請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98197完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊台鴻 | zh_TW |
| dc.contributor.advisor | Tai-Horng Young | en |
| dc.contributor.author | 林孟廷 | zh_TW |
| dc.contributor.author | Meng-Ting Lin | en |
| dc.date.accessioned | 2025-07-30T16:18:10Z | - |
| dc.date.available | 2025-07-31 | - |
| dc.date.copyright | 2025-07-30 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-24 | - |
| dc.identifier.citation | 1. Stamatovic, S.M., et al., Junctional proteins of the blood-brain barrier: New insights into function and dysfunction. Tissue Barriers, 2016. 4(1): p. e1154641.
2. Dhuria, S.V., L.R. Hanson, and W.H. Frey, 2nd, Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci, 2010. 99(4): p. 1654-73. 3. Crowe, T.P., et al., Mechanism of intranasal drug delivery directly to the brain. Life Sci, 2018. 195: p. 44-52. 4. Lochhead, J.J. and R.G. Thorne, Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev, 2012. 64(7): p. 614-28. 5. Daniel, D. and D.R. Wegmann, Protection of nonobese diabetic mice from diabetes by intranasal or subcutaneous administration of insulin peptide B-(9-23). Proc Natl Acad Sci U S A, 1996. 93(2): p. 956-60. 6. Ross, T.M., et al., Intranasal administration of interferon beta bypasses the blood-brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. J Neuroimmunol, 2004. 151(1-2): p. 66-77. 7. Fortuna, A., et al., Intranasal delivery of systemic-acting drugs: small-molecules and biomacromolecules. Eur J Pharm Biopharm, 2014. 88(1): p. 8-27. 8. Srinivasan, B., et al., TEER measurement techniques for in vitro barrier model systems. J Lab Autom, 2015. 20(2): p. 107-26. 9. Butt, A.M., H.C. Jones, and N.J. Abbott, Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol, 1990. 429: p. 47-62. 10. Bendas, S., et al., The Path from Nasal Tissue to Nasal Mucosa on Chip: Part 1-Establishing a Nasal In Vitro Model for Drug Delivery Testing Based on a Novel Cell Line. Pharmaceutics, 2023. 15(9). 11. Huang, Q., et al., Research progress in brain-targeted nasal drug delivery. Front Aging Neurosci, 2023. 15: p. 1341295. 12. Formica, M.L., et al., On a highway to the brain: A review on nose-to-brain drug delivery using nanoparticles. Applied Materials Today, 2022. 29: p. 101631. 13. Keil, S.A., et al., Glymphatic dysfunction in Alzheimer's disease: A critical appraisal. Science, 2025. 389(6756): p. eadv8269. 14. Iliff, J.J., et al., A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med, 2012. 4(147): p. 147ra111. 15. Xie, L., et al., Sleep drives metabolite clearance from the adult brain. Science, 2013. 342(6156): p. 373-7. 16. Bilston, L.E., et al., Arterial pulsation-driven cerebrospinal fluid flow in the perivascular space: a computational model. Comput Methods Biomech Biomed Engin, 2003. 6(4): p. 235-41. 17. Rasmussen, M.K., H. Mestre, and M. Nedergaard, The glymphatic pathway in neurological disorders. Lancet Neurol, 2018. 17(11): p. 1016-1024. 18. Lochhead, J.J., et al., Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J Cereb Blood Flow Metab, 2015. 35(3): p. 371-81. 19. Kumar, N.N., et al., Delivery of immunoglobulin G antibodies to the rat nervous system following intranasal administration: Distribution, dose-response, and mechanisms of delivery. J Control Release, 2018. 286: p. 467-484. 20. Nedergaard, M. and S.A. Goldman, Glymphatic failure as a final common pathway to dementia. Science, 2020. 370(6512): p. 50-56. 21. Wessendorf, M.W., Fluoro-Gold: composition, and mechanism of uptake. Brain Res, 1991. 553(1): p. 135-48. 22. Catapano, L.A., S.S. Magavi, and J.D. Macklis, Neuroanatomical tracing of neuronal projections with Fluoro-Gold. Methods Mol Biol, 2008. 438: p. 353-9. 23. Reger, M.A., et al., Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. J Alzheimers Dis, 2008. 13(3): p. 323-31. 24. Steen, E., et al., Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease--is this type 3 diabetes? J Alzheimers Dis, 2005. 7(1): p. 63-80. 25. Konofagou, E.E., Optimization of the ultrasound-induced blood-brain barrier opening. Theranostics, 2012. 2(12): p. 1223-37. 26. Ye, D., et al., Focused ultrasound-enabled delivery of radiolabeled nanoclusters to the pons. J Control Release, 2018. 283: p. 143-150. 27. Ye, D., et al., Focused Ultrasound-Enhanced Delivery of Intranasally Administered Anti-Programmed Cell Death-Ligand 1 Antibody to an Intracranial Murine Glioma Model. Pharmaceutics, 2021. 13(2). 28. Ji, R., et al., Focused ultrasound enhanced intranasal delivery of brain derived neurotrophic factor produces neurorestorative effects in a Parkinson's disease mouse model. Sci Rep, 2019. 9(1): p. 19402. 29. Chen, H., et al., Focused ultrasound-enhanced intranasal brain delivery of brain-derived neurotrophic factor. Sci Rep, 2016. 6: p. 28599. 30. Chen, H., et al., Blood vessel deformations on microsecond time scales by ultrasonic cavitation. Phys Rev Lett, 2011. 106(3): p. 034301. 31. Chen, H., et al., A new brain drug delivery strategy: focused ultrasound-enhanced intranasal drug delivery. PLoS One, 2014. 9(10): p. e108880. 32. Yoo, S.S., et al., Enhancement of cerebrospinal fluid tracer movement by the application of pulsed transcranial focused ultrasound. Sci Rep, 2022. 12(1): p. 12940. 33. Wu, S., et al., Neuroprotective effect of low-intensity transcranial ultrasound stimulation in endothelin-1-induced middle cerebral artery occlusion in rats. Brain Res Bull, 2020. 161: p. 127-135. 34. Wu, C.H., et al., Very Low-Intensity Ultrasound Facilitates Glymphatic Influx and Clearance via Modulation of the TRPV4-AQP4 Pathway. Adv Sci (Weinh), 2024. 11(47): p. e2401039. 35. Lin, M.T., et al., Intranasal drug delivery Dynamics: Extracellular and intracellular pathways revealed by Fluoro-Gold tracer in a mouse model. Brain Res, 2025. 1858: p. 149644. 36. Merkus, P., et al., Influence of anatomy and head position on intranasal drug deposition. Eur Arch Otorhinolaryngol, 2006. 263(9): p. 827-32. 37. Yong, H.J., et al., The unique expression profile of FAM19A1 in the mouse brain and its association with hyperactivity, long-term memory and fear acquisition. Sci Rep, 2020. 10(1): p. 3969. 38. Wang, Q., et al., The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas. Cell, 2020. 181(4): p. 936-953.e20. 39. Schnepel, P., et al., Physiology and Impact of Horizontal Connections in Rat Neocortex. Cereb Cortex, 2015. 25(10): p. 3818-35. 40. Vetreno, R.P., et al., Adult rat cortical thickness changes across age and following adolescent intermittent ethanol treatment. Addict Biol, 2017. 22(3): p. 712-723. 41. Bolte, S. and F.P. Cordelières, A guided tour into subcellular colocalization analysis in light microscopy. J Microsc, 2006. 224(Pt 3): p. 213-32. 42. Thorne, R.G., et al., Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience, 2004. 127(2): p. 481-96. 43. Renner, D.B., et al., Intranasal delivery of insulin via the olfactory nerve pathway. J Pharm Pharmacol, 2012. 64(12): p. 1709-14. 44. Falcone, J.A., et al., Intranasal administration as a route for drug delivery to the brain: evidence for a unique pathway for albumin. J Pharmacol Exp Ther, 2014. 351(1): p. 54-60. 45. Ichimura, T., P.A. Fraser, and H.F. Cserr, Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res, 1991. 545(1-2): p. 103-13. 46. Abbott, N.J., et al., The role of brain barriers in fluid movement in the CNS: is there a 'glymphatic' system? Acta Neuropathol, 2018. 135(3): p. 387-407. 47. Iliff, J.J., et al., Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest, 2013. 123(3): p. 1299-309. 48. Hadaczek, P., et al., The "perivascular pump" driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther, 2006. 14(1): p. 69-78. 49. Walter, B.A., et al., The olfactory route for cerebrospinal fluid drainage into the peripheral lymphatic system. Neuropathol Appl Neurobiol, 2006. 32(4): p. 388-96. 50. Field, P., Y. Li, and G. Raisman, Ensheathment of the olfactory nerves in the adult rat. J Neurocytol, 2003. 32(3): p. 317-24. 51. Broadwell, R.D. and B.J. Balin, Endocytic and exocytic pathways of the neuronal secretory process and trans-synaptic transfer of wheat germ agglutinin-horseradish peroxidase in vivo. J Comp Neurol, 1985. 242(4): p. 632-50. 52. Alonso, M., et al., Turning astrocytes from the rostral migratory stream into neurons: a role for the olfactory sensory organ. J Neurosci, 2008. 28(43): p. 11089-102. 53. Scranton, R.A., et al., The rostral migratory stream plays a key role in intranasal delivery of drugs into the CNS. PLoS One, 2011. 6(4): p. e18711. 54. Chow, H.S., Z. Chen, and G.T. Matsuura, Direct transport of cocaine from the nasal cavity to the brain following intranasal cocaine administration in rats. J Pharm Sci, 1999. 88(8): p. 754-8. 55. Bender, T.S., et al., Intranasal administration of glial-derived neurotrophic factor (GDNF) rapidly and significantly increases whole-brain GDNF level in rats. Neuroscience, 2015. 303: p. 569-76. 56. Ma, Y.P., et al., Intranasally delivered TGF-beta1 enters brain and regulates gene expressions of its receptors in rats. Brain Res Bull, 2007. 74(4): p. 271-7. 57. Pang, Y., et al., Intranasal insulin protects against substantia nigra dopaminergic neuronal loss and alleviates motor deficits induced by 6-OHDA in rats. Neuroscience, 2016. 318: p. 157-65. 58. Yang, J.P., et al., Direct transport of VEGF from the nasal cavity to brain. Neurosci Lett, 2009. 449(2): p. 108-11. 59. Chiba, H., et al., Transmembrane proteins of tight junctions. Biochim Biophys Acta, 2008. 1778(3): p. 588-600. 60. Arora, P., S. Sharma, and S. Garg, Permeability issues in nasal drug delivery. Drug Discov Today, 2002. 7(18): p. 967-75. 61. Pizzo, M.E., et al., Intrathecal antibody distribution in the rat brain: surface diffusion, perivascular transport and osmotic enhancement of delivery. J Physiol, 2018. 596(3): p. 445-475. 62. Tucker, D., Y. Lu, and Q. Zhang, From Mitochondrial Function to Neuroprotection-an Emerging Role for Methylene Blue. Mol Neurobiol, 2018. 55(6): p. 5137-5153. 63. Liu, Y., et al., Customized Intranasal Hydrogel Delivering Methylene Blue Ameliorates Cognitive Dysfunction against Alzheimer's Disease. Adv Mater, 2024. 36(19): p. e2307081. 64. Perumal, V., et al., Enhanced Targeted Delivery of Minocycline via Transferrin Conjugated Albumin Nanoparticle Improves Neuroprotection in a Blast Traumatic Brain Injury Model. Brain Sci, 2023. 13(3). 65. Holmkvist, A.D., et al., Local delivery of minocycline-loaded PLGA nanoparticles from gelatin-coated neural implants attenuates acute brain tissue responses in mice. J Nanobiotechnology, 2020. 18(1): p. 27. 66. Lin, M.T., et al., Low-Intensity Ultrasound Facilitation of Intranasal Drug Delivery to Olfactory Bulb and Trigeminal Nerves. Ultrasound Med Biol, 2025. 51(5): p. 788-796. 67. Lim, J., et al., ASIC1a is required for neuronal activation via low-intensity ultrasound stimulation in mouse brain. Elife, 2021. 10. 68. Aboghazleh, R., et al., Rodent brain extraction and dissection: A comprehensive approach. MethodsX, 2024. 12: p. 102516. 69. Yanagida, K., et al., Size-selective opening of the blood-brain barrier by targeting endothelial sphingosine 1-phosphate receptor 1. Proc Natl Acad Sci U S A, 2017. 114(17): p. 4531-4536. 70. Sheikov, N., et al., Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med Biol, 2004. 30(7): p. 979-89. 71. Aryal, M., et al., Noninvasive ultrasonic induction of cerebrospinal fluid flow enhances intrathecal drug delivery. J Control Release, 2022. 349: p. 434-442. 72. McDannold, N., et al., MRI-guided targeted blood-brain barrier disruption with focused ultrasound: histological findings in rabbits. Ultrasound Med Biol, 2005. 31(11): p. 1527-37. 73. Baseri, B., et al., Multi-modality safety assessment of blood-brain barrier opening using focused ultrasound and definity microbubbles: a short-term study. Ultrasound Med Biol, 2010. 36(9): p. 1445-59. 74. Yoon, K., et al., Localized Blood-Brain Barrier Opening in Ovine Model Using Image-Guided Transcranial Focused Ultrasound. Ultrasound Med Biol, 2019. 45(9): p. 2391-2404. 75. Kovacs, Z.I., et al., Disrupting the blood-brain barrier by focused ultrasound induces sterile inflammation. Proc Natl Acad Sci U S A, 2017. 114(1): p. E75-e84. 76. Fan, C.H., et al., Detection of intracerebral hemorrhage and transient blood-supply shortage in focused-ultrasound-induced blood-brain barrier disruption by ultrasound imaging. Ultrasound Med Biol, 2012. 38(8): p. 1372-82. 77. Tung, Y.S., et al., In vivo transcranial cavitation threshold detection during ultrasound-induced blood-brain barrier opening in mice. Phys Med Biol, 2010. 55(20): p. 6141-55. 78. Benfenati, V., et al., An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proc Natl Acad Sci U S A, 2011. 108(6): p. 2563-8. 79. Mola, M.G., et al., Cell Volume Regulation Mechanisms in Differentiated Astrocytes. Cell Physiol Biochem, 2021. 55(S1): p. 196-212. 80. Iuso, A. and D. Križaj, TRPV4-AQP4 interactions 'turbocharge' astroglial sensitivity to small osmotic gradients. Channels (Austin), 2016. 10(3): p. 172-4. 81. Lochhead, J.J. and T.P. Davis, Perivascular and Perineural Pathways Involved in Brain Delivery and Distribution of Drugs after Intranasal Administration. Pharmaceutics, 2019. 11(11). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98197 | - |
| dc.description.abstract | 血腦障壁為藥物遞送至腦部的主要障礙,限制多數藥物的進入。鼻腔給藥(Intranasal, IN)為一種有潛力且非侵入性的方式,能避開血腦障壁經由嗅神經及三叉神經途徑,直接傳遞藥物至腦部。近年來,關於膠淋巴系統的研究顯示,血管周圍腔隙(perivascular space, PVS)可能在藥物於腦內快速分布中扮演關鍵角色。但是目前尚無研究探討IN藥物遞送腦部的不同時間點與腦內分佈以及與PVS的關係。此外,關於使用低強度超音波促進IN藥物傳遞至腦部的證據亦仍有限。因此,我將透過兩個主要的研究主題,探討鼻腔至腦部藥物遞送的機制及應用超音波增強IN遞送腦部的效率。
在第一部分研究中,我們使用追蹤劑 Fluoro-Gold (FG),分別以IN給藥及直接嗅球注射於小鼠模型中追蹤藥物動態。我們發現在IN給藥後30分鐘內,FG可迅速到達大腦皮層與三叉神經,並隨時間沿PVS深入腦內,然而在其他腦區並未見到此現象。免疫螢光染色分析顯示IN給藥後FG與星狀膠質細胞標記物的共定位現象,提示IN給藥主要藉由細胞外傳輸及PVS達成廣泛分布。相較之下,直接嗅球注射後FG的傳輸速率較慢且分布範圍較窄,且FG與星狀膠質細胞標記物並未出現共定位現象,反映出細胞外路徑於IN傳遞中的重要角色,我們也證實FG在動物模型中是評估經鼻腔藥物遞送模型的可靠追蹤劑。 第二部分研究中,將探討低強度經顱超音波刺激,在無搭配微泡下,是否可促進鼻腔藥物遞送。首先我們在活體外透過測量聲壓以測定此客製化低強度超音波系統經顱骨傳導後的聲壓衰減程度。接著我們使用10-kDa螢光標記Dextran作為示蹤劑,IN給藥後施加超音波刺激。我們發現在4小時追蹤中,IN結合超音波(IN+US)組在嗅球及三叉神經中的藥物濃度顯著高於IN單獨組及假處理組。共軛焦顯微鏡的分析顯示,藥物主要聚集於PVS,並且組織學檢查未見微出血或腦組織損傷,證實超音波刺激在本研究條件下能達到促進藥物遞送的效果且具有良好安全性。 綜合上述兩個主要研究的結果,我們確認了鼻腔給藥主要利用細胞外路徑並依賴膠淋巴系統透過PVS以促進腦內分布。此外,我們也證實了低強度超音波能在不搭配微泡的情況下,安全並有效地提升鼻腔至腦部藥物傳遞效率。此結果不僅深化了IN藥物遞送腦部機制的理解,也為未來開發非侵入性腦刺激的治療與藥物遞送提供了重要實證基礎。 | zh_TW |
| dc.description.abstract | The blood-brain barrier (BBB) constitutes a substantial challenge for the effective transportation of therapeutic agents to the brain. Nasal administration offers a promising non-invasive pathway to bypass BBB via the olfactory and trigeminal nerve routes. Recent discoveries regarding the glymphatic system suggest that the perivascular space (PVS) may be essential for facilitating the rapid distribution of drugs thorough the brain. However, no studies to date have visualized the PVS or trigeminal nerve at different time points to elucidate their involvement in IN delivery pathways. Moreover, evidence supporting the use of low-intensity ultrasound to facilitate IN drug delivery to the central nervous system (CNS) remains limited. Therefore, this thesis aims to investigate the mechanisms and potential enhancement strategies of nasal-to-brain drug delivery through two main studies.
In the first study, we used Fluoro-Gold (FG), a retrograde neuronal tracer, to evaluate intracellular and extracellular transport following IN administration and direct transcranial injection to the olfactory bulb using the mouse model. Whole-brain and brain section imaging revealed that FG rapidly reached the outer cortex and trigeminal nerves within 30 minutes post-IN delivery and progressively penetrated deeper brain regions over time, primarily along PVS. Immunofluorescence staining confirmed FG co-localized with astrocytes, suggesting that extracellular transport via the glymphatic system is critically involved in IN-mediated delivery to brain. In contrast, direct olfactory bulb injection resulted in slower and more restricted transport, with no observed co-localization between FG and astrocytes, further emphasizing the critical role of the extracellular pathway in IN drug delivery. FG demonstrated high utility as a reliable tracer for assessing the IN drug delivery model in mice. The second study assessed whether low-intensity transcranial ultrasound, applied without microbubbles (MBs) contrast agents, could enhance IN delivery efficiency. The custom-made low-intensity ultrasound system was evaluated under ex vivo conditions by measuring acoustic pressure to determine the extent of transcranial attenuation. Afterward, a fluorescent 10-kDa dextran tracer was administered intranasally, followed by planar ultrasound treatment across the entire brain. Quantitative analysis demonstrated that at 4 hours post-treatment, the IN combined with ultrasound (IN+US) group showed significantly higher dextran concentrations in the olfactory bulb and trigeminal nerves compared to the IN-only and sham groups. Confocal microscopy revealed dextran accumulation predominantly along PVS structures. Histological examination confirmed no detectable evidence of microhemorrhage or cerebral tissue injury, demonstrating that ultrasound with low-intensity is a safe adjunct to enhance IN drug delivery. Together, these findings highlight that nasal-to-brain delivery predominantly relies on extracellular pathways and the glymphatic system through PVS for efficient distribution. Moreover, we provide the first experimental evidence that low-intensity ultrasound without MBs can safely augment IN drug delivery. These insights offer new directions for the development of non-invasive therapeutic stimulation targeting neurological diseases. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:18:10Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-30T16:18:10Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstracts iv 目次 vi LIST OF FIGURES ix LIST OF TABLE xi Chapter 1 Introduction 1 Chapter 2 Investigating the Delivery Pathways and Mechanisms of Intranasal transport to Brain Using Fluoro-Gold Tracer 14 2.1 Materials and Methods Data Source and Cohort Identification 14 2.1.1 The research experimental design and animal model 14 2.1.2 Nasal Administration of Fluoro-Gold 15 2.1.3 Direct Transcranial Injection of Fluoro-Gold into Olfactory Bulb 16 2.1.4 Whole Brain Imaging 16 2.1.5 Brain Slice Imaging and Quantitative Analysis 17 2.1.6 Immunofluorescence Staining and Colocalization Analysis 18 2.1.7 Statistical Analysis 19 2.2 Results 20 2.2.1 Intranasal FG administration—Whole Brain Imaging 20 2.2.2 Temporal Dynamics of FG Distribution in Brain Slices Following IN Delivery 21 2.2.3 Transcranial administration of Fluoro-Gold into Olfactory Bulb 23 2.2.4 Immunofluorescence Assessment of FG Uptake Following Intranasal and Transcranial Administration 25 2.3 Discussion 29 Chapter 3 Ultrasound Enhancement of Nose-to-Brain Drug Delivery 34 3.1 Materials and Methods 34 3.1.1 The research scheme, animal model and nasal delivery using dextran 34 3.1.2 Transcranial ultrasound treatment 36 3.1.3 Efficiency of IN Drug Delivery after Ultrasound stimulation 38 3.1.4 Immunofluorescence Labeling 39 3.1.5 Hematoxylin and Eosin (H&E) Histology 39 3.1.6 Statistical Evaluation 40 3.2 Result 41 3.2.1 Experiment 1: Whole-brain imaging analysis 41 3.2.2 Experiment 2: Brain slice imaging analysis 43 3.2.3 Experiment 3: Analysis of dextran concentrations in specific brain areas 45 3.2.4 Experiment 4&5: Immunofluorescence and H&E Staining 46 3.3 Discussion 48 Chapter 4 Conclusion 52 Chapter 5 Future Directions 53 References 57 Publication list 66 | - |
| dc.language.iso | en | - |
| dc.subject | 細胞外傳輸 | zh_TW |
| dc.subject | 血管周圍腔隙 | zh_TW |
| dc.subject | 低強度超音波 | zh_TW |
| dc.subject | 鼻腔遞藥至腦部 | zh_TW |
| dc.subject | nasal-to-brain delivery | en |
| dc.subject | perivascular space | en |
| dc.subject | low-intensity ultrasound | en |
| dc.subject | extracellular pathway | en |
| dc.title | 經鼻腔至腦部藥物遞送:作用機轉與超音波促進藥物傳輸探討 | zh_TW |
| dc.title | Intranasal Drug Delivery to the Brain: Underlying Mechanisms and Ultrasound-Enhanced Transport | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 陳文翔 | zh_TW |
| dc.contributor.coadvisor | Wen-Shiang Chen | en |
| dc.contributor.oralexamcommittee | 王兆麟;陳景欣;王國川;黃琮瑋 | zh_TW |
| dc.contributor.oralexamcommittee | Jaw-Lin Wang;Gin-Shin Chen;Kuo-Chuan Wang;Tsung-Wei Huang | en |
| dc.subject.keyword | 鼻腔遞藥至腦部,細胞外傳輸,低強度超音波,血管周圍腔隙, | zh_TW |
| dc.subject.keyword | nasal-to-brain delivery,extracellular pathway,low-intensity ultrasound,perivascular space, | en |
| dc.relation.page | 66 | - |
| dc.identifier.doi | 10.6342/NTU202502106 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-25 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 3.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
