Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98203
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡璧合zh_TW
dc.contributor.advisorPi-Ho Huen
dc.contributor.author莊育瑄zh_TW
dc.contributor.authorYu-Hsuan Chuangen
dc.date.accessioned2025-07-30T16:19:31Z-
dc.date.available2025-07-31-
dc.date.copyright2025-07-30-
dc.date.issued2025-
dc.date.submitted2025-07-25-
dc.identifier.citation[1] NVIDIA, “Nvidia-Computex-2024-Keynote.PDF.,” Computex, 2024. https://s201.q4cdn.com/141608511/files/doc_presentations/2024/June/NVIDIA-Computex-2024-Keynote.pdf
[2] T. Agarwal, “Digital Signal Processor : Architecture, types, working & its applications.,” ElProCus., April. 2022. https://www.elprocus.com/digital-signal-processor/
[3] G. Torrens, B. Alorda, C. Carmona, D. Malagón-Periánez, J. Segura, and S. A. Bota, “A 65-nm reliable 6T CMOS SRAM cell with minimum size transistors,” IEEE Trans. Emerg. Topics Comput., vol. 7, no. 3, pp. 447–455, Jul.–Sep. 2017.
[4] C.-J. Liu, Y. Wan, L.-J. Li, C.-P. Lin, T.-H. Hou, Z.-Y. Huang, and V. P.-H. Hu, “2D materials-based static random-access memory,” in Proc. Adv. Mater., Dec. 2021, Art. no. 2107894, doi: 10.1002/adma.202107894.
[5] Lam, “3D DRAM is coming. here’s a possible way to build it.,” Lam Research Newsroom., July, 2023. https://newsroom.lamresearch.com/3D-DRAM-architecture-proposal
[6] H. Gordon, J. Edmonds, S. Ghandali, W. Yan, N. Karimian, and F. Tehranipoor, “Flash-based security primitives: Evolution, challenges and future directions,” Cryptography, vol. 5, no. 1, p. 7, 2021.
[7] Acroview Technology., “Universal programmer: Automated Programmer system|ic programmer: Chip Programmer-Acroview.,” Automated IC Programming System_On Board Programmer_chip programming machine., Nov. 2020. https://www.acroview.cc/en-Technical-Topics/333.html
[8] X. Zou, S. Xu, X. Chen, L. Yan, and Y. Han, “Breaking the von Neumann bottleneck: architecture-level processing-in-memory technology,” Sci. China Inf. Sci., vol. 64, no. 6, pp. 1–10, Jun. 2021.
[9] S. Yoshida, Y. Shiotsu and S. Sugahara, "Comparative Study of Gain Cells for Pseudo-SRAM," 2024 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK), Kyoto, Japan, 2024, pp. 1-2, doi: 10.1109/IMFEDK64776.2024.10814569.
[10] K. Toprasertpong, “Co-designed capacitive coupling-immune sensing scheme for indium-tin-oxide (ITO) 2T gain cell operating at positive voltage below 2 V,” in Proc. IEEE Symp. VLSI Technol. Circuits, Kyoto, Japan, Jun. 2023, pp. 1–2, doi: 10.23919/vlsitechnologyandcir57934.2023.10185433.
[11] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder and U. Böttger, "Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors," 2011 International Electron Devices Meeting, Washington, DC, USA, 2011, pp. 24.5.1-24.5.4, doi: 10.1109/IEDM.2011.6131606.
[12] S. J. Kim, J. Mohan, S. R. Summerfelt, and J. Kim, “Ferroelectric Hf 0.5 Zr 0.5 O 2 thin films: A review of recent advances,” JOM, vol. 71, pp. 246–255, Jan. 2019.
[13] K. Ni, “Ferroelectric ternary content-addressable memory for one-shot learning,” Nature Electron., vol. 2, no. 11, pp. 521–529, Nov. 2019, doi: 10.1038/s41928-019-0321-3.
[14] Y. Fan et al., “Monolithic 3D integration as a pathway to energy-efficient computing and beyond: From materials and devices to architectures and chips,” Current Opinion in Solid State and Materials Science, vol. 33, pp. 101199–101199, Oct. 2024, doi: https://doi.org/10.1016/j.cossms.2024.101199.
[15] T. Kim, “Progress, challenges, and opportunities in oxide semiconductor devices: A key building block for applications ranging from display backplanes to 3D integrated semiconductor chips,” Adv. Mater., no. 2204663, Jan. 2023, doi: 10.1002/adma.202204663.
[16] P. -Y. Liao et al., "Transient Thermal and Electrical Co-Optimization of BEOL Top-Gated ALD In2O3 FETs Toward Monolithic 3-D Integration," in IEEE Transactions on Electron Devices, vol. 70, no. 4, pp. 2052-2058, April 2023, doi: 10.1109/TED.2023.3235313.
[17] T. Kamiya and H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors,” NPG Asia Mater., vol. 2, no. 1, pp. 15–22, Jan. 2010.
[18] E. Fortunato, P. Barquinha, and R. Martins, “Oxide semiconductor thin-film transistors: A review of recent advances,” Adv. Mater., vol. 24, no. 22, pp. 2945–2986, Jun. 2012.
[19] A. de Jamblinne de Meux, A. Bhoolokam, G. Pourtois, J. Genoe, and P. Heremans, “Oxygen vacancies effects in a-IGZO: Formation mechanisms, hysteresis, and negative bias stress effects,” Phys. Status Solidi A, vol. 214, no. 6, Mar. 2017, Art. no. 1600889, doi: 10.1002/pssa.201600889.
[20] K. A. Aabrar et al., "Improved Reliability and Enhanced Performance in BEOL Compatible W-doped In2O3 Dual-Gate Transistor," 2023 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2023, pp. 1-4, doi: 10.1109/IEDM45741.2023.10413776.
[21] D. Ha et al., "Exploring Innovative IGZO-channel based DRAM Cell Architectures and Key Technologies for Sub-10nm Node," 2024 IEEE International Memory Workshop (IMW), Seoul, Korea, Republic of, 2024, pp. 1-4, doi: 10.1109/IMW59701.2024.10536968.
[22] X. Duan et al., "Novel Vertical Channel-All-Around (CAA) In-Ga-Zn-O FET for 2T0C-DRAM With High Density Beyond 4F2 by Monolithic Stacking," in IEEE Transactions on Electron Devices, vol. 69, no. 4, pp. 2196-2202, April 2022, doi: 10.1109/TED.2022.3154693.
[23] S. Datta et al., "Amorphous Oxide Semiconductors for Monolithic 3D Integrated Circuits," 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Honolulu, HI, USA, 2024, pp. 1-2, doi: 10.1109/VLSITechnologyandCir46783.2024.10631324.
[24] H. Ye et al., "Double-Gate W-Doped Amorphous Indium Oxide Transistors for Monolithic 3D Capacitorless Gain Cell eDRAM," 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2020, pp. 28.3.1-28.3.4, doi: 10.1109/IEDM13553.2020.9371981.
[25] F. Liao et al., "Novel 4F2 Multi-Bit Dual-Gate 2T0C for High-Density DRAM with Improved Vertical-Channel IGZO TFTs by Self-Aligned Single-Step Process," 2024 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2024, pp. 1-4, doi: 10.1109/IEDM50854.2024.10873464.
[26] S. Liu et al., "Gain Cell Memory on Logic Platform – Device Guidelines for Oxide Semiconductor Transistor Materials Development," 2023 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2023, pp. 1-4, doi: 10.1109/IEDM45741.2023.10413726.
[27] L. Zheng, Z. Wang, Z. Lin and M. Si, "First Demonstration on the Transient Writing Characteristics of Multi-bit ALD IGZO 2T0C DRAM by Fast I-V Measurement," 2024 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2024, pp. 1-4, doi: 10.1109/IEDM50854.2024.10873579.
[28] W. Lu et al., "First Demonstration of Dual-Gate IGZO 2T0C DRAM with Novel Read Operation, One Bit Line in Single Cell, ION=1500 μA/μm@VDS=1V and Retention Time>300s," 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2022, pp. 26.4.1-26.4.4, doi: 10.1109/IEDM45625.2022.10019488.
[29] S. Zhu et al., "First Demonstration of Deeply Scaled 2T0C DRAM With Record Data Retention and Fast Write Speed," in IEEE Electron Device Letters, vol. 46, no. 3, pp. 405-408, March 2025, doi: 10.1109/LED.2025.3531420.
[30] F. F. Athena et al., "First Demonstration of an N-P Oxide Semiconductor Complementary Gain Cell Memory," 2024 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2024, pp. 1-4, doi: 10.1109/IEDM50854.2024.10873499.
[31] M. Shi et al., "Counteractive Coupling IGZO/CNT Hybrid 2T0C DRAM Accelerating RRAM-based Computing-In-Memory via Monolithic 3D Integration for Edge AI," 2023 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2023, pp. 1-4, doi: 10.1109/IEDM45741.2023.10413876.
[32] F. Waqar, et al. "Optimization and Benchmarking of Monolithically Stackable Gain Cell Memory for Last-Level Cache." arXiv preprint arXiv:2503.06304 (2025).
[33] F. Mo et al., "Low-Voltage Operating Ferroelectric FET with Ultrathin IGZO Channel for High-Density Memory Application," in IEEE Journal of the Electron Devices Society, vol. 8, pp. 717-723, 2020, doi: 10.1109/JEDS.2020.3008789.
[34] S. Yoo et al., "Highly Enhanced Memory Window of 17.8V in Ferroelectric FET with IGZO Channel via Introduction of Intermediate Oxygen-Deficient Channel and Gate Interlayer," 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Honolulu, HI, USA, 2024, pp. 1-2, doi: 10.1109/VLSITechnologyandCir46783.2024.10631534.
[35] Z. Chen et al., "A Theoretical Analysis of Ferroelectric Switching Physics in Metal/Ferroelectric/IGZO Stack Toward Interlayer-Free FeFETs," in IEEE Electron Device Letters, vol. 45, no. 8, pp. 1453-1456, Aug. 2024, doi: 10.1109/LED.2024.3411404.
[36] S. Dutta et al., "Lifelong Learning with Monolithic 3D Ferroelectric Ternary Content-Addressable Memory," 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2021, pp. 1-4, doi: 10.1109/IEDM19574.2021.9720495.
[37] S. Dutta et al., "Logic Compatible High-Performance Ferroelectric Transistor Memory," in IEEE Electron Device Letters, vol. 43, no. 3, pp. 382-385, March 2022, doi: 10.1109/LED.2022.3148669.
[38] O. Prakash, K. Ni and H. Amrouch, "Monolithic 3D Integrated BEOL Dual-Port Ferroelectric FET to Break the Tradeoff Between the Memory Window and the Ferroelectric Thickness," 2023 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 2023, pp. 1-4, doi: 10.1109/IRPS48203.2023.10118286.
[39] Z. Chen et al., "Understanding the Slow Erase Operation in IGZO-Channel FeFETs: The Role of Positive Charge Generation Kinetics," in IEEE Journal of the Electron Devices Society, vol. 13, pp. 245-251, 2025, doi: 10.1109/JEDS.2025.3541418.
[40] C. Sun et al., "First Demonstration of BEOL-Compatible Ferroelectric TCAM Featuring a-IGZO Fe-TFTs with Large Memory Window of 2.9 V, Scaled Channel Length of 40 nm, and High Endurance of 108 Cycles," 2021 Symposium on VLSI Technology, Kyoto, Japan, 2021, pp. 1-2.
[41] O. Prakash, K. Ni and H. Amrouch, "Ferroelectric FET Threshold Voltage Optimization for Reliable In-Memory Computing," 2022 IEEE International Reliability Physics Symposium (IRPS), Dallas, TX, USA, 2022, pp. 1-10, doi: 10.1109/IRPS48227.2022.9764551.
[42] K. Rajshekar and D. Kannadassan, “A comprehensive density-of-states model for oxide semiconductor thin film transistors,” Journal of Computational Electronics, vol. 20, no. 6, pp. 2331 - 2341, Dec 2021.
[43] J. Zhang et al., "Back-End-of-Line-Compatible Scaled InGaZnO Transistors by Atomic Layer Deposition," in IEEE Transactions on Electron Devices, vol. 70, no. 12, pp. 6651-6657, Dec. 2023, doi: 10.1109/TED.2023.3312357.
[44] Sentaurus™ Device User Guide, Version R-2020.09, Sep. 2020.
[45] V. P. -H. Hu et al., "Split-Gate FeFET (SG-FeFET) with Dynamic Memory Window Modulation for Non-Volatile Memory and Neuromorphic Applications," 2019 Symposium on VLSI Technology, Kyoto, Japan, 2019, pp. T134-T135, doi: 10.23919/VLSIT.2019.8776555.
[46] "Int. Roadmap for Devices and Systems (IRDS)," More Moore, 2022.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98203-
dc.description.abstract隨著生成式人工智慧 (Generative AI) 、物聯網 (IoT) 及邊緣運算 (Edge Computing) 等應用之快速發展,運算系統對記憶體頻寬、延遲與能效提出更高要求,傳統記憶體 (如SRAM、DRAM與Flash) 面臨資料傳輸瓶頸與功耗限制,難以兼顧高速性、高密度與製程整合彈性。因此,具備低漏電流、製程溫度低與結構彈性之氧化物半導體 (Oxide Semiconductor, OS) 材料,成為推進新型記憶體元件設計與積層型三維積體電路 (Monolithic 3D Integration Circuits) 之重要候選技術。
本研究針對氧化物半導體於新興記憶體架構中,對兩項具代表性之應用進行改善:一為氧化物半導體整合矽基電晶體之混合式2T0C嵌入式DRAM (eDRAM) ,另一應用為採用氧化物通道之鐵電電晶體(Ferroelectric FET, FeFET),實現後段製程相容 (BEOL-Compatible) 之三態內容可定址記憶體 (Ternary Content Addressable Memory, TCAM)。本論文建立完整且可靠的元件與電路模擬流程,於科技電腦輔助設計 (Technology Computer-Aided Design, TCAD) 模擬中構建氧化物半導體能量態密度 (Density of State, DOS) 模型,並採用鐵電 Preisach 模型進行研究,透過本論文建立的 TCAD 模擬流程能很好的模擬出氧化物半導體的導通特性,與鐵電材料之極化翻轉現象。
於 2T0C eDRAM 部分,本研究提出垂直通道電晶體 (Vertical Channel Transistor, VCT) 替代傳統薄膜型電晶體 (Thin Film Transistor, TFT) 作為資料寫入端電晶體,配合先進矽基環繞式閘極電晶體,形成具潛力之OS-Si混合式 2T0C eDRAM 架構。研究結果顯示,垂直通道結構可於不增加面積下延長通道長度,有效改善關閉電流以提升資料保存時間 (提升至815.8秒)。相較於傳統 TFT 結構,以VCT組成之OS-Si eDRAM 於73奈米之VCT通道長度下寫入速度可提升74.2%,且記憶體單元面積亦經佈局優化可達20%縮減,展現其於高密度、高資料保存時間嵌入式記憶體應用之潛力。
於 OS FeFET TCAM 部分,本論文首先針對 FeFET 之低臨界電壓 (Low Threshold Voltage, LVT) 偏負的問題進行電性分析,本研究發現當 LVT 為負值時,會導致TCAM匹配線於搜尋操作時,在匹配狀況下仍產生漏電,使搜尋結果易出現判斷錯誤。為改善此問題,提出「調整底部金屬電極功函數」以抬升LVT,並藉由於寫入高臨界電壓 (High Threshold Voltage, HVT) 過程中,施加正偏壓於頂部電極,提升鐵電層極化量,補償提升金屬功函數導致記憶體視窗 (Memory Window, MW) 縮小之影響,使LVT轉正同時維持適當的MW大小。此外,本論文亦評估調整讀取偏壓 (如提升源極電壓) 對臨界電壓之影響。最終,提出兼顧正值的低臨界電壓與低能耗的操作條件。本論文研究數種調整臨界電壓方法應用於TCAM中進行分析,探討不同元件解決方案之搜尋能耗、延遲、搜尋感測範圍與面積。結果顯示,結合功函數調整與頂閘偏壓之方案,在維持面積不增加的前提下,相較於單純提升閘極金屬功函數之方案可提升TCAM搜尋感測範圍達5.4倍,並將搜尋延遲從489 ps降低至104 ps,搜尋能耗僅0.3 fJ,在能耗延遲面積乘積 (Energy Delay Area Product) 的綜合評估中,此方案更是有80%的優化,相較於抬升源極線之方案亦有約50%的進步。
綜合上述,氧化物半導體具備低漏電、高載子遷移率與低溫製程等優勢,配合本研究所提出之元件設計與操作優化策略,能有效突破傳統記憶體於效能、密度與整合性方面之瓶頸。本論文所提出之垂直通道電晶體作為OS-Si混合式eDRAM,與調整閘極金屬功函數結合頂閘寫入輔助偏壓實現氧化物半導體通道FeFET於TCAM之應用方案,提供未來以氧化物半導體作為記憶體應用之具體路徑,實現可堆疊、高效能、低功耗之下一世代記憶體與記憶體內運算架構。
zh_TW
dc.description.abstractWith the rapid advancement of emerging applications such as Generative Artificial Intelligence (AI), the Internet of Things (IoT), and Edge Computing, modern computing systems demand higher memory bandwidth, lower latency, and improved energy efficiency. Traditional memory technologies—including SRAM, DRAM, and Flash—are increasingly constrained by data transfer bottlenecks and power consumption, making it difficult to simultaneously achieve high speed, high density, and process integration flexibility. In this thesis, oxide semiconductors (OS), which feature low leakage current, low-temperature processing, and structural flexibility, have emerged as promising candidates for the development of next-generation memory devices and monolithic 3D (M3D) integration circuits.
This study explores two representative oxide semiconductor-based memory architectures: (1) a hybrid 2T0C embedded DRAM (eDRAM) that integrates oxide semiconductors with silicon-based transistors, and (2) a BEOL-compatible ternary content-addressable memory (TCAM) utilizing FeFETs with oxide semiconductor channels. To support these developments, a comprehensive simulation methodology was established. The oxide semiconductor’s density-of-state (DOS) model and the ferroelectric Preisach model were implemented in Sentaurus Technology Computer-Aided Design (TCAD) to accurately analyze the conduction behavior of OS materials and polarization switching in ferroelectrics.
In the 2T0C eDRAM design, a vertical channel transistor (VCT) is proposed to replace the conventional thin-film transistor (TFT) as the write-access device. Combined with an advanced silicon-based gate-all-around (GAA) transistor, the proposed OS-Si hybrid structure enhances memory characteristics. Simulation results indicate that the vertical structure allows for a longer channel length design without area penalty, significantly reducing off-state leakage current and improving data retention time up to 815.8 seconds. Compared to the TFT-based design, the VCT-based OS-Si eDRAM shows a 74.2% improvement in write speed at a 73 nm channel length and achieves a 20% area reduction through layout optimization, demonstrating its potential in high-density and high-retention embedded memory applications.
For the OS FeFET-based TCAM, this thesis addresses the issue of negative low-threshold voltage (LVT), which causes undesired leakage on match lines and leads to search errors. To resolve this, an approach of tuning the bottom metal gate work function to raise the LVT and applying a positive top-gate voltage during HVT (high threshold voltage) programming to enhance ferroelectric polarization is proposed. This compensates for the memory window (MW) degradation caused by metal work function increment. Additionally, the effect of read bias tuning (e.g., raised source voltage (VSS)) on threshold voltage was evaluated. The final operating condition balances the positive LVT demand and energy efficiency. By implementing these threshold voltage adjustment strategies in TCAM arrays, the search energy, latency, sensing margin, and footprint were comprehensively analyzed. Results show that the proposed method—metal work function tuning with top-gate assisted HVT programming—achieves a 5.4× increase in sensing margin and reduces search latency from 489 ps to 104 ps, with only 0.3 fJ search energy. The energy-delay-area product (EDAP) is improved by 80%, with a ~50% advantage over schemes using VScL raising.
In summary, oxide semiconductors offer advantages in ultra-low leakage current, high mobility, and low-temperature processing. When utilized with the device architecture and operation strategies proposed in this work, they can effectively overcome limitations in performance, density, and integration faced by traditional memory. The demonstrated approaches—VCT-enabled OS-Si hybrid eDRAM and polarization-assisted FeFET TCAM with work function tuning—provide a concrete path toward realizing stackable, high-performance, low-power memory and in-memory computing architectures for next-generation systems.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:19:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-30T16:19:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
中文摘要 ii
ABSTRACT iv
目次 vii
圖次 x
表次 xvii
Chapter 1 導論 1
1.1 傳統記憶體 1
1.1.1 揮發性記憶體 (SRAM、DRAM) 3
1.1.2 非揮發性記憶體 (Flash) 5
1.2 新興記憶體 7
1.2.1 無電容式嵌入式動態隨機存取記憶體 8
1.2.2 鐵電場效電晶體 (FeFET) 10
1.3 積層型三維積體電路 12
1.3.1 氧化物半導體材料 14
1.3.2 氧化物電晶體 17
1.3.3 氧化物通道記憶體元件 20
1.4 記憶體應用之三態內容可定址記憶體 26
1.4.1 鐵電場效電晶體作為三態內容可定址記憶體 28
1.5 研究動機 30
1.6 研究架構 31
Chapter 2 模擬方法 32
2.1 前言 32
2.2 氧化物半導體模擬方法與參數 33
2.3 鐵電材料之模型與模擬方法與參數 37
2.4 模擬流程 39
2.4.1 氧化物半導體與矽基電晶體構成之混合式2T0C eDRAM 模擬 40
2.4.2 氧化物半導體通道FeFET元件及應用模擬 42
Chapter 3 OS-Si 2T0C eDRAM分析 45
3.1 前言 45
3.2 薄膜型與垂直型氧化物電晶體元件電性分析 46
3.3 薄膜型與垂直型OS-Si 2T0C eDRAM特性分析 51
3.3.1 記憶體單元之面積 52
3.3.2 寫入速度 55
3.3.3 讀取電流 58
3.3.4 資料保存時間 60
3.4 結論 62
Chapter 4 OS FeFET元件及TCAM應用分析 63
4.1 前言 63
4.2 OS FeFET元件電性分析 65
4.2.1 記憶體視窗和低臨界電壓與閘極金屬功函數和讀取偏壓之關係 66
4.2.2 提升頂部閘極偏壓幫助寫入高臨界電壓 (HVT) 態之分析 70
4.3 OS FeFET於三態內容可定址記憶體應用分析 73
4.3.1 負的元件低臨界電壓之解決方案及其採用之元件特性 74
4.3.2 不同解決方案之於TCAM應用特性分析 76
4.4 結論 80
Chapter 5 總結 81
REFERENCE 83
-
dc.language.isozh_TW-
dc.subject積層型三維積體電路zh_TW
dc.subject氧化物半導體zh_TW
dc.subject三態內容可定址記憶體zh_TW
dc.subject鐵電場效電晶體zh_TW
dc.subject2T0C嵌入式動態隨機存取記憶體zh_TW
dc.subject2T0C Embedded DRAMen
dc.subjectFeFETen
dc.subjectTernary Content Addressable Memory (TCAM)en
dc.subjectMonolithic 3D Integration Circuiten
dc.subjectOxide Semiconductorsen
dc.title探索氧化物半導體於新世代記憶體技術之應用zh_TW
dc.titleExploring Oxide Semiconductors for Next-Generation Memory Technologiesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee胡振國;蘇俊榮zh_TW
dc.contributor.oralexamcommitteeJenn-Gwo Hwu;Chun-Jung Suen
dc.subject.keyword氧化物半導體,積層型三維積體電路,2T0C嵌入式動態隨機存取記憶體,鐵電場效電晶體,三態內容可定址記憶體,zh_TW
dc.subject.keywordOxide Semiconductors,Monolithic 3D Integration Circuit,2T0C Embedded DRAM,FeFET,Ternary Content Addressable Memory (TCAM),en
dc.relation.page89-
dc.identifier.doi10.6342/NTU202502505-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-29-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2030-07-25-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
6.65 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved