請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98217完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳玲玲 | zh_TW |
| dc.contributor.advisor | Ling-Ling Wu | en |
| dc.contributor.author | 徐芊綺 | zh_TW |
| dc.contributor.author | Chien-Chi Hsu | en |
| dc.date.accessioned | 2025-07-30T16:22:32Z | - |
| dc.date.available | 2025-07-31 | - |
| dc.date.copyright | 2025-07-30 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-14 | - |
| dc.identifier.citation | Agarwal, R., & Karahanna, E. (2000). Time flies when you're having fun: Cognitive absorption and beliefs about information technology usage. MIS quarterly, 665-694.
Anderson, C., Nissley, C., & Anderson, C. (2006). The long tail. In: Hyperion Audiobooks. Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological bulletin, 103(3), 411. Ariely, D. (2000). Controlling the information flow: Effects on consumers' decision making and preferences. Journal of consumer research, 27(2), 233-248. Bridges, E., & Florsheim, R. (2008). Hedonic and utilitarian shopping goals: The online experience. Journal of Business Research, 61(4), 309-314. Brucks, M. (1985). The effects of product class knowledge on information search behavior. Journal of consumer research, 12(1), 1-16. Brynjolfsson, E., Hu, Y., & Simester, D. (2011). Goodbye pareto principle, hello long tail: The effect of search costs on the concentration of product sales. Management science, 57(8), 1373-1386. Carmines, E. G. (1979). Reliability and validity assessment. Quantitative Applications in the Social Sciences/Sage. Chen, H., Wigand, R. T., & Nilan, M. (2000). Exploring web users’ optimal flow experiences. Information Technology & People, 13(4), 263-281. Chen, H., Wigand, R. T., & Nilan, M. S. (1999). Optimal experience of web activities. Computers in Human Behavior, 15(5), 585-608. Childers, T. L., Carr, C. L., Peck, J., & Carson, S. (2001). Hedonic and utilitarian motivations for online retail shopping behavior. Journal of retailing, 77(4), 511-535. Constantinides, E. (2004). Influencing the online consumer's behavior: the Web experience. Internet research, 14(2), 111-126. Csikszentmihalyi, M. (1988). The flow experience and its significance for human psychology. In: Optimal Experience: Psychological Studies of Flow in Consciousness/Cambridge …. Csikszentmihalyi, M. (2000). Beyond boredom and anxiety. Jossey-bass. Csikszentmihalyi, M., & Csikszentmihalyi, I. S. (1992). Optimal experience: Psychological studies of flow in consciousness. Cambridge university press. Csikszentmihalyi, M., & LeFevre, J. (1989). Optimal experience in work and leisure. Journal of personality and social psychology, 56(5), 815. Czikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York: Harper & Row. De Vany, A., & Walls, W. D. (1999). Uncertainty in the movie industry: Does star power reduce the terror of the box office? Journal of cultural economics, 23, 285-318. Dellarocas, C., Gao, G., & Narayan, R. (2010). Are consumers more likely to contribute online reviews for hit or niche products? Journal of management information systems, 27(2), 127-158. Dewan, S., & Ramaprasad, J. (2012). Research note—Music blogging, online sampling, and the long tail. Information Systems Research, 23(3-part-2), 1056-1067. Elberse, A. (2008). Should you invest in the long tail? Harvard business review, 86(7/8), 88. Elberse, A., & Oberholzer-Gee, F. (2006). Superstars and underdogs: An examination of the long tail phenomenon in video sales (Vol. 7). Citeseer. Fiore, A. M., Kim, J., & Lee, H.-H. (2005). Effect of image interactivity technology on consumer responses toward the online retailer. Journal of interactive marketing, 19(3), 38-53. Guo, Y. M., & Poole, M. S. (2009). Antecedents of flow in online shopping: a test of alternative models. Information Systems Journal, 19(4), 369-390. Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing theory and Practice, 19(2), 139-152. Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European business review, 31(1), 2-24. Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial least squares structural equation modeling (PLS-SEM) using R: A workbook. Springer Nature. Han, S.-L., An, M., Han, J. J., & Lee, J. (2020). Telepresence, time distortion, and consumer traits of virtual reality shopping. Journal of Business Research, 118, 311-320. Hinz, O., Eckert, J., & Skiera, B. (2011). Drivers of the long tail phenomenon: an empirical analysis. Journal of management information systems, 27(4), 43-70. Hoffman, D. L., & Novak, T. P. (1996). Marketing in hypermedia computer-mediated environments: Conceptual foundations. Journal of marketing, 60(3), 50-68. Hsu, C. L., Chang, K. C., & Chen, M. C. (2012). Flow experience and internet shopping behavior: Investigating the moderating effect of consumer characteristics. Systems Research and Behavioral Science, 29(3), 317-332. Huang, M.-H. (2003). Designing website attributes to induce experiential encounters. Computers in Human Behavior, 19(4), 425-442. Huffman, C., & Kahn, B. E. (1998). Variety for sale: Mass customization or mass confusion? Journal of retailing, 74(4), 491-513. Jepsen, A. L. (2007). Factors affecting consumer use of the Internet for information search. Journal of interactive marketing, 21(3), 21-34. Johnson, G. J., Bruner II, G. C., & Kumar, A. (2006). Interactivity and its facets revisited: Theory and empirical test. Journal of advertising, 35(4), 35-52. Katawetawaraks, C., & Wang, C. (2011). Online shopper behavior: Influences of online shopping decision. Asian journal of business research, 1(2). Kempf, D. S., & Smith, R. E. (1998). Consumer processing of product trial and the influence of prior advertising: A structural modeling approach. Journal of Marketing Research, 35(3), 325-338. Kim, T., & Biocca, F. (1997). Telepresence via television: Two dimensions of telepresence may have different connections to memory and persuasion. Journal of computer-mediated communication, 3(2), JCMC325. Kim, W. B., & Choo, H. J. (2023). How virtual reality shopping experience enhances consumer creativity: The mediating role of perceptual curiosity. Journal of Business Research, 154, 113378. Klein, L. R. (2003). Creating virtual product experiences: The role of telepresence. Journal of interactive marketing, 17(1), 41-55. Koufaris, M. (2002). Applying the technology acceptance model and flow theory to online consumer behavior. Information Systems Research, 13(2), 205-223. Kulviwat, S., Guo, C., & Engchanil, N. (2004). Determinants of online information search: a critical review and assessment. Internet research, 14(3), 245-253. Lazoc, A. (2013). Information-seeking as optimal consumer experience. An empirical investigation. Journal of Knowledge Management, Economics and Information Technology, 3(6), 236-249. Lazoc, A., & Caraivan, L. (2012). The flow experience of online search: A literature review and future research agenda. International Journal of Communication Research, 2(1), 25-34. Lee, H. H., Fiore, A. M., & Kim, J. (2006). The role of the technology acceptance model in explaining effects of image interactivity technology on consumer responses. International Journal of Retail & Distribution Management, 34(8), 621-644. Lim, J., & Ayyagari, R. (2018). Investigating the determinants of telepresence in the e-commerce setting. Computers in Human Behavior, 85, 360-371. Lim, W. M. (2014). Understanding the influence of online flow elements on hedonic and utilitarian online shopping experiences: A case of online group buying. Journal of Information Systems, 28(2), 287-306. Liu, Y. (2003). Developing a scale to measure the interactivity of websites. Journal of advertising research, 43(2), 207-216. Liu, Y., & Shrum, L. J. (2002). What is interactivity and is it always such a good thing? Implications of definition, person, and situation for the influence of interactivity on advertising effectiveness. Journal of advertising, 31(4), 53-64. Luna, D., Peracchio, L. A., & de Juan, M. D. (2002). Cross-cultural and cognitive aspects of web site navigation. Journal of the academy of marketing science, 30(4), 397-410. Lv, J., & Liu, X. (2022). The impact of information overload of e-commerce platform on consumer return intention: Considering the moderating role of perceived environmental effectiveness. International Journal of Environmental Research and Public Health, 19(13), 8060. Massimini, F., & Carli, M. (1988). 16. The systematic assessment of flow in daily experience. Mathwick, C., & Rigdon, E. (2004). Play, flow, and the online search experience. Journal of consumer research, 31(2), 324-332. McMillan, S. J., & Hwang, J.-S. (2002). Measures of perceived interactivity: An exploration of the role of direction of communication, user control, and time in shaping perceptions of interactivity. Journal of advertising, 31(3), 29-42. Meiseberg, B. (2016). The effectiveness of e-tailers’ communication practices in stimulating sales of niche versus popular products. Journal of retailing, 92(3), 319-332. Mollen, A., & Wilson, H. (2010). Engagement, telepresence and interactivity in online consumer experience: Reconciling scholastic and managerial perspectives. Journal of Business Research, 63(9-10), 919-925. Moneta, G. B., & Csikszentmihalyi, M. (1996). The effect of perceived challenges and skills on the quality of subjective experience. Journal of personality, 64(2), 275-310. Novak, T. P., Hoffman, D. L., & Duhachek, A. (2003). The influence of goal‐directed and experiential activities on online flow experiences. Journal of consumer psychology, 13(1-2), 3-16. Novak, T. P., Hoffman, D. L., & Yung, Y.-F. (2000). Measuring the customer experience in online environments: A structural modeling approach. Marketing science, 19(1), 22-42. Oh, H., Animesh, A., & Pinsonneault, A. (2016). Free versus for-a-fee. MIS quarterly, 40(1), 31-56. Ozkara, B. Y., Ozmen, M., & Kim, J. W. (2016). Exploring the relationship between information satisfaction and flow in the context of consumers’ online search. Computers in Human Behavior, 63, 844-859. Park, S.-H., Mahony, D. F., Kim, Y., & Do Kim, Y. (2015). Curiosity generating advertisements and their impact on sport consumer behavior. Sport Management Review, 18(3), 359-369. Park, Y., Bang, Y., & Ahn, J.-H. (2020). How does the mobile channel reshape the sales distribution in E-commerce? Information Systems Research, 31(4), 1164-1182. Pelet, J.-É., Ettis, S., & Cowart, K. (2017). Optimal experience of flow enhanced by telepresence: Evidence from social media use. Information & Management, 54(1), 115-128. Phang, C. W., Zhang, C., & Sutanto, J. (2013). The influence of user interaction and participation in social media on the consumption intention of niche products. Information & Management, 50(8), 661-672. Posnock, R. (1991). The trial of curiosity: Henry James, William James, and the challenge of modernity. Oxford University Press. Rau, P.-L. P., Peng, S.-Y., & Yang, C.-C. (2006). Time distortion for expert and novice online game players. CyberPsychology & Behavior, 9(4), 396-403. Richard, M.-O., & Chandra, R. (2005). A model of consumer web navigational behavior: conceptual development and application. Journal of Business Research, 58(8), 1019-1029. Sarstedt, M., Hair Jr, J. F., Cheah, J.-H., Becker, J.-M., & Ringle, C. M. (2019). How to specify, estimate, and validate higher-order constructs in PLS-SEM. Australasian marketing journal, 27(3), 197-211. Schaefers, T. (2014). Standing out from the crowd: niche product choice as a form of conspicuous consumption. European Journal of Marketing, 48(9/10), 1805-1827. Shih, C. F. (1998). Conceptualizing consumer experiences in cyberspace. European Journal of Marketing, 32(7/8), 655-663. Sinha, S., & Raghavendra, S. (2004). Hollywood blockbusters and long-tailed distributions: An empirical study of the popularity of movies. The European Physical Journal B-Condensed Matter and Complex Systems, 42, 293-296. Skadberg, Y. X., & Kimmel, J. R. (2004). Visitors’ flow experience while browsing a Web site: its measurement, contributing factors and consequences. Computers in Human Behavior, 20(3), 403-422. Song, J. H., & Zinkhan, G. M. (2008). Determinants of perceived web site interactivity. Journal of marketing, 72(2), 99-113. Steuer, J. (1995). Defining virtual reality: Dimensions determining telepresence. Communication in the age of virtual reality/Lawrence Erlbaum and Associates. Stoffregen, T. Α. (2018). Affordances as properties of the animal-environment system. In How Shall Affordances Be Refined? (pp. 115-134). Routledge. Suh, K.-S., & Chang, S. (2006). User interfaces and consumer perceptions of online stores: The role of telepresence. Behaviour & information technology, 25(2), 99-113. Tang, F. (2020). The more interactivity the better? Investigating interactivity, task complexity, and product knowledge in online purchase decisions. Information Technology and Management, 21(3), 179-189. Trevino, L. K., & Webster, J. (1992). Flow in computer-mediated communication: Electronic mail and voice mail evaluation and impacts. Communication Research, 19(5), 539-573. Van Noort, G., Voorveld, H. A., & Van Reijmersdal, E. A. (2012). Interactivity in brand web sites: cognitive, affective, and behavioral responses explained by consumers’ online flow experience. Journal of interactive marketing, 26(4), 223-234. Wang, L. C., & Hsiao, D. F. (2012). Antecedents of flow in retail store shopping. Journal of retailing and consumer services, 19(4), 381-389. Weathers, D., Sharma, S., & Wood, S. L. (2007). Effects of online communication practices on consumer perceptions of performance uncertainty for search and experience goods. Journal of retailing, 83(4), 393-401. Werts, C. E., Linn, R. L., & Jöreskog, K. G. (1974). Intraclass reliability estimates: Testing structural assumptions. Educational and Psychological measurement, 34(1), 25-33. Wu, G. (1999). Perceived interactivity and attitude toward web sites. Proceedings of the conference-American Academy of Advertising, Yang, F., & Shen, F. (2018). Effects of web interactivity: A meta-analysis. Communication Research, 45(5), 635-658. Yang, Y., & Zhu, Y. (2010). Long Tail in electronic markets: Research on competition between niche products and featured products. 2010 7th International Conference on Service Systems and Service Management, Yim, M. Y.-C., Chu, S.-C., & Sauer, P. L. (2017). Is augmented reality technology an effective tool for e-commerce? An interactivity and vividness perspective. Journal of interactive marketing, 39(1), 89-103. 侯正裕, 陳靜枝, & 陳鴻基. (2010). 為何人們使用社交網站? 認知專注的觀點. 資訊管理學報, 17, 97-116. 許綾祐. (2011). 探討社群網站使用者持續使用之研究—整合期望確認理論與互動性 陳禮猷. (2005). 網路虛擬經驗類型組合之廣告效果. 臺北科技大學商業自動化與管理研究所學位論文, 2005, 1-102. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98217 | - |
| dc.description.abstract | 隨著網際網路與搜尋技術的發展,心流(flow)作為一種高度沉浸與專注的心理狀態,對消費者的線上搜尋體驗具備關鍵的影響。研究顯示,網站特性是影響心流體驗的重要因素。然而,主流與利基商品消費者在搜尋行為上的差異,是否會導致網站特性對心流體驗帶來不同程度的影響,仍有待進一步討論。具體而言,利基商品消費者相較於主流商品消費者對商品有明確偏好,而有更強的動機使用網站提供的功能找到符合其需求的商品。因此,本研究旨在探討購買不同熱門程度商品的消費者,在搜尋產品相關資訊時,網站特性對心流體驗的影響是否存在顯著差異,並假設相較於主流商品消費者,網站特性對利基商品消費者的心流體驗有更強的正向效果。本研究聚焦於 Hoffman and Novak(1996)研究中提出的三個作為心流前因的網站特性:技能與挑戰的平衡(balance between skill and challenge)、互動性(interactivity)及遠端臨場感(telepresence),並透過四個面向:時間扭曲(time distortion)、專注沉浸(focused immersion)、享樂感(enjoyment)和好奇心(curiosity)來衡量心流體驗。透過問卷調查,本研究發現,網站特性對心流體驗的影響在利基商品消費者中具有更顯著的正向效果,且此效應在特定的心流前因與面向中尤為顯著。具體而言,網站特性的三個前因中,技能與挑戰的平衡對心流體驗無顯著影響,網站互動性(interactivity)對增強享樂感(heightened enjoyment)具有顯著的正向影響,而遠端臨場感(telepresence)則正向影響好奇心(curiosity)。後兩者對心流體驗的影響在利基商品消費者中相較於熱門商品消費者有更強的正向效果。此研究發現支持主流與利基商品消費者在網站特性對心流體驗的影響存在差異的假設,為理論與實務帶來貢獻。 | zh_TW |
| dc.description.abstract | With the advancement of search technologies, the concept of flow, an immersive psychological state, has become a critical factor in shaping consumers' online search experiences. While research has shown that website characteristics significantly influence flow, it remains unclear how these effects differ between niche and mainstream consumers. Specifically, niche consumers with specific product preferences are more motivated to use website features to find products that fully meet their needs.
The study investigates whether website characteristics influence flows differently for consumers searching for products of various levels of popularity, and hypothesizes that website characteristics have a stronger positive effect on flow for niche consumers than mainstream consumers. The study focuses on three website characteristics identified as flow antecedents in Hoffman and Novak’s (1996) research: balance between skill and challenge, interactivity, and telepresence, and measures flow through four dimensions: time distortion, focused immersion, heightened enjoyment, and curiosity. Results from a questionnaire survey indicate that website characteristics have a more significant impact on niche consumers’ flow experience in specific flow antecedents and dimensions. Among the three antecedents examined, the balance between skill and challenge does not significantly affect the flow experience. In contrast, interactivity positively influenced enjoyment, and telepresence enhanced curiosity. These positive effects are stronger among niche consumers compared to mainstream consumers. The findings support the hypothesis that website characteristics influence the flow experiences of mainstream and niche product consumers differently, contributing to both theoretical understanding and practical applications in consumer behaviors. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:22:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-30T16:22:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES vii Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Online Search Behavior 3 2.2 The Flow Theory 4 2.3 Product Popularity 11 Chapter 3 Research Methodology 18 3.1 Research Method 18 3.2 Measurements 19 3.2.1 Independent Variables 19 3.2.2 Dependent Variable 19 3.2.3 Moderating Variable 20 3.2.4 Control Variables 20 3.3 Product Selection 24 3.4 Participants 24 3.5 Procedures 25 Chapter 4 Empirical Results 27 4.1 External Validity 27 4.2 Reliability and Validity of the Measurements 30 4.3 Test of Hypothesis 35 Chapter 5 Discussion and Conclusion 41 5.1 Discussion 41 5.2 Limitation and Future Research 42 REFERENCES 44 APPENDIX 53 Appendix A: Questionnaire 53 Appendix B: Translation of Measurements 56 | - |
| dc.language.iso | en | - |
| dc.subject | 長尾效應 | zh_TW |
| dc.subject | 利基商品 | zh_TW |
| dc.subject | 心流裡論 | zh_TW |
| dc.subject | 線上搜尋行為 | zh_TW |
| dc.subject | Niche Products | en |
| dc.subject | Flow Theory | en |
| dc.subject | Long Tail Effect | en |
| dc.subject | Online Search Behavior | en |
| dc.title | 網站特性和使用者心流:商品熱門程度的調節作用 | zh_TW |
| dc.title | Website Characteristics and Users’ Flow: The Moderating Role of Product Popularity | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 翁崇雄;簡怡雯 | zh_TW |
| dc.contributor.oralexamcommittee | Chorng-Shyong Ong;Yi-Wen Chien | en |
| dc.subject.keyword | 長尾效應,利基商品,心流裡論,線上搜尋行為, | zh_TW |
| dc.subject.keyword | Long Tail Effect,Niche Products,Flow Theory,Online Search Behavior, | en |
| dc.relation.page | 61 | - |
| dc.identifier.doi | 10.6342/NTU202501761 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-15 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 資訊管理學系 | - |
| dc.date.embargo-lift | 2030-07-11 | - |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-07-11 | 1.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
