請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98211完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳榮凱 | zh_TW |
| dc.contributor.advisor | Jungkai Alfred Chen | en |
| dc.contributor.author | 吳沂騰 | zh_TW |
| dc.contributor.author | Yi-Teng Wu | en |
| dc.date.accessioned | 2025-07-30T16:21:15Z | - |
| dc.date.available | 2025-07-31 | - |
| dc.date.copyright | 2025-07-30 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-29 | - |
| dc.identifier.citation | Arend Bayer, Alexander Kuznetsov, and Emanuele Macrì. Mukai bundles on fano threefolds. arXiv preprint, 2024.
A. Bondal and D. Orlov. Semiorthogonal decomposition for algebraic varieties. arXiv preprint alg-geom/9506012, 1995. Daniel Huybrechts. The Geometry of Cubic Hypersurfaces, volume 206 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2023. V.A. Iskovskikh and Yu.G. Prokhorov. Algebraic Geometry. V. Springer Berlin, Heidelberg, 1 edition, 1999. V. A. Iskovskikh. Double projection from a line onto fano 3-folds of the first kind. Matematicheskii Sbornik, 180(2):260–278, 1989. Alexander G. Kuznetsov, Yuri G. Prokhorov, and Constantin A. Shramov. Hilbert schemes of lines and conics and automorphism groups of fano threefolds. Japanese Journal of Mathematics, 13(1):109–185, 2018. Alexander Kuznetsov and Evgeny Shinder. Derived categories of fano threefolds and degenerations. Inventiones Mathematicae, 239(2):377–430, 2025. A. G. Kuznetsov. Derived category of a cubic threefold and the variety v14. Trudy Matematicheskogo Instituta imeni V. A. Steklova, 246:183–207, 2004. A. G. Kuznetsov. Derived categories of fano threefolds. Trudy Matematicheskogo Instituta Imeni V. A. Steklova, 264:116–128, 2009. D. Markushevich and A. S. Tikhomirov. The abel-jacobi map of a moduli component of vector bundles on the cubic threefold. Journal of Algebraic Geometry, 10(1):37–62, 2001. V. V. Šokurov. The existence of a line on fano varieties. Izvestiya Akademii Nauk SSSR., 43(4):922–964, 968, 1979. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98211 | - |
| dc.description.abstract | 本文探討兩個皮卡數為一的平滑法諾三維空間之導出範疇。第一個是指數為一、次數為十四的三維空間(下稱「第一空間」);第二個是指數為二、次數為三的三維空間(下稱「第二空間」)。對這兩個空間,我們各自選取其有界導出範疇中的一個特別子範疇。就第一空間而言,該子範疇─常被稱作庫茲涅佐夫成分─是由一對標準例外對象(包含一個秩二向量束與結構層)的右正交補所構成;對第二空間,則取由結構層與超平面類線束組成之例外對的右正交補。
二零零四年,庫茲涅佐夫建立了一個對應,聯繫這兩類法諾三維空間的模空間,並證明:對每一個平滑的第一空間,都存在一個平滑的第二空間,使得它們各自的庫茲涅佐夫成分彼此等價。本論文有兩個主要目標:第一,證明上述兩個子範疇皆不含例外對象;第二,說明庫茲涅佐夫的等價可以實現為傅立葉─穆凱變換。 | zh_TW |
| dc.description.abstract | In this article, we study the derived categories of two smooth Fano threefolds with Picard number one. The first is the threefold of index one and degree fourteen, which we call“X14"; the second is the threefold of index two and degree three, referred to as“Y3". For each variety we consider a distinguished subcategory of its bounded derived category of coherent sheaves. In the case of X14, this subcategory—often called the Kuznetsov component—is defined as the right orthogonal to the standard exceptional pair consisting of a rank-two vector bundle and the structure sheaf. For Y3, the analogous subcategory is the right orthogonal to the pair formed by the structure sheaf and the line bundle associated with the hyperplane class. In a 2004 paper, Alexander Kuznetsov constructed a correspondence between the moduli stacks that classify these two families of Fano threefolds. More precisely, for every smooth Fano threefold X14 there exists a smooth Fano threefold Y3 such that their Kuznetsov components are equivalent. This thesis has two main goals: first, to prove that the two chosen subcategories contain no exceptional objects; and second, to show that Kuznetsov’s equivalence can be realized as a Fourier–Mukai transform. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:21:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-30T16:21:15Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents vii Chapter 1 Introduction 1 Chapter 2 Preliminary on Fano threefolds 3 Chapter 3 Preliminary on Derived category 7 Chapter 4 Cohomology on Fano threefolds 11 4.1 On index 1 case 14 4.2 On index 2 case 16 Chapter 5 Relation between X14 and Y3 19 5.1 Correspondence beteen X14 and (Y3, E) 19 5.2 Correspondence between the theta bundle and instanton bundle of charge 2 21 5.3 Equivalence Between AX14 and BY3 22 5.4 Description of the Equivalence by a Fourier Mukai transform 23 References 29 | - |
| dc.language.iso | en | - |
| dc.subject | 導出範疇 | zh_TW |
| dc.subject | 法諾三維多樣體 | zh_TW |
| dc.subject | 右正交補範疇 | zh_TW |
| dc.subject | Right Orthogonal Complement | en |
| dc.subject | Fano Threeolds | en |
| dc.subject | Derived Category | en |
| dc.title | 法諾三維多樣體的導出範疇之研究 | zh_TW |
| dc.title | On the Derived Categories of Some Fano Threefolds | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 韓善瑜;莊武諺;陳正傑 | zh_TW |
| dc.contributor.oralexamcommittee | Adeel Ahmad Khan;Wu-yen Chuang;Jheng-Jie Chen | en |
| dc.subject.keyword | 法諾三維多樣體,導出範疇,右正交補範疇, | zh_TW |
| dc.subject.keyword | Fano Threeolds,Derived Category,Right Orthogonal Complement, | en |
| dc.relation.page | 30 | - |
| dc.identifier.doi | 10.6342/NTU202502558 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-29 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 數學系 | - |
| dc.date.embargo-lift | 2025-07-31 | - |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 355.81 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
