請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98206完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林銘郎 | zh_TW |
| dc.contributor.advisor | Ming-Lang Lin | en |
| dc.contributor.author | 溫靖瑀 | zh_TW |
| dc.contributor.author | Ching-Yu Wen | en |
| dc.date.accessioned | 2025-07-30T16:20:09Z | - |
| dc.date.available | 2025-07-31 | - |
| dc.date.copyright | 2025-07-30 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-28 | - |
| dc.identifier.citation | [1] 王如意、易任 (1979),「應用水文學新編下冊」,國立編譯館。
[2] 交通部中央氣象署。颱風資料庫。https://rdc28.cwa.gov.tw/TDB/ [3] 行政法人國家災害防救科技中心 (2015)。大規模崩塌災害防治行動綱領。 [4] 行政院農業部農村發展及水土保持署(2025)。水土保持技術規範。https://www.ardswc.gov.tw/Home/laws/laws_more?id=72279a8c50f3445e8d564a8d4577342e [5] 岡田憲治 (2002),「土壤雨量指數」,測候時報,69(5),67-97。(Okada, K. (2002). Soil Water Index. Weather service bulletin, 69(5), 67-97. (in Japanese)) [6] 林于超 (2022)。裂隙地下水滲流及排水穩定工法對岩體邊坡變形影響以光華崩塌地為例。國立臺灣大學土木工程學研究所,碩士論文。https://doi.org/10.6342/NTU202203311 [7] 青山工程顧問股份有限公司 (2023)。113年度雪霧鬧、光華、義興、上巴陵及中高義地區潛在大規模崩塌調查監測計畫。農業部農村發展及水土保持署委託研究案。 [8] 青山工程顧問股份有限公司 (2024)。113年度雪霧鬧、光華、義興、上巴陵及中高義地區潛在大規模崩塌調查監測計畫。農業部農村發展及水土保持署委託研究案。 [9] 洪如江 (2014)。初等工程地質學大綱,財團法人地工技術研究發展基金會。 [10] 陳樹群、蔡喬文、陳振宇、陳美珍(2013)。筒狀模式之土壤雨量指數應用於土石流防災警戒。中華水土保持學報,44(2),131-143。https://doi.org/10.29417/JCSWC.201306_44(2).0004 [11] 張桂瑛 (2024)。應用多期正射影像與點雲資料精進大規模崩塌之分區。國立臺灣大學土木工程學研究所,碩士論文。http://dx.doi.org/10.6342/NTU202402153 [12] 菅原正巳 (1972),「流出解析手法」,共立出版社。(Sugawara, M. (1972). Analytical method of outflow. Kyoritsu Shuppan Co., Ltd. (in Japanese)) [13] 彭逸蘋 (2022)。以物質點法探討光華崩塌地滑動面深度與運動行為。國立臺灣大學土木工程學研究所,碩士論文。 [14] 經濟部水利署。水文資訊網整合服務系統。https://gweb.wra.gov.tw/Hydroinfo/?id=Index [15] 經濟部水利署。歷年各延時降雨及頻率分析。https://fsv.manysplendid.com.tw/powerwra/rainIntensity/ [16] 經濟部地質調查及礦業管理中心 (2023)。五萬分之一地質圖土場圖幅。 [17] 楊國鑫、彭逸蘋、郭治平、李威霖、汪俊彥、陳昭維、朱世文、白朝金(2023)。以物質點法探討光華崩塌地滑動面深度與地下水之影響。中華水土保持學報,54(3),185-196。https://doi.org/10.29417/JCSWC.202309_54(3).0001 [18] 劉宜君,張鈺欣,陳榮俊,嚴曉嘉,陳樹群(2022)。土壤雨量指數應用於大規模崩塌地之可行性評估-以嘉義縣竹崎鄉 T002 崩塌地為例. 中華水土保持學報,53(3),176-189。https://doi.org/10.29417/JCSWC.202209_53(3).0004 [19] 蔡雅如 (2012)。以數值方法評估地下排水工法對邊坡穩定之有效性。國立中興大學水土保持學系研究所,碩士論文。 [20] 鍾明劍、譚志豪、陳勉銘、蘇泰維(2013)。以定率法評估邊坡山崩臨界雨量—以南勢坑為例。中華水土保持學報,44(1),66-77。https://doi.org/10.29417/JCSWC.201303_44(1).0006 [21] Abramson, L. W., Lee, T. S., Sharma, S., & Boyce, G. M. (2001). Slope stability and stabilization methods. John Wiley & Sons. [22] Burland, J. B. (1987). The teaching of soil mechanics–a personal view. The Nash lecture. In Proceedings of the 9th European Conference on Soil Mechanics and Foundation Engineering, Dublin, Ireland (Vol. 3, pp. 1427-1441). [23] Chigira, M. (1992). Long-term gravitational deformation of rocks by mass rock creep. Engineering Geology, 32(3), 157-184. https://www.sciencedirect.com/science/article/pii/001379529290043X [24] Donati, D., Stead, D., Stewart, T. W., & Marsh, J. (2020). Numerical modelling of slope damage in large, slowly moving rockslides: insights from the Downie Slide, British Columbia, Canada. Engineering Geology, 273, 105693.https://www.sciencedirect.com/science/article/pii/S0013795219321763 [25] Donati, D., Stead, D., Brideau, M. A., & Ghirotti, M. (2021). Using pre-failure and post-failure remote sensing data to constrain the three-dimensional numerical model of a large rock slope failure. Landslides, 18, 827-847.https://link.springer.com/article/10.1007/s10346-020-01552-x [26] Horton, R. E. (1940). An approach toward a physical interpretation of infiltration capacity. Soil Science Society of America Proceedings, 5, 399–417. [27] Ishihara, Y., & Kobatake, S. (1979). Runoff model for flood forecasting. Bulletin of the Disaster Prevention Research Institute, 29(1), 27-43.http://hdl.handle.net/2433/124881 [28] Kalenchuk, K. S., Hutchinson, D. J., & Diederichs, M. S. (2009). Application of spatial prediction techniques to defining three-dimensional landslide shear surface geometry. Landslides, 6, 321-333.https://link.springer.com/article/10.1007/s10346-009-0168-1 [29] Keaton, J. R. (2013). Engineering geology: fundamental input or random variable?. In Foundation Engineering in the Face of Uncertainty: Honoring Fred H. Kulhawy (pp. 232-253).https://ascelibrary.org/doi/abs/10.1061/9780784412763.020 [30] Liu, C.-H., Ho, J.-Y., Chu, C.-R., Chang, C.-H., & Chen, H. (2022). A pixel analysis technique and unmanned aircraft system for horizontal displacement in the landslide potential area. Geoscience Letters, 9(1), 17.https://link.springer.com/article/10.1186/s40562-022-00229-8 [31] Peng, Y. P., Yang, K. H., Lee, W. L., Rus, T. Y., Cheng, S. H., Wang, J. Y., & Kuo, C. (2025). Three-dimensional material point analysis of the Guanghua landslide influenced by topographic constraints. Landslides, 1-21. [32] Royster, D. L. (1980). Horizontal drains and horizontal drilling: an overview. Transportation Research Record, 783, 16-20. [33] Rahardjo, H., Hritzuk, K. J., Leong, E. C., & Rezaur, R. B. (2003). Effectiveness of horizontal drains for slope stability. Engineering Geology, 69(3-4), 295-308.https://www.sciencedirect.com/science/article/pii/S0013795202002880 [34] Selby, M. J. (1993). Hillslope Materials (p. 451). Oxford: Oxford University Press. [35] Sherman, L. K. (1932). Stream flow from rainfall by the unit graph method. Engineering News-Record, 108, 501–505. [36] Varnes, D. J. (1978). Slope movement types and processes. Landslides: analysis and control. [37] Westin, A. M. (2017). Downie Slide: An integrated remote sensing approach to characterization of a very slow moving landslide. Master’s thesis, Simon Fraser University. [38] Wyllie, D. C., & Mah, C. (2004). Rock Slope Engineering. CRC Press. [39] Yanuardian, A. R., & Dong, J. J. (2023). The failure probability of dip slope: The aspects of geological and hydro-geotechnical uncertainty (Personal communication). National Central University, Graduate Institute of Applied Geology. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98206 | - |
| dc.description.abstract | 邊坡潛在大規模崩塌之穩定性及其變形行為,為坡地災防研究的重點項目之一。然而,許多潛在大規模崩塌地變形速率緩慢,甚至存有僅局部位置活躍運動之現象。為此,本研究旨在釐清光華大規模崩塌潛勢區在不同重現期降雨下之地下水位變化與邊坡變形行為。首先以現地調查確認地表露頭位態、地表滲水處位置等,探討光華崩塌地的地質模型。以烟花颱風事件分析降雨與地下水位變化關係,建立地下水位直接步推歷線(Direct Step Method of Groundwater Hydrograph, DSM-GH)。藉由二維、三維有限元素法數值分析擬合烟花颱風事件之地表位移監測數據和DIC分析成果,獲得地盤模型參數。透過DSM-GH評估不同降雨重現期所對應之地下水位歷線,探討不同重現期地下水位變化及其對邊坡變形行為之影響,並以強度折減法(Shear Strength Reduction, SSR)探討光華崩塌地之崩塌潛勢發展趨勢。最後,以橫向集水管建立地工模型,進行排水穩定工法性能評估。
研究結果顯示DSM-GH擬合烟花颱風事件R2約為0.73,在驗證梅花颱風事件時R2約為0.85,因此認為DSM-GH可適用於監測資料量不足時,評估不同降雨重現期時可能的地下水位變化。利用DIC分析成果與二維數值模型比較之R2約為0.62,而比較三維數值模型之R2約為0.74,兩者差異來自於二維數值模型在分區2下邊坡處因不受束口狀地型效應影響,下邊坡處位移量不減反增,而三維數值模型則可以較為合理的模擬現地狀況。當重現期為50年之地下水位時,M1塊體中的分區1在二維數值分析時會發生破壞,而在三維數值分析時,受束口狀地形影響則不會發生破壞,且兩者之最大總位移量分別為16.7 m和4.4 m。在利用三維數值模擬進行SSR分析時,光華崩塌地在M1塊體失去強度後,首先會自M4塊體產生張力裂縫(SRF=1.15),M3塊體會在後續發展出張力裂縫(SRF=1.25),最後兩處張力裂縫會聯通並形成潛在滑動面(SRF=1.55),因此認為除持續監測M1塊體外,針對M3、M4塊體的整治與監測工作亦需要被重視,並建議可在FST02-G2站上邊坡處再增設GPS/GNSS站及設置伸張計。而橫向集水管可以防止M1塊體分區1發生破壞,並減緩M3、M4塊體的剪裂帶發展。 | zh_TW |
| dc.description.abstract | The stability and deformation of large-scale landslides poses a long-term threat to the protected objects in mountainous areas. However, assessing the potential failure of large-scale landslides remains challenging due to their extremely low deformation velocity. This research aims to investigates the relationship between groundwater variation and deformation kinematics of Guanghua large-scale landslide. Outcrop investigations were first conducted to measure the attitudes of weak plane, in order to establish a geological model of the Guanghua landslide. To correlate the rainfall pattern and groundwater change, the groundwater well data and the rainfall record from 2021 Typhoon In-Fa were used to assess the Direct step method of groundwater hydrograph (DSM-GH). A ground models in 2D and 3D FEM models were established based on calibrate the performance of the surficial displacement data from GNSS observation and Digital image correlation (DIC). The DSM-GH was used to estimate groundwater variations under different rainfall return periods and evaluate their influence on deformation Kinematics. The failure potential of the Guanghua landslide was then assessed using the Shear Strength Reduction (SSR) method. A geotechnical model incorporating horizontal drainage pipes was subsequently developed to evaluate the performance of the drainage stabilization method.
The results indicated that DSM-GH yielded an R² of approximately 0.73 for the Typhoon In-Fa event and around 0.85 for the Typhoon Muifa. This demonstrates its applicability in estimating potential groundwater variations under different rainfall return periods, especially when only short-term monitoring data are available. The R² value between the DIC analysis and the 2D numerical model is approximately 0.62, compared to 0.74 for the 3D model. The difference arises from the 2D model’s inability to capture topographical constraints at the lower slope of Zone 2, leading to overestimated displacements, whereas the 3D model offers a more realistic simulation of the site conditions. Under the 50-year return period groundwater table, Zone 1 of the M1 block fails in the 2D analysis but remains stable in the 3D analysis due to topographical constraints. The maximum total displacements are 16.7 m (2D) and 4.4 m (3D). In the 3D numerical simulation using the SSR method, failure of the key block M1 induces tensile cracking in M4, followed by M3. These cracks eventually connect to form a potential sliding surface. Therefore, in addition to continued monitoring of M1, stabilization and monitoring of M3 and M4 should also be emphasized. It is recommended to install additional GPS/GNSS stations and extensometers on the upper slope near station FST02-G2. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:20:09Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-30T16:20:09Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iv Abstract v 目次 vii 圖次 x 表次 xvii 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究架構與流程 2 第二章 文獻回顧 4 2.1 潛在大規模崩塌 4 2.2 光華崩塌地 6 2.2.1 地理位置、地形及水文條件 6 2.2.2 地質條件 11 2.2.3 歷年邊坡變形狀況及整治工程 14 2.2.4 現地監測資料 18 2.3 邊坡的重力變形 22 2.3.1 邊坡的重力變形特徵與分類 22 2.3.2 光華崩塌地重力變形情況 22 2.4 地下水對邊坡穩定之影響 25 2.4.1 岩石邊坡中的裂隙水 26 2.4.2 排水穩定工法 27 2.5 地下水位變化評估方法 30 2.5.1 降雨入滲模擬 30 2.5.2 監測資料逐次上升水位 32 2.5.3 筒狀模式 34 2.5.4 地下水位變化評估方法綜合討論 40 2.6 邊坡分區分塊研究案例 43 2.6.1 Downie邊坡 43 2.6.2 Hope邊坡 43 2.7 光華崩塌地既有分析成果及綜合討論 45 第三章 研究方法 52 3.1 現地調查 52 3.2 雨場分析及設計 53 3.2.1 雨量站相關性分析 53 3.2.2 各降雨重現期雨場設計 54 3.3 地下水位直接步推歷線 56 3.3.1 地下水位直接步推歷線基本假設 56 3.3.2 退水位、漲水位方程式推導 57 3.4 影像與監測資料應用 60 3.5 數值模型建置 63 3.5.1 地質模式 63 3.5.2 地盤模式 65 3.5.3 地工模式 66 第四章 結果與討論 76 4.1 現地調查成果 76 4.2 地下水位直接步推歷線驗證及預測成果 81 4.2.1 地下水位驗證 81 4.2.2 地下水位預測成果 82 4.3 烟花颱風事件數值分析成果驗證 84 4.3.1 二維數值模擬成果驗證 85 4.3.2 三維數值模擬成果驗證 86 4.4 不同重現期地下水位之影響評估 107 4.4.1 二維數值模擬情境 107 4.4.2 三維數值模擬情境 108 4.5 排水穩定工法性能評估 125 4.5.1 M1剖面性能評估 125 4.5.2 M3、M4剖面性能評估 126 第五章 結論與建議 143 5.1 結論 143 5.2 建議 144 參考文獻 146 附錄一 碩士學位考試口試委員提問與答覆表 151 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 潛在大規模崩塌 | zh_TW |
| dc.subject | 崩塌機制分區 | zh_TW |
| dc.subject | 潛勢分析 | zh_TW |
| dc.subject | 束口狀地形 | zh_TW |
| dc.subject | 地下水位直接步推歷線 | zh_TW |
| dc.subject | 三維運動行為 | zh_TW |
| dc.subject | Potential ranking | en |
| dc.subject | Large-scale landslide | en |
| dc.subject | 3D kinematics behavior | en |
| dc.subject | Direct Step Method of Groundwater Hydrograph (DSM-GH) | en |
| dc.subject | Topographical constraints | en |
| dc.subject | Failure mechanism zonation | en |
| dc.title | 以數值分析探討不同降雨重現期下光華地區地下水變化及邊坡變形行為 | zh_TW |
| dc.title | Investigating the Groundwater Variation and Deformation Behaviors of Guanghua Landslide under Different Rainfall Return Periods Using FEM Analysis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊國鑫;馮正一;鐘志忠;林承翰 | zh_TW |
| dc.contributor.oralexamcommittee | Kuo-Hsin Yang;Zheng-Yi Feng;Chih-Chung Chung;Cheng-Han Lin | en |
| dc.subject.keyword | 潛在大規模崩塌,崩塌機制分區,潛勢分析,束口狀地形,地下水位直接步推歷線,三維運動行為, | zh_TW |
| dc.subject.keyword | Large-scale landslide,Failure mechanism zonation,Potential ranking,Topographical constraints,Direct Step Method of Groundwater Hydrograph (DSM-GH),3D kinematics behavior, | en |
| dc.relation.page | 158 | - |
| dc.identifier.doi | 10.6342/NTU202502410 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-29 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-07-31 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 20.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
