu J, Lee J, Chin Y-C, Yao H, Cha H, Luke J, et al. Exceptionally low charge trapping enables highly efficient organic bulk heterojunction solar cells. Energy & Environmental Science. 2020;13(8):2422-30. [147] Song X, Song Y, Xu H, Gao S, Wang Y, Li J, et al. Solvent‐Induced Anti‐Aggregation Evolution on Small Molecule Electron‐Transporting Layer for Efficient, Scalable, and Robust Organic Solar Cells. Advanced Energy Materials. 2023;13(1):2203009. [148] Luo Z, Liu T, Ma R, Xiao Y, Zhan L, Zhang G, et al. Precisely controlling the position of bromine on the end group enables well‐regular polymer acceptors for all‐polymer solar cells with efficiencies over 15%. Advanced Materials. 2020;32(48):2005942. [149] Ma L, Cui Y, Zhang J, Xian K, Chen Z, Zhou K, et al. High‐Efficiency and Mechanically Robust All‐Polymer Organic Photovoltaic Cells Enabled by Optimized Fibril Network Morphology. Advanced Materials. 2023;35(9):2208926. [150] Zhang G, Wang L, Zhao C, Wang Y, Hu R, Che J, et al. Efficient all-polymer solar cells enabled by interface engineering. Polymers. 2022;14(18):3835. [151] Zhang T, Xu Y, Yao H, Zhang J, Bi P, Chen Z, et al. Suppressing the energetic disorder of all-polymer solar cells enables over 18% efficiency. Energy & Environmental Science. 2023;16(4):1581-9. [152] Yue Y, Zheng B, Yang W, Huo L, Wang J, Jiang L. Meniscus‐assisted coating with optimized active‐layer morphology toward highly efficient all‐polymer solar cells. Advanced Materials. 2022;34(14):2108508. [153] Ma R, Zhou K, Sun Y, Liu T, Kan Y, Xiao Y, et al. Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors. Matter. 2022;5(2):725-34. [154] Zhang W, Sun C, Angunawela I, Meng L, Qin S, Zhou L, et al. 16.52% Efficiency All‐Polymer Solar Cells with High Tolerance of the Photoactive Layer Thickness. Advanced Materials. 2022;34(20):2108749. [155] Cui FZ, Chen ZH, Qiao JW, Wang T, Lu GH, Yin H, et al. Ternary‐assisted sequential solution deposition enables efficient all‐polymer solar cells with tailored vertical‐phase distribution. Advanced Functional Materials. 2022;32(24):2200478. [156] Sun Y, Ma R, Kan Y, Liu T, Zhou K, Liu P, et al. Simultaneously Enhanced Efficiency and Mechanical Durability in Ternary Solar Cells Enabled by Low‐Cost Incompletely Separated Fullerenes. Macromolecular Rapid Communications. 2022;43(22):2200139. [157] Yu X, Lin H, Li M, Ma B, Zhang R, Du X, et al. Ternary organic solar cells with enhanced charge transfer and stability combining the advantages of polymer acceptors and fullerene acceptors. Organic Electronics. 2022;104:106471. [158] Ma R, Yu J, Liu T, Zhang G, Xiao Y, Luo Z, et al. All‐polymer solar cells with over 16% efficiency and enhanced stability enabled by compatible solvent and polymer additives: Photovoltaics: Special Issue Dedicated to Professor Yongfang Li. Aggregate. 2022;3(3):e58. [159] Hu K, Du J, Zhu C, Lai W, Li J, Xin J, et al. Chlorinated polymerized small molecule acceptor enabling ternary all-polymer solar cells with over 16.6% efficiency. Science China Chemistry. 2022;65(5):954-63. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98227 | - |
| dc.description.abstract | 有機太陽能電池(Organic Solar Cells, OSCs)因其輕量化、機械柔性佳,以及可相容於低成本溶液製程等特性,被視為極具潛力的新興光電技術。在多種 OSC 架構中,目前主要發展方向可分為兩類:其一為採用聚合物與非富勒烯小分子受體(non-fullerene acceptors, NFAs)組成的混合型系統(polymer:NFA);其二則為全聚合物太陽能電池(All-Polymer Solar Cells, All-PSCs),即同時以共軛高分子作為電子施體與受體材料。前者已達成優異的光電轉換效率(PCE),但仍面臨施體材料分子設計與形貌穩定性等挑戰;而後者雖具備更優異的熱穩定性、機械強度與長期穩定性,卻因兩種聚合物間相容性差與形貌控制困難,導致元件表現及可重複性受限。
本論文針對上述兩類系統所面臨之材料與製程挑戰,分別提出兩項互補且具策略性的解決方案:(1) 在 polymer:NFA 系統中,透過分子工程手法設計並優化聚合物施體的結構與光電特性;(2) 在 All-PSC 系統中,導入綠色共溶劑搭配揮發性固態添加劑的製程策略,以調控主動層的微觀形貌並實現理想的電荷傳輸行為。 在材料分子設計方面,本研究合成六種以異靛青(isoindigo)為主體的共軛高分子電子給體,並系統性探討其側鏈對稱性與主鏈氟化對光電與結晶性質的影響。這些材料分為兩大系列:未氟化的PII2T系列(P1-P3)與氟化的PII2TF系列(P4-P6),其中側鏈分別採用對稱(雙DT或雙SiO-C8)或非對稱(DT/SiO-C8)設計。分析結果指出,氟化能有效提升分子的共平面性與π-π堆疊能力,而非對稱側鏈設計則有助於形成有利的face-on堆疊取向與更緊密的鏈間堆積。基於非對稱側鏈的P2與P5在各自系列中表現出最高的功率轉換效率(PCE),並在短路電流(Jsc)、填充因子(FF)與復合抑制方面皆有顯著改善。此外,氟化設計亦能減緩側鏈結構變異對形貌與元件效能的影響,提升元件穩定性與製程耐受度。本部分結果突顯了分子結構工程在優化OSC材料性能中的關鍵角色。 接續材料設計成果,本研究進一步發展綠色溶劑製程策略,應用於高性能PM6:PY-IT全高分子主-受體系統,以優化其活性層形貌並兼顧環境永續性。鑑於傳統使用的氯仿(CF)對環境與健康具潛在危害,本研究選用三種較高沸點的環保輔助溶劑—THF、2-MeTHF與3-MeTHF—與CF混合,以調控薄膜形成過程中的乾燥速率。再搭配具揮發性的固體添加劑,得以在不殘留的前提下,有效調控聚合物聚集、相分離行為與奈米結構形成。紫外可見光譜與變溫吸收測試證實,混合溶劑系統能促進分子間有序堆積並穩定溶液態聚集。另外由同步輻射之結果則指出,這些製程條件有助於降低相區尺寸、增進垂直結晶性並提升主/受體的混合相容性。CF+THF與CF+2-MeTHF製程所製備的元件其PCE皆超過17%,顯著優於使用純CF或CF+3-MeTHF之對照組。此類元件不僅展現更佳的電荷傳輸平衡與抑制復合能力,其薄膜亦具備較高的內建電壓、更低的陷阱密度與能態整序,進一步提升激子解離效率、電荷抽取能力與開路電壓(Voc)。此外,此優化策略同樣適用於雙成份(binary)與三成份(ternary)系統,顯示出其高度通用性與潛力。 綜合上述研究成果,本論文從材料分子設計到製程控制,建立了一套完整策略以系統性優化有機太陽能電池之奈米形貌、光電特性與載子動態行為。本研究不僅提供深入理解OSC中結構-形貌-性能之關聯性,也為未來發展具備高效率與環境永續性的製程技術奠定重要基礎。 | zh_TW |
| dc.description.abstract | Organic solar cells (OSCs) have emerged as a promising photovoltaic technology due to their lightweight nature, mechanical flexibility, and compatibility with low-cost solution processing. Among various OSC architectures, two major directions have demonstrated significant potential: polymer:non-fullerene acceptor (polymer:NFA) systems, and all-polymer solar cells (All-PSCs), which utilize conjugated polymers as both donor and acceptor. While polymer:NFA systems have achieved excellent power conversion efficiencies (PCEs), ongoing challenges remain in optimizing donor molecular design and reducing morphology sensitivity. All-PSCs, on the other hand, offer enhanced thermal stability, mechanical robustness, and long-term device durability, but suffer from more complex morphology control and limited miscibility between two polymer components.
To address these challenges across both material systems, this thesis integrates two synergistic strategies: (1) molecular engineering of donor polymers in polymer:NFA systems to enhance structural and electronic properties, and (2) solvent-processing optimization in All-PSCs using green co-solvents and solid additives to achieve ideal phase morphology and balanced charge transport. For molecular engineering of conjugated polymers, six isoindigo-based donor polymers were synthesized and systematically investigated to evaluate the effects of side-chain symmetry and backbone fluorination on their optoelectronic and morphological properties. The polymers were divided into two series—PII2T (non-fluorinated, P1–P3) and PII2TF (fluorinated, P4–P6)—with variations in symmetric or asymmetric side-chain substitution using alkyl (DT) and siloxane (SiO–C8) branches. Optical absorption, cyclic voltammetry, and GIWAXS analyses revealed that backbone fluorination significantly improves molecular planarity and facilitates stronger π–π stacking, while asymmetric side chains induce favorable face-on orientation and tighter interchain packing. Devices based on asymmetric polymers (P2 and P5) exhibited the highest power conversion efficiencies (PCEs) in each series, with enhanced short-circuit current (Jsc), fill factor (FF), and reduced recombination losses. Furthermore, fluorination was shown to mitigate the influence of side-chain structure, improving morphology robustness and reducing performance variation. These findings underscore the importance of rational molecular engineering in optimizing OSC materials for enhanced device performance. Building upon these insights into material design, a green solvent engineering strategy was developed to further optimize the morphology of All-PSCs based on a high-performance PM6:PY-IT donor–acceptor blend. Recognizing the environmental and health concerns associated with commonly used solvents like chloroform (CF), three eco-friendly co-solvents—tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeTHF), and 3-methyltetrahydrofuran (3-MeTHF)—were blended with CF to modulate the drying kinetics during film formation. In combination with a volatile solid additive (DTT), this strategy enabled precise control over domain size, polymer aggregation, and phase separation dynamics. Optical absorption and temperature-dependent UV-Vis measurements confirmed that the mixed solvent systems promoted more ordered molecular packing and stronger solution-state aggregation. GIWAXS and GISAXS analyses further showed that these processing conditions resulted in reduced domain sizes, enhanced vertical crystallinity, and improved donor–acceptor miscibility. Devices fabricated with CF+THF and CF+2-MeTHF blends achieved PCEs over 17%, significantly outperforming devices processed with only CF or with CF+3-MeTHF. These high-performing devices exhibited balanced charge transport and suppressed recombination losses. Additionally, the optimized films exhibited higher built-in potential, lower trap densities, and reduced energetic disorder, all of which contributed to enhanced exciton dissociation, more efficient charge extraction, and higher Voc values. These improvements were consistently observed across binary and ternary device systems, confirming the generality and robustness of the proposed solvent engineering approach. Together, the results provide a comprehensive framework for tuning the nanoscale morphology, optoelectronic properties, and charge transport characteristics of OSCs. This study not only contributes valuable insights into structure—morphology—performance relationships in OSCs, but also offers practical guidelines for scaling up organic photovoltaics with eco-conscious manufacturing protocols. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:24:49Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-30T16:24:49Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract v Contents viii List of Figures xii List of Tables xvii CHAPTER 1 Introduction 1 1.1 Background on Photovoltaic Technologies 1 1.2 Organic Solar Cells (OSCs) 2 1.2.1 Working Mechanism of OSCs 2 1.2.2 The Role and Design of the Bulk Heterojunction (BHJ) Layer 3 1.2.3 Recent Progress and Key Challenges 4 1.3 All-Polymer Solar Cells (All-PSCs) 5 1.3.1 Introduction to All-Polymer Solar Cells 5 1.3.2 Evolution of Polymer Acceptors 5 1.3.3 PSMA-Type Acceptors: From Concept to Application 6 1.3.4 Outlook and Remaining Challenges 7 1.4 Morphology and Material Design in Organic Solar Cells 7 1.4.1 Donor–Acceptor Design and Intramolecular Charge Transfer 8 1.4.2 Morphological Requirements for Efficient Charge Generation 8 1.4.3 Molecular Design Strategies in OSCs 9 1.4.4 Processing Control via Solvent and Additive Engineering 10 1.5 Research Objectives 11 Figures 14 CHAPTER 2 Mitigating Side-Chain Effects in Isoindigo-Based Polymer Donors through Backbone Fluorination for Enhanced Photovoltaic Performance 20 2.1 Introduction 20 2.2 Experimental Section 22 2.2.1 Materials 22 2.2.2 Device Fabrication and Characterization 23 2.2.3 Space Charge Limited Current (SCLC) Measurement 24 2.3 Results and Discussion 25 2.3.1 Optical and Electrochemical Properties 25 2.3.2 Photovoltaic Performance 26 2.3.3 Charge Recombination and Transport Properties 29 2.3.4 Morphology Characterization 32 2.4 Conclusion 35 Figures 37 Tables 48 CHAPTER 3 Morphology-Controlled All-Polymer Solar Cells Enabled by Mixed Green Solvent Strategy 51 3.1 Introduction 51 3.2 Experimental Section 54 3.2.1 Materials 54 3.2.2 Device Fabrication and General Characterizations 54 3.2.3 Space Charge Limited Current (SCLC) Measurement 56 3.2.4 GIWAXS and GISAXS Measurement 57 3.2.5 TRPL measurement 57 3.3 Results and Discussion 58 3.3.1 Molecular characterization and optical properties 58 3.3.2 Morphology and molecular stacking behavior 61 3.3.3 Photovoltaic performance and charge recombination properties 64 3.3.4 Charge carrier dynamics and electrical characteristics 68 3.4 Conclusion 72 Figures 74 Tables 85 CHAPTER 4 Conclusion and Future work 94 Reference 96 | - |
| dc.language.iso | en | - |
| dc.subject | 有機太陽能電池 | zh_TW |
| dc.subject | 以異靛藍為基礎的給體高分子 | zh_TW |
| dc.subject | 主鏈氟化改質 | zh_TW |
| dc.subject | 側鏈工程設計 | zh_TW |
| dc.subject | 形貌控制 | zh_TW |
| dc.subject | 綠色溶劑工程 | zh_TW |
| dc.subject | backbone fluorination | en |
| dc.subject | Organic solar cells | en |
| dc.subject | green solvent engineering | en |
| dc.subject | morphology control | en |
| dc.subject | side-chain engineering | en |
| dc.subject | isoindigo-based donor polymers | en |
| dc.title | 以分子設計與溶液製程優化提升有機太陽能電池性能之研究 | zh_TW |
| dc.title | Molecular Design and Eco-Friendly Processing for High-Performance Organic Solar Cells | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林玠廷;黃裕清 | zh_TW |
| dc.contributor.oralexamcommittee | Chieh-Ting Lin;Yu-Ching Huang | en |
| dc.subject.keyword | 有機太陽能電池,以異靛藍為基礎的給體高分子,主鏈氟化改質,側鏈工程設計,形貌控制,綠色溶劑工程, | zh_TW |
| dc.subject.keyword | Organic solar cells,isoindigo-based donor polymers,backbone fluorination,side-chain engineering,morphology control,green solvent engineering, | en |
| dc.relation.page | 115 | - |
| dc.identifier.doi | 10.6342/NTU202502276 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-28 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2025-07-31 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 6.05 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
