請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98207完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 卿建業 | zh_TW |
| dc.contributor.advisor | Jianye Ching | en |
| dc.contributor.author | 謝承祐 | zh_TW |
| dc.contributor.author | Cheng-You Shie | en |
| dc.date.accessioned | 2025-07-30T16:20:23Z | - |
| dc.date.available | 2025-07-31 | - |
| dc.date.copyright | 2025-07-30 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-25 | - |
| dc.identifier.citation | Ching, J., & Chen, Y. C. (2007). Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging. Journal of Engineering Mechanics, 133(7), 816-832.
Ching, J., & Phoon, K. K. (2013a). Mobilized shear strength of spatially variable soils under simple stress states. Structural Safety, 41, 20-28. Ching, J., & Phoon, K. K. (2013b). Probability distribution for mobilised shear strengths of spatially variable soils under uniform stress states. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 7(3), 209-224. Ching, J., & Hu, Y. G. (2016). Effect of element size in random finite element analysis for effective Young’s modulus. Mathematical Problems in Engineering, 2016(1), 8756271. Cami, B., Javankhoshdel, S., Phoon, K. K., & Ching, J. (2020). Scale of fluctuation for spatially varying soils: estimation methods and values. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 6(4), 03120002. Jha, S. K., & Ching, J. (2013). Simulating spatial averages of stationary random field using the fourier series method. Journal of Engineering Mechanics, 139(5), 594-605. Phoon, K. K., & Kulhawy, F. H. (1999). Characterization of geotechnical variability. Canadian Geotechnical Journal, 36(4), 612-624. Robbins, B. A., Stephens, I. J., Van Beek, V. M., Koelewijn, A. R., & Bezuijen, A. (2020). Field measurements of sand boil hydraulics. Géotechnique, 70(2), 153-160. Tabarroki, M., Ching, J., Phoon, K. K., & Chen, Y. Z. (2022). Mobilisation-based characteristic value of shear strength for ultimate limit states. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 16(3), 413-434. Vanmarcke, E. H. (1977a). Probabilistic modeling of soil profiles. Journal of the Geotechnical Engineering Division, 103(11), 1227-1246. Vanmarcke, E. H. (1977b). Reliability of earth slopes. Journal of the Geotechnical Engineering Division, 103(11), 1247-1265. 陳致宇 (2021),均質化具空間變異性土體之有效滲透係數。國立臺灣大學土木工程學系學位論文。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98207 | - |
| dc.description.abstract | 由於礦物組成不均勻與受應力歷史差異等原因,即使在地質上看似均勻的土層中,土壤參數仍呈現一定程度的變異性。此種隨空間位置改變而產生的參數差異被稱為空間變異性 (Spatial variability),是導致大地工程分析與設計結果產生不確定性的主要因素之一。在深開挖工程與土石壩等大地工程應用中,管湧破壞 (Piping failure) 為潛在之破壞機制,對整體結構安全評估具有關鍵影響。然而,目前多數設計規範並未充分考慮土壤參數的空間變異性,在部分情境下,若滲流出口存在低滲透係數之薄層土體,將導致出口處水力坡降顯著升高,進而引發管湧破壞。然而,傳統均質分析方法難以準確描述此類破壞行為,導致分析結果潛藏不可量化的風險與不確定性。
本研究針對滲透係數 (Permeability) 具空間變異性土體,探討在滲流作用下管湧破壞機率,並提出最弱路徑模型 (Weakest-path model, WPM),用以描述最大出口水力坡降 (Maximum exit hydraulic gradient) 的機率分布。進一步地,藉由隨機有限元素分析 (Random finite element analysis, RFEA) 所得結果,對最弱路徑模型中各項參數進行校準與驗證。透過本研究發展之機率模型,結合模型參數回歸分析結果,能在大幅降低計算成本的前提下,快速且合理地估算管湧破壞機率,為未來實務工程提供兼具效率與可靠度之風險評估工具。 | zh_TW |
| dc.description.abstract | Due to the difference in mineral composition and variations in stress history, soil properties often exhibit a certain degree of variability, even within geologically uniform layers. This spatially dependent variability, known as spatial variability, is one of the primary sources of uncertainty in geotechnical analysis and design. In geotechnical applications such as deep excavations and earth dams, piping failure is a potential failure mechanism that plays a critical role in overall structural safety assessment. In certain cases, the presence of a thin layer of soil with low permeability at the seepage exit can lead to a significant increase in the hydraulic gradient, thereby triggering piping failure. Traditional homogeneous analyses are often incapable of accurately capturing such failure behaviors, resulting in unquantified risks and uncertainties in analysis results.
This study focuses on evaluating the probability of piping failure under seepage conditions in soils with spatially variable permeability. A Weakest-path model (WPM) is proposed to describe the probabilistic characteristics of maximum exit hydraulic gradient. Furthermore, model parameters are calibrated and validated using results obtained from Random Finite Element Analysis (RFEA). By integrating the proposed probabilistic model with regression analysis of the calibrated parameters, the probability of piping failure can be estimated both efficiently and accurately. This approach significantly reduces the computational cost associated with RFEA while providing a reliable and practical tool for risk assessment in real-world geotechnical engineering projects. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:20:23Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-30T16:20:23Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 iii Abstract iv 目次 v 表次 vii 圖次 viii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與流程 2 第二章 文獻回顧 3 2.1 空間變異性 4 2.2 穩態隨機場 5 2.3 關聯性長度和變異數折減因子 6 2.4 傅立葉級數法模擬穩態高斯隨機場 9 2.5 最弱路徑模型 13 2.6 過渡性馬可夫鏈蒙地卡羅法 16 第三章 研究方法 18 3.1 穩態對數常態隨機場 19 3.2 最弱路徑模型建立 21 3.3 ABAQUS模型與分析 29 3.4 參數校正 38 第四章 結果分析與比較 41 4.1 網格尺寸驗證 43 4.2 二維土壤柱 44 4.3 開挖含擋土牆 52 4.4 二維土壤柱-兩層土體 58 4.5 開挖含擋土牆-兩層土體 65 4.6 土石壩 72 4.7 各案例結果比較 80 4.8 回歸公式 82 4.9 案例驗證 84 第五章 結論與建議 87 5.1 結論 87 5.2 未來建議 89 參考文獻 90 附錄 92 附錄1. 單層土體最弱路徑模型推導 92 附錄2. 多層土體最弱路徑模型推導 95 附錄3. 二維土壤柱RFEA與參數校準結果 97 附錄4. 開挖含擋土牆RFEA與參數校準結果 117 附錄5. 二維土壤柱-兩層土體RFEA與參數校準結果 137 附錄6. 開挖含擋土牆-兩層土體RFEA與參數校準結果 157 附錄7. 土石壩RFEA與參數校準結果 177 附錄8. 碩士學位考試口試委員提問與答覆表 193 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 最大出口水力坡降 | zh_TW |
| dc.subject | 隨機有限元素 | zh_TW |
| dc.subject | 最弱路徑模型 | zh_TW |
| dc.subject | 管湧 | zh_TW |
| dc.subject | 空間變異性 | zh_TW |
| dc.subject | Piping | en |
| dc.subject | Spatial variability | en |
| dc.subject | Maximum exit hydraulic gradient | en |
| dc.subject | Weakest-path model | en |
| dc.subject | Random finite element | en |
| dc.title | 空間變異性土體於地工結構出口最大水力坡降的機率分佈 | zh_TW |
| dc.title | Probabilistic Distribution of Maximum Exit Hydraulic Gradient in Spatially Variable Soil Mass Considering Geotechnical Structures | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林志平;王瑞斌 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Ping Lin;Jui-Pin Wang | en |
| dc.subject.keyword | 管湧,最大出口水力坡降,空間變異性,隨機有限元素,最弱路徑模型, | zh_TW |
| dc.subject.keyword | Piping,Maximum exit hydraulic gradient,Spatial variability,Random finite element,Weakest-path model, | en |
| dc.relation.page | 195 | - |
| dc.identifier.doi | 10.6342/NTU202502328 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-29 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-07-31 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 10.04 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
