Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98190
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor梁博煌zh_TW
dc.contributor.advisorPo-Huang Liangen
dc.contributor.author劉嘉晉zh_TW
dc.contributor.authorJia-Jin Liuen
dc.date.accessioned2025-07-30T16:16:25Z-
dc.date.available2025-07-31-
dc.date.copyright2025-07-30-
dc.date.issued2025-
dc.date.submitted2025-07-25-
dc.identifier.citationChapter I:
1. Sacchettini JC, Poulter CD. Creating isoprenoid diversity. Science. 1997; 277: 1788–9. doi: 10.1126/science.277.5333.1788.
2. Ogura K, Koyama T. Enzymatic aspects of isoprenoid chain elongation. Chem Rev. 1998; 98: 1263–76. doi: 10.1021/cr9600464.
3. Liang PH, Ko TP, Wang AH. Structure, mechanism and function of prenyltransferases. Eur J Biochem. 2002; 269: 3339–54. doi: 10.1046/j.1432-1033.2002.03014.x.
4. Liang PH. Reaction kinetics, catalytic mechanisms, conformational changes, and inhibitor design for prenyltransferases. Biochemistry. 2009; 48: 6562–70. doi: 10.1021/bi900371p.
5. Takahashi S, Koyama T. Structure and function of cis-prenyl chain elongating enzymes. Chem Rec. 2006; 6: 194–205. doi: 10.1002/tcr.20083.
6. Teng KH, Liang PH. Structures, mechanisms and inhibitors of undecaprenyl diphosphate synthase: a cis-prenyltransferase for bacterial peptidoglycan biosynthesis. Bioorg Chem. 2012; 43: 51–7. doi: 10.1016/j.bioorg.2011.09.004.
7. Cantagrel V, Lefeber DJ, Ng BG, Guan Z, Silhavy JL, Bielas SL, et al. SRD5A3 is required for converting polyprenol to dolichol and is mutated in a congenital glycosylation disorder. Cell. 2010; 142: 203–17. doi: 10.1016/j.cell.2010.06.001.
8. Fujihashi M, Zhang YW, Higuchi Y, Li XY, Koyama T, Miki K. Crystal structure of cis-prenyl chain elongating enzyme, undecaprenyl diphosphate synthase. Proc Natl Acad Sci U S A. 2001; 98: 4337–42. doi: 10.1073/pnas.071514398.
9. Ko TP, Chen YK, Robinson H, Tsai PC, Gao YG, Chen AP, et al. Mechanism of product chain length determination and the role of a flexible loop in Escherichia coli undecaprenyl-pyrophosphate synthase catalysis. J Biol Chem. 2001; 276: 47474–82. doi: 10.1074/jbc.M106747200.
10. Chen YH, Chen AP, Chen CT, Wang AH, Liang PH. Probing the conformational change of Escherichia coli undecaprenyl pyrophosphate synthase during catalysis using an inhibitor and tryptophan mutants. J Biol Chem. 2002; 277: 7369–76. doi: 10.1074/jbc.M110014200.
11. Chang SY, Ko TP, Liang PH, Wang AH. Catalytic mechanism revealed by the crystal structure of undecaprenyl pyrophosphate synthase in complex with sulfate, magnesium, and triton. J Biol Chem. 2003; 278: 29298–307. doi: 10.1074/jbc.M302687200.
12. Guo RT, Ko TP, Chen AP, Kuo CJ, Wang AH, Liang PH. Crystal structures of undecaprenyl pyrophosphate synthase in complex with magnesium, isopentenyl pyrophosphate, and farnesyl thiopyrophosphate: roles of the metal ion and conserved residues in catalysis. J Biol Chem. 2005; 280: 20762–74. doi: 10.1074/jbc.M502121200.
13. Harrison KD, Park EJ, Gao N, Kuo A, Rush JS, Waechter CJ, et al. Nogo-B receptor is necessary for cellular dolichol biosynthesis and protein N-glycosylation. EMBO J. 2011; 30: 2490–500. doi: 10.1038/emboj.2011.147.
14. Grabińska KA, Edani BH, Park EJ, Kraehling JR, Sessa WC. A conserved C-terminal RXG motif in the NgBR subunit of cis-prenyltransferase is critical for prenyltransferase activity. J Biol Chem. 2017; 292: 17351–61. doi: 10.1074/jbc.M117.806034.
15. Edani BH, Grabińska KA, Zhang R, Park EJ, Siciliano B, Surmacz L, et al. Structural elucidation of the cis-prenyltransferase NgBR/DHDDS complex reveals insights in regulation of protein glycosylation. Proc Natl Acad Sci U S A. 2020; 117: 20794–802. doi: 10.1073/pnas.2008381117.
16. Bar-El ML, Vaňková P, Yeheskel A, Simhaev L, Engel H, Man P, et al. Structural basis of heterotetrameric assembly and disease mutations in the human cis-prenyltransferase complex. Nat Commun. 2020; 11: 5273. doi: 10.1038/s41467-020-18970-z.
17. Giladi M, Lisnyansky Bar-El M, Vaňková P, Ferofontov A, Melvin E, et al. Structural basis for long-chain isoprenoid synthesis by cis-prenyltransferases. Sci Adv. 2022; 8: eabn1171. doi: 10.1126/sciadv.abn1171.
18. Ma J, Ko TP, Yu X, Zhang L, Ma L, Zhai C, et al. Structural insights to heterodimeric cis-prenyltransferases through yeast dehydrodolichyl diphosphate synthase subunit Nus1. Biochem Biophys Res Commun. 2019; 515: 621–26. doi: 10.1016/j.bbrc.2019.05.135.
19. Sato M, Fujisaki S, Sato K, Nishimura Y, Nakano A. Yeast Saccharomyces cerevisiae has two cis-prenyltransferases with different properties and localizations. Implication for their distinct physiological roles in dolichol synthesis. Genes Cells. 2001; 6: 495-506. doi: 10.1046/j.1365-2443.2001.00438.x.
20. Helenius A, Aebi M. Intracellular functions of N-linked glycans. Science. 2001; 291: 2364–9. doi: 10.1126/science.291.5512.2364.
21. Ng BG, Freeze HH. Perspectives on glycosylation and its congenital disorders. Trends Genet. 2018; 34: 466–76. doi: 10.1016/j.tig.2018.03.002.
22. Chaw SM, Liu YC, Wu YW, Wang HY, Lin CI, Wu CS, et al. Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution. Nat Plants. 2019; 5: 63–73. doi: 10.1038/s41477-018-0337-0.
23. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015; 12: 357-60. doi: 10.1038/nmeth.3317
24. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014; 30: 923-30. doi: 10.1093/bioinformatics/btt656
25. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26: 139-40. doi: 10.1093/bioinformatics/btp616
26. Edri I, Goldenberg M, Lisnyansky M, Strulovich R, Newman H, Loewenstein A, et al. Overexpression and purification of human cis-prenyltransferase in Escherichia coli. J Vis Exp. 2017; 126: 56430. doi: 10.3791/56430.
27. Giladi M, Edri I, Goldenberg M, Newman H, Strulovich R, Khananshvili D, et al. Purification and characterization of human dehydrodolychil diphosphate synthase (DHDDS) overexpressed in E. coli. Protein Expr Purif. 2017; 132: 138–42. doi: 10.1016/j.pep.2017.02.001.
28. Lisnyansky Bar-El M, Lee SY, Ki AY, Kapelushnik N, Loewenstein A, Chung KY, et al. Structural characterization of full-length human dehydrodolichyl diphosphate synthase using an integrative computational and experimental approach. Biomolecules. 2019; 9: 660. doi: 10.3390/biom9110660.
29. Holcomb J, Doughan M, Spellmon N, Lewis B, Perry E, Zhang Y, et al. SAXS analysis of a soluble cytosolic NgBR construct including extracellular and transmembrane domains. PLoS One. 2018; 13: e0191371. doi: 10.1371/journal.pone.0191371.
30. Sabry S, Vuillaumier-Barrot S, Mintet E, Fasseu M, Valayannopoulos V, Héron D, et al. A case of fatal Type I congenital disorders of glycosylation (CDG I) associated with low dehydrodolichol diphosphate synthase (DHDDS) activity. Orphanet journal of rare diseases. 2016; 11: 1-14. doi: 10.1186/s13023-016-0468-1
31. Yao JY, Teng KH, Liu MC, Wang CS, Liang PH. Characterization of a Cis-Prenyltransferase from Lilium longiflorum Anther. Molecules. 2019; 24: 2728 doi: 10.3390/molecules24152728.
32. Kang JH, Gonzales-Vigil E, Matsuba Y, Pichersky E, Barry CS. Determination of residues responsible for substrate and product specificity of Solanum habrochaites short-chain cis-prenyltransferases. Plant Physiol. 2014; 164: 80–91. doi: 10.1104/pp.113.230466.
33. Park EJ, Grabińska KA, Guan Z, Stránecký V, Hartmannová H, Hodaňová K, et al. Mutation of Nogo-B receptor, a subunit of cis-prenyltransferase, causes a congenital disorder of glycosylation. Cell Metab. 2014; 20: 448–57. doi: 10.1016/j.cmet.2014.06.016.
34. Hamdan FF, Myers CT, Cossette P, Lemay P, Spiegelman D, Laporte AD, et al. High rate of recurrent de novo mutations in developmental and epileptic encephalopathies. Am J Hum Genet. 2017; 101: 664–85. doi: 10.1016/j.ajhg.2017.09.008.
35. Züchner S, Dallman J, Wen R, Beecham G, Naj A, Farooq A, et al. Whole-exome sequencing links a variant in DHDDS to retinitis pigmentosa. Am J Hum Genet. 2011; 88: 201–6. doi: 10.1016/j.ajhg.2011.01.001.
36. Zelinger L, Banin E, Obolensky A, Mizrahi-Meissonnier L, Beryozkin A, Bandah-Rozenfeld D, et al. A missense mutation in DHDDS, encoding dehydrodolichyl diphosphate synthase, is associated with autosomal-recessive retinitis pigmentosa in Ashkenazi Jews. Am J Hum Genet. 2011; 88: 207–15. doi: 10.1016/j.ajhg.2011.01.002.
37. Akhtar TA, Matsuba Y, Schauvinhold I, Yu G, Lees HA, Klein SE, et al. The tomato cis-prenyltransferase gene family. Plant J. 2013; 73: 640–52. doi: 10.1111/tpj.12063.
38. Ogawa T, Emi K, Koga K, Yoshimura T, Hemmi H. A cis-prenyltransferase from Methanosarcina acetivorans catalyzes both head-to-tail and nonhead-to-tail prenyl condensation. FEBS J. 2016; 283: 2369–83. doi: 10.1111/febs.13749.
39. Okada M, Unno H, Emi KI, Matsumoto M, Hemmi H. A versatile cis-prenyltransferase from Methanosarcina mazei catalyzes both C- and O-prenylations. J Biol Chem. 2021; 296: 100679. doi: 10.1016/j.jbc.2021.100679.
40. Sompiyachoke K, Nagasaka A, Ito T, Hemmi H. Identification and biochemical characterization of a heteromeric cis-prenyltransferase from the thermophilic archaeon Archaeoglobus fulgidus. J Biochem. 2022; 171: 641–51. doi: 10.1093/jb/mvac022.
41. Surmacz L, Plochocka D, Kania M, Danikiewicz W, Swiezewska E. cis-Prenyltransferase atCPT6 produces a family of very short-chain polyisoprenoids in planta. Biochim Biophys Acta. 2014; 1841: 240–50. doi: 10.1016/j.bbalip.2013.11.011.
42. Qu Y, Chakrabarty R, Tran HT, Kwon EJ, Kwon M, Nguyen TD, et al. A lettuce (Lactuca sativa) homolog of human Nogo-B receptor interacts with cis-prenyltransferase and is necessary for natural rubber biosynthesis. J Biol Chem. 2015; 290: 1898–914. doi: 10.1074/jbc.M114.616920.
43. Epping J, van Deenen N, Niephaus E, Stolze A, Fricke J, Huber C, et al. A rubber transferase activator is necessary for natural rubber biosynthesis in dandelion. Nat Plants. 2015; 1: 1–9. doi: 10.1038/nplants.2015.48.
44. Brasher MI, Surmacz L, Leong B, Pitcher J, Swiezewska E, Pichersky E, et al. A two-component enzyme complex is required for dolichol biosynthesis in tomato. Plant J. 2015; 82: 903–14. doi: 10.1111/tpj.12859.
45. Emi KI, Sompiyachoke K, Okada M, Hemmi H. A heteromeric cis-prenyltransferase is responsible for the biosynthesis of glycosyl carrier lipids in Methanosarcina mazei. Biochem Biophys Res Commun. 2019; 520: 291–6. doi: 10.1016/j.bbrc.2019.09.143.
46. Surowiecki P, Onysk A, Manko K, Swiezewska E, Surmacz L. Long-chain polyisoprenoids are synthesized by AtCPT1 in Arabidopsis thaliana. Molecules. 2019; 24: 2789. doi: 10.3390/molecules24152789.
47. Wang W, Dong C, McNeil M, Kaur D, Mahapatra S, Crick DC, et al. The structural basis of chain length control in Rv1086. J Mol Biol. 2008; 381: 129–40. doi: 10.1016/j.jmb.2008.05.060.
48. Chan YT, Ko TP, Yao SH, Chen YW, Lee CC, Wang AH. Crystal structure and potential head-to-middle condensation function of a Z,Z-farnesyl diphosphate synthase. ACS Omega. 2017; 2: 930–6. doi: 10.1021/acsomega.6b00562.
49. Strasser R. Plant protein glycosylation. Glycobiology. 2016; 26:926-939. doi: 10.1093/glycob/cww023.
50. De Coninck T, Gistelinck K, Janse van Rensburg HC, Van den Ende W, Van Damme EJM. Sweet modifications modulate plant development. Biomolecules. 2021; 11: 756. doi: 10.3390/biom11050756.
Chapter II:
1. Saleem M. Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source. Heliyon. 2022; 8: e08905. doi: 10.1016/j.heliyon.2022.e08905.
2. Ho DP, Ngo HH, Guo W. A mini review on renewable sources for biofuel. Bioresour Technol. 2014; 169: 742–749. doi: 10.1016/j.biortech.2014.07.022.
3. Zhu JY, Agarwal UP, Ciesielski PN, Himmel ME, Gao R, Deng Y, Morits M, Österberg M. Towards sustainable production and utilization of plant-biomass-based nanomaterials: a review and analysis of recent developments. Biotechnol Biofuels. 2021; 14: 114. doi: 10.1186/s13068-021-01963-5.
4. Babu S, Singh Rathore S, Singh R, Kumar S, Singh VK, Yadav SK, Yadav V, Raj R, Yadav D, Shekhawat K, Ali Wani O. Exploring agricultural waste biomass for energy, food and feed production and pollution mitigation: A review. Bioresour Technol. 2022; 360: 127566. doi: 10.1016/j.biortech.2022.127566.
5. Chandel AK, Garlapati VK, Singh AK, Antunes FAF, da Silva SS. The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresource Technol. 2018; 264: 370–381. doi: 10.1016/j.biortech.2018.06.004.
6. Igwebuike CM, Awad S, Andrès Y. Renewable energy potential: Second-generation biomass as feedstock for bioethanol production. Molecules. 2024; 29: 1619. doi: 10.3390/molecules29071619.
7. Álvarez G, Reyes-Sosa FM, Díez B, Enzymatic hydrolysis of biomass from wood. Microb Biotechnol. 2016; 9: 149–56. doi: 10.1111/1751-7915.12346.
8. Lee HL, Chang CK, Teng KH, Liang PH. Construction and characterization of different fusion proteins between cellulases and β-glucosidase to improve glucose production and thermal stability. Bioresource Technol. 2011; 102: 3973–3976. doi: 10.1016/j.biortech.2010.11.114.
9. Chen CH, Yao Y, Yang B, Lee HL, Yuan SF, Hsieh HY, Liang PH. Engineer multi-functional cellulase/xylanase/β-glucosidase with improved efficacy to degrade rice straw. Bioresource Technol Rep. 2019; 5: 170–177. doi: 10.1016/j.biteb.2019.01.008.
10. Bayer EA, Setter E, Lamed R. Organization and distribution of the cellulosome in Clostridium thermocellum. J Bacteriol. 1985; 163: 552–559. doi: 10.1128/jb.163.2.552-559.
11. Felix CR, Ljungdahl LG. Annu Rev Microbiol. The cellulosome: the exocellular organelle of Clostridium. 1993; 47: 791–819. doi: 10.1146/annurev.mi.47.100193.004043.
12. Hirano K, Kurosaki M, Nihei S, Hasegawa H, Shinoda S, Haruki M, Hirano N. Enzymatic diversity of the Clostridium thermocellum cellulosome is crucial for the degradation of crystalline cellulose and plant biomass. Sci Rep. 2016; 6: 35709. doi: 10.1038/srep35709.
13. Garvey M, Klose H, Fischer R, Lambertz C, Commandeur U. Cellulases for biomass degradation: comparing recombinant cellulase expression platforms. Trends Biotechnol. 2013; 31: 581–593. doi: 10.1016/j.tibtech.2013.06.006.
14. Lo Leggio L, Larsen S. The 1.62 Å structure of Thermoascus aurantiacus endoglucanase: completing the structural picture of subfamilies in glycoside hydrolase family 5. FEBS Lett. 2002; 523: 103–108. doi: 10.1016/s0014-5793(02)02954-x.
15. Aspeborg H, Coutinho PM, Wang Y, Brumer 3rd H, Henrissat B. Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol Biol. 2012; 12: 186. doi: 10.1186/1471-2148-12-186.
16. Henrissat B, Davies G. Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol. 1997; 7: 637–644. doi: 10.1016/s0959-440x(97)80072-3.
17. Yuan SF, Wu TH, Lee HL, Hsieh HY, Lin WL, Yang B, Chang CK, Li Q, Gao J, Huang CH, Ho MC, Guo RT, Liang PH. Biochemical characterization and structural analysis of a bifunctional cellulase/xylanase from Clostridium thermocellum. J Biol Chem. 2015; 290: 5739–5748. doi: 10.1074/jbc.M114.604454.
18. Yague E, Beguin P, Aubert JP. Nucleotide sequence and deletion analysis of the cellulase-encoding gene celH of Clostridium thermocellum. Gene 1990; 89: 61–67. doi: 10.1016/0378-1119(90)90206-7.
19. Carvalho AL, Goyal A, Prates JA, Bolam DN, Gilbert HJ, Pires VM, Ferreira LM, Planas A, Romao MJ, Fontes CM. The family 11 carbohydrate-binding module of Clostridium thermocellum Lic26A-Cel5E accommodates beta-1,4- and beta-1,3-1,4-mixed linked glucans at a single binding site. J Biol Chem. 2004; 279: 34785–34793. doi: 10.1074/jbc.M405867200.
20. Taylor EJ, Goyal A, Guerreiro CI, Prates JA, Money VA, Ferry N, Morland C, Planas A, Macdonald JA, Stick RV, Gilbert HJ, Fontes CM, Davies GJ. How family 26 glycoside hydrolases orchestrate catalysis on different polysaccharides: structure and activity of a Clostridium thermocellum lichenase, CtLic26A. J Biol Chem. 2005; 280: 32761–32767. doi: 10.1074/jbc.M506580200.
21. Chhabra SR, Shockley KR, Ward DE, Kelly RM. Regulation of endo-acting glycosyl hydrolases in the hyperthermophilic bacterium Thermotoga maritima grown on glucan- and mannan-based polysaccharides. Appl Environ Microbiol. 2002; 68: 545–554. doi: 10.1128/AEM.68.2.545-554.2002.
22. Pereira JH, Chen Z, McAndrew RP, Sapra R, Chhabra SR, Sale KL, Simmons BA, Adams PD. Biochemical characterization and crystal structure of endoglucanase Cel5A from the hyperthermophilic Thermotoga maritima. J Struct Biol. 2010; 172: 372–379. doi: 10.1016/j.jsb.2010.06.018.
23. Wu TH, Huang CH, Ko TP, Lai HL, Ma Y, Chen CC, Cheng YS, Liu JR, Guo RT. Diverse substrate recognition mechanism revealed by Thermotoga maritima Cel5A structures in complex with cellotetraose, cellobiose and mannotriose. Biochim Biophys Acta. 2011; 1814: 1832–1840. doi: 10.1016/j.bbapap.2011.07.020.
24. Chen Z, Friedland GD, Pereira JH, Reveco SA, Chan R, Park JI, Thelen MP, Adams PD, Arkin AP, Keasling JD, Blanch HW, Simmons BA, Sale KL, Chivian D, Chhabra SR. Tracing determinants of dual substrate specificity in glycoside hydrolase family 5. J Biol Chem. 2012; 287: 25335–25343. doi: 10.1074/jbc.M112.362640.
25. Liang PH, Lin WL, Hsieh HY, Lin TY, Chen CH, Tewary SK, Lee HL, Yuan SF, Yang B, Yao JY, Ho MC. A flexible loop for mannan recognition and activity enhancement in a bifunctional glycoside hydrolase family 5. Biochim Biophys Acta Gen Subj. 2018; 1862: 513–521. doi: 10.1016/j.bbagen.2017.11.004.
26. Freier D, Mothershed CP, Wiegel J. Characterization of Clostridium thermocellum JW20. Appl Environ Microbiol. 1988; 54: 204–211. doi: 10.1128/aem.54.1.204-211.1988.
27. Glasgow EM, Kemna EI, Bingman CA, Ing N, Deng K, Bianchetti CM, Takasuka TE, Northen TR, Fox BG. A structural and kinetic survey of GH5_4 endoglucanases reveals determinants of broad substrate specificity and opportunities for biomass hydrolysis. J Biol Chem. 2020; 295: 17752–17769. doi: 10.1074/jbc.RA120.015328.
28. Roberto IC, Mussatto SI, Rodrigues RCLB. Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Industrial Crops and Products. 2003; 17: 171–176.
29. Wang HM, Shih YP, Hu SM, Lo WT, Lin HM, Ding SS, Liao HC, Liang PH. Parallel gene cloning and protein production in multiple expression systems. Biotechnol Prog. 2009; 25: 1582–1586. doi: 10.1002/btpr.274.
30. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72: 248–254. doi: 10.1006/abio.1976.9999.
31. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959; 31: 426–428.
32. Madeira F, Madhusoodanan N, Lee J, Eusebi A, Niewielska A, Tivey ARN, Lopez R, Butcher S. The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res. 2024; 52: W521–W525. doi: 10.1093/nar/gkae241.
33. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009; 25:1189–1191. doi: 10.1093/bioinformatics/btp033.
34. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021; 49: W293–W296. doi: 10.1093/nar/gkab301.
35. Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004; 14: 1188–1190. doi: 10.1101/gr.849004.
36. Goldman AD, Beatty JT, Landweber LF. The TIM barrel architecture facilitated the early evolution of protein-mediated metabolism. J Mol Evol. 2016; 82: 17–26. doi: 10.1007/s00239-015-9722-8.
37. Glasgow EM, Vander Meulen KA, Takasuka TE, Bianchetti CM, Bergeman LF, Deutsch S, Fox BG. Extent and origins of functional diversity in a subfamily of glycoside hydrolases. J Mol Biol. 2019; 431: 1217–1233. doi: 10.1016/j.jmb.2019.01.024.
38. Bianchetti CM, Brum, P, Smith RW, Dyer K, Hura GL, Rutkoski TJ, Phillips Jr GN. Structure, dynamics, and specificity of endoglucanase D from Clostridium cellulovorans. J Mol Biol. 2013; 425: 4267–4285. doi: 10.1016/j.jmb.2013.05.030.
39. Liu J, Tsai C, Liu J, Cheng K, Cheng C. The catalytic domain of a Piromyces rhizinflata cellulase expressed in Escherichia coli was stabilized by the linker peptide of the enzyme. Enzyme Microb Technol. 2001; 28: 582–589. doi: 10.1016/s0141-0229(00)00349-5. PMID: 11339938.
40. Cai S, Li J, Hu FZ, Zhang K, Luo Y, Janto B, Boissy R, Ehrlich G, Dong X. Cellulosilyticum ruminicola, a newly described rumen bacterium that possesses redundant fibrolytic-protein-encoding genes and degrades lignocellulose with multiple carbohydrate-borne fibrolytic enzymes. Appl Environ Microbiol. 2010; 76: 3818–3824. doi: 10.1128/AEM.03124-09.
41. Oyama T, Schmitz GE, Dodd D, Han Y, Burnett A, Nagasawa N, Mackie RI, Nakamura H, Morikawa K, Cann I. Mutational and structural analyses of Caldanaerobius polysaccharolyticus Man5B reveal novel active site residues for family 5 glycoside hydrolases. PLoS One. 2013; 8: e80448. doi: 10.1371/journal.pone.0080448.
42. Garg P, Manoj N. Structure of an iminosugar complex of a glycoside hydrolase family 5 lichenase provides insights into the active site. Biochimie. 2023; 204: 69-77. doi: 10.1016/j.biochi.2022.09.001.
43. Takeda N, Hirasawa K, Uchimura K, Nogi Y, Hatada Y, Akita M, Usami R, Yoshida Y, Grant WD, Ito S, Horikoshi K. Alkaline mannanase from a novel species of alkaliphilic Bacillus. J Appl Glycosci. 2004; 51: 229–236. doi: 10.5458/jag.51.229.
44. Chauhan, PS, Sharma P, Puri N, Gupta N. (2014). Purification and characterization of an alkali-thermostable β-mannanase from Bacillus nealsonii PN-11 and its application in mannooligosaccharides preparation having prebiotic potential. Eur Food Res Technol., 2014; 238: 927–936. doi: 10.1007/s00217-014-2170-7.
45. Ma Y, Xue Y, Dou Y, Xu Z, Tao W, Zhou P. Characterization and gene cloning of a novel beta-mannanase from alkaliphilic Bacillus sp. N16-5. Extremophiles. 2004; 8: 447–454. doi: 10.1007/s00792-004-0405-4.
46. Tailford LE, Ducros VM, Flint JE, Roberts SM, Morland C, Zechel DL, Smith N, Bjørnvad ME, Borchert TV, Wilson KS, Davies GJ, Gilbert HJ. Understanding how diverse beta-mannanases recognize heterogeneous substrates. Biochemistry. 2009; 48: 7009-7018. doi: 10.1021/bi900515d.
47. Zheng F, Zhao H, Wang N, Zhong P, Zhou K, Yu S. Cloning and characterization of thermophilic endoglucanase and its application in the transformation of ginsenosides. AMB Express. 2022; 12: 136. doi: 10.1186/s13568-022-01473-z.
48. Ye TJ, Huang KF, Ko TP, Wu SH. Synergic action of an inserted carbohydrate-binding module in a glycoside hydrolase family 5 endoglucanase. Acta Crystallogr D Struct Biol. 2022; 78: 633–646. doi: 10.1107/S2059798322002601.
49. Domínguez R, Souchon H, Lascombe M, Alzari PM. The crystal structure of a family 5 endoglucanase mutant in complexed and uncomplexed forms reveals an induced fit activation mechanism. J Mol Biol. 1996; 257: 1042–1051. doi: 10.1006/jmbi.1996.0222.
50. Gloster TM, Ibatullin FM, Macauley K, Eklöf JM, Roberts S, Turkenburg JP, Bjørnvad ME, Jørgensen PL, Danielsen S, Johansen KS, Borchert TV, Wilson KS, Brumer H, Davies GJ. Characterization and three-dimensional structures of two distinct bacterial xyloglucanases from families GH5 and GH12. J Biol Chem. 2007; 282: 19177–19189. doi: 10.1074/jbc.M700224200.
51. Tseng CW, Ko TP, Guo RT, Huang JW, Wang HC, Huang CH, Cheng YS, Wang AHJ, Liu JR. Substrate binding of a GH5 endoglucanase from the ruminal fungus Piromyces rhizinflata. Acta Crystallogr.. Sect. F Struct.. Biol. Cryst. Commun. 2011; 67: 1189–1194. doi: 10.1107/S1744309111032428.
52. Badieyan S, Bevan DR, Zhang C. Study and design of stability in GH5 cellulases. Biotechnol Bioeng. 2012; 109: 31–34. doi: 10.1002/bit.23280.
53. Dos Santos CR, Cordeiro RL, Wong DW, Murakami MT. Structural basis for xyloglucan specificity and β-d-Xylp(1→6)-D-Glcp recognition at the -1 subsite within the GH5 family. Biochemistry 2015; 54: 1930–1942. doi: 10.1021/acs.biochem.5b00011.
54. Venditto I, Najmudin S, Luis AS, Ferreira LM, Sakka K, Knox JP, Gilbert HJ, Fontes CM. Family 46 carbohydrate-binding modules contribute to the enzymatic hydrolysis of xyloglucan and β-1,3-1,4-glucans through distinct mechanisms. J Biol Chem. 2015; 290: 10572–10586. doi: 10.1074/jbc.M115.637827.
55. McGregor N, Morar M, Fenger TH, Stogios P, Lenfant N, Yin V, Xu X, Evdokimova E, Cui H, Henrissat B, Savchenko A, Brumer H. Structure-function analysis of a mixed-linkage β-glucanase/xyloglucanase from the key ruminal Bacteroidetes Prevotella bryantii B14. J Biol Chem. 2016; 291: 1175–1197. doi: 10.1074/jbc.M115.691659.
56. Meng DD, Liu X, Dong S, Wang YF, Ma XQ, Zhou H, Wang X, Yao LS, Feng Y, Li FL. Structural insights into the substrate specificity of a glycoside hydrolase family 5 lichenase from Caldicellulosiruptorsp. F32. Biochem J. 2017; 474: 3373–338. doi: 10.1042/BCJ20170328.
57. Attia MA, Nelson CE, Offen WA, Jain N, Davies GJ, Gardner JG, Brumer H. In vitro and in vivo characterization of three Cellvibrio japonicus glycoside hydrolase family 5 members reveals potent xyloglucan backbone-cleaving functions. Biotechnol Biofuels 2018; 11: 45. doi: 10.1186/s13068-018-1039-6.
58. Shima S, Igarashi Y & Kodama T (1993) Purification and properties of two truncated endoglucanases produced in Escherichia coli harbouring Clostridium cellulolyticum endoglucanase gene celCCD. Appl Microbiol Biotechnol 38, 750–754.
Chapter III:
1. Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020, 395 (10223), 497-506, DOI: 10.1016/S0140-6736(20)30183-5.
2. Wu, F.; Zhao, S.; Yu, B.; Chen, Y. M.; Wang, W.; Song, Z. G.; Hu, Y.; Tao, Z. W.; Tian, J. H.; Pei, Y. Y.; Yuan, M. L.; Zhang, Y. L.; Dai, F. H.; Liu, Y.; Wang, Q. M.; Zheng, J. J.; Xu, L.; Holmes, E. C.; Zhang, Y. Z. A new coronavirus associated with human respiratory disease in China. Nature. 2020, 579 (7798), 265-269, DOI: 10.1038/s41586-020-2008-3.
3. Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G. F.; Tan, W.; China Novel Coronavirus Investigating and Research Team. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020, 382 (8), 727-733. DOI: 10.1056/NEJMoa2001017.
4. Zhou, P.; Yang, X. L.; Wang, X. G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H. R.; Zhu, Y.; Li, B.; Huang, C. L.; Chen, H. D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R. D.; Liu, M. Q.; Chen, Y.; Shen, X. R.; Wang, X.; Zheng, X. S.; Zhao, K.; Chen, Q. J.; Deng, F.; Liu, L. L.; Yan, B.; Zhan, F. X.; Wang, Y. Y.; Xiao, G. F.; Shi, Z. L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020, 579 (7798), 270-273. DOI: 10.1038/s41586-020-2012-7.
5. Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W. J.; Wang, D.; Xu, W.; Holmes, E. C.; Gao, G. F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020, 395 (10224), 565-574. DOI: 10.1016/S0140-6736(20)30251-8.
6. Jackson, C. B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 2022, 23 (1), 3-20. DOI: 10.1038/s41580-021-00418-x.
7. Bestle, D.; Heindl, M. R.; Limburg, H.; Van Lam van, T.; Pilgram, O.; Moulton, H.; Stein, D. A.; Hardes, K.; Eickmann, M.; Dolnik, O.; Rohde, C.; Klenk, H. D.; Garten, W.; Steinmetzer, T.; Böttcher-Friebertshäuser, E. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance. 2020, 3 (9), e202000786. DOI: 10.26508/lsa.202000786.
8. Essalmani, R.; Jain, J.; Susan-Resiga, D.; Andréo, U.; Evagelidis, A.; Derbali, R. M.; Huynh, D. N.; Dallaire, F.; Laporte, M.; Delpal, A.; Sutto-Ortiz, P.; Coutard, B.; Mapa, C.; Wilcoxen, K.; Decroly, E.; Nq Pham, T.; Cohen, É. A.; Seidah, N. G. Distinctive Roles of Furin and TMPRSS2 in SARS-CoV-2 Infectivity. J Virol. 2022, 96 (8), e0012822. DOI: 10.1128/jvi.00128-22.
9. Mondal, S.; Chen, Y.; Lockbaum, G. J.; Sen, S.; Chaudhuri, S.; Reyes, A. C.; Lee, J. M.; Kaur, A. N.; Sultana, N.; Cameron, M. D.; Shaffer, S. A.; Schiffer, C. A.; Fitzgerald, K. A.; Thompson, P. R. Dual Inhibitors of Main Protease (MPro) and Cathepsin L as Potent Antivirals against SARS-CoV2. J Am Chem Soc. 2022, 144 (46), 21035-21045. DOI: 10.1021/jacs.2c04626.
10. Levy, S. B.; Marshall, B. Antibacterial Resistance Worldwide: Causes, Challenges and Responses. Nat. Med. 2004, 10 (12 Suppl), S122–S129, DOI: 10.1038/nm1145
11. Ghosh, C.; Haldar, J. Membrane-Active Small Molecules: Designs Inspired by Antimicrobial Peptides. ChemMedChem. 2015, 10 (10), 1606–1624, DOI: 10.1002/cmdc.201500299
12. Lim, S. M.; Webb, S. A. R. Nosocomial Bacterial Infections in Intensive Care Units. I: Organisms and Mechanisms of Antibiotic Resistance. Anaesthesia 2005, 60 (9), 887–902, DOI: 10.1111/j.1365-2044.2005.04220.x
13. Fischbach, M. A.; Walsh. C. T. Antibiotics for Emerging Pathogen. Science 2009, 325 (5944), 1089–1093, DOI: 10.1126/science.1176667
14. Bulter, M. S.; Gigante V.; Sati, H.; Paulin, S.; Al-Sulaiman, L.; Rex, J. H.; Fernandes, P.; Arias, C. A.; Paul, M.; Thwaites, G. E.; Czaplewski, L.; Alm, R. A.; Lienhardt, C.; Spigelman, M.; Silver, L. L.; Ohmagari, N.; Kozlov, R.; Harbarth, S.; Beyer, P. Analysis of the Clinical Pipeline of Treatments for Drug-Resistant Bacterial Infections: Despite Progress, More Action Is Needed. Antimicrob. Agents Chemother. 2022, 66 (3), e0199121, DOI: 10.1128/AAC.01991-21.
15. Grundmann, H.; Aires-de-Sousa, M.; Boyce, J.; Tiemersma, E. Emergence and Resurgence of Meticillin-Resistant Staphylococcus aureus as a Public-Health Threat. Lancet 2006, 368 (9538), 874–885, DOI: 10.1016/S0140-6736(06)68853-3
16. Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D. L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; Ouellette, M.; Outterson, K.; Patel, J.; Cavaleri, M.; Cox, E. M.; Houchens, C. R.; Grayson, M. L.; Hansen, P.; Singh, N.; Theuretzbacher, U.; Magrini, N.; WHO Pathogens Priority List Working Group. Discovery, Research, and Development of New Antibiotics: the WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis. Lancet Infect. Dis. 2018, 18 (3), 318–327, DOI: 10.1016/S1473-3099(17)30753-3
17. Teng, K. H.; Liang, P. H. Structures, Mechanisms and Inhibitors of Undecaprenyl Diphosphate Synthase: A cis-Prenyltransferase for Bacterial Peptidoglycan Biosynthesis. Bioorg. Chem. 2012, 43, 51–57, DOI: 10.1016/j.bioorg.2011.09.004
18. Sinko, W.; Wang, Y.; Zhu, W.; Zhang, Y.; Feixas, F.; Cox, C. L.; Mitchell, D. A.; Oldfield, E.; McCammon, J. A. Undecaprenyl Diphosphate Synthase Inhibitors: Antibacterial Drug Leads. J. Med. Chem. 2014, 57 (13), 5693–5701, DOI: 10.1021/jm5004649.
19. Fatha, M. A.; Czarny, T. L.; Myers, C. L.; Worrall, L. J.; French, S.; Conrady, D. G.; Wang, Y.; Oldfield, E.; Strynadka, N. C.; Brown, E. D. Antagonism Screen for Inhibitors of Bacterial Cell Wall Biogenesis Uncovers an Inhibitor of Undecaprenyl Diphosphate Synthase. Proc. Natl. Acad. Sci., USA 2015, 112 (35), 11048–11053, DOI: 10.1073/pnas.1511751112
20. Wang, Y.; Desai, J.; Zhang, Y.; Malwal, S. R.; Shin, C. J.; Feng, X.; Sun, H.; Liu, G.; Guo, R. T.; Oldfield, E. Bacterial Cell Growth Inhibitors Targeting Undecaprenyl Diphosphate Synthase and Undecaprenyl Diphosphate Phosphatase. ChemMedchem. 2016, 11 (20), 2311–219, DOI: 10.1002/cmdc.201600342
21. Malwal, S. R.; Chen, L.; Hicks, H.; Qu, F.; Liu, W.; Shillo, A.; Law, W. X.; Zhang, J.; Chandnani, N.; Han, X.; Zheng, Y.; Chen, C. C.; Guo, R. T.; AbdelKhalek, A.; Seleem, M. N.; Oldfield, E. Discovery of Lipophilic Bisphosphonates that Target Bacterial Cell Wall and Quinone Biosynthesis. J. Med. Chem. 2019, 62 (5), 2564–2581, DOI: 10.1021/acs.jmedchem.8b01878.
22. Song, J.; Malwal, S. R.; Baig, N.; Schurig-Briccio, L. A.; Gao, Z.; Vaidya, G. S.; Yang, K.; Abutaleb, N. S.; Seleem, M. N.; Gennis, R. B.; Pogorelov, T. V.; Oldfield, E.; Feng, X. Discovery of Prenyltransferase Inhibitors with In Vitro and In Vivo Antibacterial Activity. ACS Infect. Dis. 2020, 6 (11), 2979–2993, DOI: 10.1021/acsinfecdis.0c00472.
23. Kuo, C. J.; Guo, R. T.; Lu, I. L.; Liu, H. G.; Wu, S. Y.; Ko, T. P.; Wang, A. H.-J.; Liang, P. H. Structure-Based Inhibitors Exhibited Differential Activities against H. pylori and E. coli Undecaprenyl Pyrophosphate Synthases. J. Biomed. Biotechnol. 2008, 2008, 841312, DOI: 10.1155/2008/841312.
24. Palla. S. R.; Li, C. W.; Chao, T. L.; Lo, H. L. V.; Liu, J. J.; Pan, M. Y. C.; Chiu, Y. T.; Lin, W. C.; Hu, C. W.; Yang, C. M.; Chen, Y. Y.; Fang, J. T.; Lin, S. W.; Lin, Y. T.; Lin, H. C.; Kuo, C.J.; Wang, L. H. C.; Chang, S. Y.; Liang, P. H. Synthesis, Evaluation, and Mechanism of 1-(4-(Arylethylenylcarbonyl)phenyl)-4-Carboxy-2-Pyrrolidinones as Potent Reversible SARS-CoV-2 Entry Inhibitors. Antiviral Res. 2023, 219, 105735, DOI: 10.1016/j.antiviral.2023.105735
25. Palla, S.; Palla, S. R.; Liu, J. J.; Chao, T. L.; Lee, T. H.; Kavala, V.; Liu, I. C.; Wang, L. H. C.; Chang, S. Y.; Yao, C. F.; Liang, P. H. Green Synthesis of Tetrahydropyrazino[2,1-a:5,4-a']diisoquinolines as SARS-CoV-2 Entry Inhibitors. ACS Omega. 2024. DOI: 10.1021/acsomega.4c08640
26. Hsu, K. C.; Chen, Y. F.; Lin, S. R.; Yang, J. M. iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC bioinformatics. 2011, 12 Suppl 1 (Suppl 1), S33. DOI: 10.1186/1471-2105-12-S1-S33.
27. Fraser, B. J.; Beldar, S.; Seitova, A.; Hutchinson, A.; Mannar, D.; Li, Y.; Kwon, D.; Tan, R.; Wilson, R. P.; Leopold, K.; Subramaniam, S.; Halabelian, L.; Arrowsmith, C. H.; Bénard, F. Structure and activity of human TMPRSS2 protease implicated in SARS-CoV-2 activation. Nat Chem Biol. 2022, 18 (9), 963-971. DOI: 10.1038/s41589-022-01059-7.
28. Dahms, S. O.; Arciniega, M.; Steinmetzer, T.; Huber, R.; Than, M. E. Structure of the unliganded form of the proprotein convertase furin suggests activation by a substrate-induced mechanism. Proc Natl Acad Sci U S A. 2016, 113 (40), 11196-11201. DOI: 10.1073/pnas.1613630113.
29. Wang, Y.; Liu, C.; Zhang, C.; Wang, Y.; Hong, Q.; Xu, S.; Li, Z.; Yang, Y.; Huang, Z.; Cong, Y. Structural basis for SARS-CoV-2 Delta variant recognition of ACE2 receptor and broadly neutralizing antibodies. Nat Commun. 2022, 13 (1), 871. DOI: 10.1038/s41467-022-28528-w.
30. O'Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R.; Open Babel: An Open Chemical Toolbox 2011. J. Cheminform. 2011, 3, 33, DOI: 10.1186/1758-2946-3-33.
31. Lipinski, C. A. Lead-and Drug-Like Compounds: the Rule-of-Five Revolution. Drug Discov. Today Technol. 2004, 1 (4), 337–341, DOI: 10.1016/j.ddtec.2004.11.007.
32. Jayaram, B.; Singh, T.; Mukherjee, G.; Mathur, A.; Shekhar, S.; Shekhar, V. A. Freely Accessible Web-Server for Target Directed Lead Molecule Discovery. BMC bioinformatics 2012, 13 (Suppl 17), 1−13, DOI: 10.1186/1471-2105-13-S17-S7.
33. Pires, D. E. V.; Blundell, T. L.; Ascher, D. B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072, DOI: 10.1021/acs.jmedchem.5b00104.
34. Studio, D. Discovery studio. 2008. Accelrys [2.1], 420.
35. Chang, S. Y.; Ko, T. P.; Chen, A. P.; Wang, A. H; Liang, P. H. Substrate binding mode and reaction mechanism of undecaprenyl pyrophosphate synthase deduced from crystallographic studies. Protein Sci. 2004, 13 (4), 971-8. DOI: 10.1110/ps.03519904.
36. Zhu, W.; Zhang, Y.; Sinko, W.; Hensler, M. E.; Olson, J.; Molohon, K. J.; Lindert, S.; Cao, R.; Li, K.; Wang, K.; Wang, Y.; Liu, Y. L.; Sankovsky, A.; de Oliveira, C. A.; Mitchell, D. A.; Nizet, V.; McCammon, J. A.; Oldfield, E. Antibacterial drug leads targeting isoprenoid biosynthesis. Proc Natl Acad Sci U S A. 2013, 110 (1), 123-8. DOI: 10.1073/pnas.1219899110.
37. Chen, Y. F.; Hsu, K. C.; Lin, S. R.; Wang, W. C.; Huang, Y. C.; Yang, J. M. SiMMap: a web server for inferring site-moiety map to recognize interaction preferences between protein pockets and compound moieties. Nucleic Acids Res. 2010, 38 (suppl_2): W424-30, DOI: 10.1093/nar/gkq480.
38. Chang, S. Y.; Ko, T. P.; Liang, P. H.; Wang, A.H. Catalytic mechanism revealed by the crystal structure of undecaprenyl pyrophosphate synthase in complex with sulfate, magnesium, and triton. J Biol Chem. 2003, 278(31), 29298-307, DOI: 10.1074/jbc.M302687200.
39. Winkel-Shirley, B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 2001, 126 (2), 485-93, DOI: 10.1104/pp.126.2.485.
40. Katsori AM, Hadjipavlou-Litina D. Recent progress in therapeutic applications of chalcones. Expert Opin Ther Pat. 2011, 21 (10), 1575-96, DOI: 10.1517/13543776.2011.596529.
41. Zhuang C, Zhang W, Sheng C, Zhang W, Xing C, Miao Z. Chalcone: A Privileged Structure in Medicinal Chemistry. Chem Rev. 2017, 117 (12), 7762-7810, DOI: 10.1021/acs.chemrev.7b00020.
42. Xu, M.; Wu, P.; Shen, F.; Ji, J.; Rakesh, K. P. Chalcone Derivatives and Their Antibacterial Activities: Current Development. Bioorg. Chem. 2019, 91, 103133, DOI: 10.1016/j.bioorg.2019.103133
43. Bhale, P. S.; Dongare, S. B.; Chanshetti, U. B. Synthesis and antimicrobial screening of chalcones containing imidazo[1,2-a] pyridine nucleus. Res. J. Chem. Sci. 2013, 3, 38–42.
44. Mohammad, F.; Rahaman, S. A.; Moinuddin, M. D. Synthesis and Antimicrobial Activity of 1-(2’,4’-Dichlorophenyl)-3-(Substituted aryl)-2-Propene-1-Ones. Int. J. Life Sci. Pharm. Res. 2009, 2, 82-87.
45. Asiri, A. M.; Khan, S. A. Synthesis, Characterization, and In Vitro Antibacterial Activities of Macromolecules Derived from Bis-Chalcone. J. Heter. Chem., 2012, 49 (6), 1434–1438, DOI: https://doi.org/10.1002/jhet.942
46. Asiri, A. M.; Khan, S. A. Green Synthesis, Characterization and Biological Evaluation of Novel Chalcones as Anti Bacterial Agents. Ara. J. Chem. 2017, 10 (2), S2890–S2895, DOI: 10.1016/j.arabjc.2013.11.018
47. Ghani, S. B. A.; Weaver, L.; Zidan, Z. H.; Ali, H. M.; Keevil, C. W.; Brown, R. Microwave Assisted Synthesis and Antimicrobial Activities of Flavonoid Derivatives. Bioorg. Med. Chem. Lett. 2008, 18 (2), 518–522, DOI: 10.1016/j.bmcl.2007.11.081
48. Yadav, N.; Dixit, S. K..; Bhattacharya, A.; Mishra, L. C.; Sharma, M.; Awasthi, S. K.; Bhasin, V. K. Antimalarial Activity of Newly Synthesized Chalcone Derivatives in Vitro. Chem. Biol. Drug Des. 2012, 80 (2), 340–347, DOI: 10.1111/j.1747-0285.2012.01383.x
49. Insuasty, B.; Ramírez, J.; Becerra, D.; Echeverry, C.; Quiroga, J.; Abonia, R.; Robledo, S. M.; Velez, I. D.; Upegui, Y.; Munoz, J. A.; Ospina, V.; Nogueras, M.; Cobo, J. An Efficient Synthesis of New Caffeine-Based Chalcones, Pyrazolines and Pyrazolo[3,4-b][1,4]diazepines as Potential Antimalarial, Antitrypanosomal and Antileishmanial Agents. Eur. J. Med. Chem. 2015, 93, 401–413, DOI: 10.1016/j.ejmech.2015.02.040
50. Auffret, G.; Labaied, M.; Frappier, F.; Rasoanaivo, P.; Grellier, P.; Lewin, G. Synthesis and Antimalarial Evaluation of a Series of Piperazinyl Flavones. Bioorg. Med. Chem. Lett. 2007, 17 (4), 959–963, DOI: 10.1016/j.bmcl.2006.11.051
51. Salum, L. B.; Altei, W. F.; Chiaradia, L. D.; Cordeiro, M. N. S.; Canevarolo, R. R.; Melo, C. P. S.; Winter, E.; Mattei, B.; Daghestani, H. N.; Santos-Silva, M. C.; Creczynski-Pasa, T. B.; Yunes, R. A.; Yunes, J. A.; Andricopulo, A. D.; Day, B. W.; Nunes, R. J.; Vogt, A. Cytotoxic 3,4,5-Trimethoxychalcones as Mitotic Arresters and Cell Migration Inhibitors. Eur. J. Med. Chem. 2013, 63, 501–510, DOI: 10.1016/j.ejmech.2013.02.037
52. Murthy, Y. L. N.; Suhasini, K. P.; Pathania, A. S.; Bhushan, S.; Sastry. Y. N. Synthesis, Structure Activity Relationship and Mode of Action of 3-Substitutedphenyl-1-(2,2,8,8-Tetramethyl-3,4,9,10-Tetrahydro-2H, 8H-Pyrano[2,3-f]chromen-6-yl)-Propenones as Novel Anticancer Agents in Human Leukaemia HL-60 Cells. Eur. J. Med. Chem. 2013, 62, 545–555, DOI: 10.1016/j.ejmech.2013.01.027
53. Yuan, Q.; Liu, Z.; Xiong, C.; Wu, L.; Wang, J.; Ruan, J. A Novel, Broad-Spectrum Antitumor Compound Containing the 1-Hydroxycyclohexa-2,5-Dien-4-One group: the Disclosure of a New Antitumor Pharmacophore in Protoapigenone 1. Bioorg. Med. Chem. Lett. 2011, 21 (11), 3427–3430, DOI: 10.1016/j.bmcl.2011.03.108
54. Liu, Z.; Tang, L.; Zou, P.; Zhang, Y.; Wang, Z.; Fang, Q.; Jiang, L.; Chen, G.; Xu, Z.; Zhang, H.; Liang, G. Synthesis and Biological Evaluation of Allylated and Prenylated Mono-Carbonyl Analogs of Curcumin as Anti-Inflammatory Agents. Eur. J. Med. Chem. 2014, 74, 671–682, DOI: 10.1016/j.ejmech.2013.10.061
55. Nakatsuka, T.; Tomimori, Y.; Fukuda, Y.; Nukaya, H. First Total Synthesis of Structurally Unique Flavonoids and Their Strong Anti-Inflammatory Effect. Bioorg. Med. Chem. Lett. 2004, 14 (12), 3201–3203, DOI: 10.1016/j.bmcl.2004.03.108
56. Reichwald, C.; Shimony, O.; Dunkel, U.; Sacerdoti-Sierra, N.; Jaffe, C. L.; Kunick, C. 2-(3-Aryl-3-Oxopropen-1-yl)-9-Tert-Butyl-Paullones: a New Antileishmanial Chemotype. J. Med. Chem. 2008, 51 (3), 659–665, DOI: 10.1021/jm7012166
57. Carvalho, S. A.; Feitosa, L. O.; Soares, M.; Costa, T. E. M. M.; Henriques, M. G.; Salomao, K.; Castro, S. L. D.; Kaiser, M.; Brun, R.; Wardell, J. L.; Wardell, S. M. S. V.; Trossini, G. H. G.; Andricopulo, A. D.; Silva, E. F. D.; Fraga, C. A. M. Design and Synthesis of New (E)-Cinnamic N-Acylhydrazones as Potent Antitrypanosomal Agents. Eur. J. Med. Chem. 2012, 54, 512–521, DOI: 10.1016/j.ejmech.2012.05.041
58. Sharma, H.; Patil, S.; Sanchez, T. W.; Neamati, N.; Schinazi, R. F.; Buolamwini, J. K. Synthesis, Biological Evaluation and 3D-QSAR Studies of 3-Keto Salicylic Acid Chalcones and Related Amides as Novel HIV-1 Integrase Inhibitors. Bioorg. Med. Chem. 2011, 19 (6), 2030–2045, DOI: 10.1016/j.bmc.2011.01.047
59. Sivakumar, P. M.; Prabhakar, P. K.; Doble, M. Synthesis, Antioxidant Evaluation, and Quantitative Structure-Activity Relationship Studies of Chalcones. Med. Chem. Res. 2011, 20 (4), 482–492, DOI: 10.1007/s00044-010-9342-1
60. Sashidhara, K. V.; Avula, S. R.; Mishra, V.; Palnati, G. R.; Singh, L. R.; Singh, N.; Chhonker, Y. S.; Swami, P.; Bhatta, R. S.; Palit, G. Identification of Quinoline-Chalcone Hybrids as Potential Antiulcer Agents. Eur. J. Med. Chem. 2015, 89, 638–653, DOI: 10.1016/j.ejmech.2014.10.068
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98190-
dc.description.abstractChapter I:
真核生物的去氫多萜二磷酸合成酶(Dehydrodolichyl diphosphate synthases, DHDDSs)是一類順式異戊二烯轉移酶(cis-prenyltransferases, cis-PTs),負責合成多萜類(dolichols)的前驅物,從而調控蛋白質醣基化。這些酶需要合作夥伴,例如酵母中的Nus1和動物中的NgBR,它們是缺乏催化結構域的 cis-PT 同源蛋白,但能夠增強 DHDDS 活性。與動物不同,植物擁有多種cis-PTs,這些蛋白可以配對或單獨行動,生成具有不同鏈長的產物,但其生理功能尚不清楚。我們選擇研究台灣牛樟(Cinnamomum kanehirae),基因組分析顯示該物種含有兩個DHDDS類蛋白與三個NgBR類蛋白。我們發現,一個DHDDS類蛋白作為同源二聚體的cis-PT,可生成中鏈長的C55產物,而另一個則與兩個NgBR類蛋白中的任何一個形成二聚體複合物,以產生更長鏈的產物。此外,這些複合物在較高溫度下能補充酵母rer2缺失菌株的生長缺陷。基於聚異戊二烯醇和多萜類的生物合成功能以及序列特徵,我們比較來自多個物種的cis-PTs同源蛋白,並揭示植物的cis-PTs可能的演化路徑。
Chapter II:
具有降解纖維素與半纖維素活性的多功能且耐高溫之酵素,對於將植物性生物質轉化為生物燃料的過程具有重要應用價值。過去的研究中,我們已鑑定來自Clostridium thermocellum的雙功能纖維素酶/木聚糖酶Cel5E(CtCel5E)以及來自Thermotoga maritima的雙功能纖維素酶/甘露聚糖酶Cel5A(TmCel5A)。儘管這兩種酶在胺基酸序列與三維結構上高度保守,卻展現出明顯不同的半纖維素受質特異性。在本研究中,我們進一步分析另一種GH5家族的酶CtCel5T,其被註釋為三功能纖維素酶/木聚糖酶/甘露聚糖酶。透過結構比較並結合點突變實驗,我們鑑定出CtCel5T的Met277及Glu360分別佔據與TmCel5A的His205和Trp210相似的空間位置,並對辨識半纖維素受質發揮關鍵作用。因此,透過親緣關係樹與多重胺基酸序列比對,可以鑑定具結構功能一致性的纖維素酶/半纖維素酶或預測未知酵素之功能。本研究深化了對多功能纖維素酶/半纖維素酶受質特異性機制的理解,並為其在工業應用中的蛋白質工程設計提供了理論支持。
Chapter III:
2019年新型冠狀病毒肺炎 (COVID-19)於 2019 年 12 月首次被確認,隨後演變為全球大流行,已導致超過 700 萬人死亡,致死率約為 1%。我們報導並鑑定了兩類化合物,1-(4-(芳乙基羰基)苯基)-4-羧基-2-吡咯烷酮和四氫吡嗪[2 ,1-a:5,4-a']二異喹啉,作為嚴重急性呼吸綜合症冠狀病毒2型 (SARS-CoV-2)的抑制劑,該病毒是COVID-19的病原體。我參與的研究包含提供電腦模擬和藥物動力學預測技術,以合理化該系列中最有效的抑製劑與其目標蛋白之結合模式,並評估其作為藥物之特徵。此外,具抗生素耐藥性之細菌的出現,如抗甲氧苯青黴素金黃色葡萄球菌 (MRSA),主要歸因於長期濫用和過度依賴抗生素,已成為當代醫療保健的一個關鍵挑戰。我們設計、合成和評估了一類 MRSA抑製劑。作為初步研究,我分析了這類MRSA抑製劑針對潛在的目標蛋白,催化十一異戊基二烯焦磷酸(UPP)生成以作為細胞壁肽聚糖生合成之脂質載體前驅物的十一異戊基二烯焦磷酸合成酶 (UPPS)之抑制效果,並利用電腦模擬合理化最佳抑制劑的結合模式,以及對查耳酮衍生物進行針對UPPS的電腦輔助藥物篩選,為開發潛在抗菌劑提供新的見解。
zh_TW
dc.description.abstractChapter I:
Eukaryotic dehydrodolichyl diphosphate synthases (DHDDSs) are cis-prenyltransferases (cis-PTs) that synthesize dolichol precursors essential for protein glycosylation. These enzymes require non-catalytic partners, such as Nus1 in yeast and NgBR in animals, which are cis-PT homologues devoid of the catalytic domain but enhancing DHDDS activity. In contrast to animals, plants possess multiple cis-PT homologues that can function independently or in pairs to produce products of varying chain lengths, with their physiological roles remaining largely unexplored. In this study, we investigated cis-PTs from Cinnamomum kanehirae, a tree identified through genomic analysis to express two DHDDS-like and three NgBR-like proteins. One DHDDS-like protein functioned as a homodimeric cis-PT, producing medium-chain C55 products, whereas the other formed heterodimeric complexes with either of two NgBR homologues to synthesize longer-chain products. Both complexes effectively complemented the growth defect of a yeast rer2 deletion strain at elevated temperatures. By examining the roles of these cis-PTs in polyprenol and dolichol biosynthesis and comparing their sequence motifs across species, we inferred the potential evolutionary paths for these cis-PTs.
Chapter II:
Multifunctional and heat-resistant enzymes with both cellulose and hemicellulose degrading activities are particularly useful to convert plant biomass into biofuel. In the past, we have characterized the bifunctional cellulase/xylanase Cel5E from Clostridium thermocellum (CtCel5E) and the bifunctional cellulase/mannanase Cel5A from Thermotoga maritima (TmCel5A). Despite highly conserved amino acid sequences and structures, they exhibit distinct hemicellulase substrate specificities. In the current study, we further characterized another GH5 enzyme, CtCel5T, annotated as a trifunctional cellulase/xylanase/mannanase. Through structural comparison coupled with site-directed mutagenesis, we identified Glu360 in loop 8 and Met277 in loop 6 of CtCel5T occupying the overlapped spatial positions with that of Trp210 and His205 in loop 6 of TmCel5A, respectively, play critical roles in substrate recognition. Therefore, phylogenetic tree analysis and multiple sequence alignment are useful to find characterized cellulases/hemicellulases with functions consistent with the structural features or uncharacterized enzymes for predicting their functions. This study thus enhances our understanding on the mechanisms for substrate specificities and engineering of multifunctional cellulases/hemicellulases for industrial applications.
Chapter III:
The coronavirus disease 2019 (COVID-19), initially identified in December 2019, has evolved into a global pandemic, resulting in over 7 million deaths with approximately 1% mortality rate. We identified and characterized two classes of compounds, 1-(4-(arylethylenylcarbonyl)phenyl)-4-carboxy-2-pyrrolidinones and tetrahydropyrazino[2,1-a:5,4-a']diisoquinolines, as inhibitors against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19. I have engaged in the studies for providing computer modeling and pharmacokinetic prediction technology to rationalize the binding mechanisms and assess the drug-likeness properties of the most potent candidates within these series. Furthermore, the emergence of antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), largely attributed to the prolonged misuse and excessive reliance on antibiotics, has become a critical challenge in contemporary healthcare. We designed, synthesized, and evaluated a class of MRSA inhibitors. As a preliminary study, I assayed the inhibitory activities of the active compounds against the possible target, undecaprenyl diphosphate synthase (UPPS) that catalyzes C55 UPP as a lipid carrier for biosynthesis of the cell wall peptidoglycan, and rationalize the binding mode using computer modeling. Moreover, virtual screening of chalcone derivatives against UPPSs provides valuable insights into developing potential anti-bacterial agents.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:16:25Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-30T16:16:25Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsCONTENTS I
致謝 VIII
Chapter I: Complexation and evolution of cis-prenyltransferases in Cinnamomum kanehirae deduced from kinetic and functional characterizations IX
中文摘要 IX
ABSTRACT X
ABBREVIATIONS XI
LIST OF TABLES XIII
LIST OF FIGURES XIV
1. INTRODUCTION 1
1.1 Cis-Prenyltransferases 1
1.2 The structures of cis-PTs 2
1.3 Specific aim of this study 3
2. MATERIALS AND METHODS 4
2.1 Materials 4
2.2 Expression and purification of the recombinant RWR89 5
2.3 Expression and purification of the recombinant RWR78, sRWR71, sRWR93, RWR78/sRWR71, RWR78/sRWR93 and RWR89 using yeast 6
2.4 Size-exclusion chromatography analysis 7
2.5 Cis-PTs activity assay 8
2.6 Yeast complementary assay 8
2.7 Polyisoprenoids extraction from yeast rer2Δ strain 9
2.8 HPLC product analysis 10
2.9 Protein multiple sequence alignment, phylogenetic analysis, and motif elicitation of cis-PTs 10
2.10 Homology Modeling of homodimeric RWR89, DHDDS, RWR78 and heteromeric RWR78/RWR71 and RWR78/RWR93 11
2.11 RNA-seq analysis of five C. kanehirae cis-PTs 11
3. RESULTS 12
3.1 Multiple sequence alignment of cis-PT homologues 12
3.2 Expression, purification, and characterization of recombinant RWR89 13
3.3 Expression, purification, and characterization of recombinant RWR78, sRWR71, sRWR93 and their heteromeric complexes 15
3.4 Functional analysis of two complexes in rer2-deletion (rer2Δ) S. cerevisiae 18
3.5 Homology modeling of RWR89 19
3.6 Homology modeling of RWR78/RWR71 and RWR78/RWR93 heterodimeric complexes 20
3.7 Possible evolutionary paths for C. kanehirae cis-PTs and homologues 24
4. DISCUSSION 28
TABLE 33
FIGURES 34
SUPPLEMENTARY INFORMATION 48
REFERENCES 60
Chapter II: Identification of a structural mechanism for substrates discrimination and prediction of multifunctional GH5 cellulases/hemicellulases XVI
中文摘要 XVI
ABSTRACT XVII
ABBREVIATIONS XVIII
LIST OF TABLES XIX
LIST OF FIGURES XX
1. INTRODUCTION 69
1.1 Sustainable energy production from agriculture biomass 69
1.2 Composition of agriculture biomass 70
1.3 Clostridium thermocellum cellulosome for plant biomass degradation 71
1.4 Substrate specificities of CtCel5E, CtCel5T and TmCel5A 71
1.5 Specific aim of this study 72
2. MATERIALS AND METHODS 73
2.1 Materials 73
2.2 Construction of expression plasmids 74
2.3 Expression and purification of recombinant proteins 74
2.4 Enzyme activity assays 76
2.5 End-product analysis 77
2.6 Multiple sequence alignment and phylogenetic tree analysis 78
3. RESULTS 78
3.1 Structural and sequence comparison of CtCel5T, CtCel5E and TmCel5A 78
3.2 Expression, purification, and characterization of CtCel5T 80
3.3 Functional characterization of the crucial residues in CtCel5T by site-directed mutagenesis 81
3.4 Pivotal roles of Met277 and Glu360 in CtCel5T on substrate discrimination 83
3.5 Phylogenetic tree analysis of GH5 families and prediction of substrate binding modes of hemicellulases with substrate preference to xylan or mannan 86
3.6 Confirmation of the prediction of MtGlu5 as a multifunctional cellulase/mannanase 90
4. DISCUSSION 91
TABLES 96
FIGURES 101
SUPPLEMENTARY INFORMATION 111
REFERENCES 116
Chapter III: Other studies for identification of inhibitors as potent antiviral or antibacterial agents XXI
中文摘要 XXI
ABSTRACT XXII
ABBREVIATIONS XXIV
LIST OF TABLES XXVI
LIST OF FIGURES XXVII
1. INTRODUCTION 128
1.1 Entry of SARS-CoV-2 into host cells 128
1.2 Discovery of 1-(4-(arylethylenylcarbonyl)phenyl)-4-carboxy-2-pyrrolidinones as SARS-CoV-2 entry inhibitors 129
1.3 Discovery of tetrahydropyrazino[2,1-a:5,4-a']diisoquinolines as SARS-CoV-2 inhibitors 130
1.4 Threats of multiple drug-resistant pathogens 130
1.5 Role of UPPS for bacterial cell wall biosynthesis 131
1.6 Specific aims of this study 132
2. MATERIALS AND METHODS 133
2.1 Molecular docking for 1-(4-(3-(1H-indol-4-yl)acryloyl)phenyl)-4-carboxy-2-pyrrolidinone (2f) and a tetrahydropyrazino[2,1-a:5,4-a']diisoquinoline (50) 133
2.2 Drug-likeness analysis 134
2.3 Expression and purification of recombinant EcUPPS and SaUPPS 135
2.4 Inhibition Assay against EcUPPS and SaUPPS 136
2.5 Molecular docking of the UPPS inhibitors 137
2.6 Virtual screening of chalcones against UPPSs 138
2.7 Pharmacophore anchors generation 138
3. RESULTS 139
3.1 Binding modes of 2f with TMPRSS2, Furin, and RBD 139
3.2 Drug-likeness analysis of 2f as judged from Lipinski rule of five and ADMET properties 141
3.3 Binding Mode of the tetrahydropyrazino[2,1-a:5,4-a']diisoquinoline Inhibitor 50 with RBD 142
3.4 Drug-likeness analysis of compound 50 as judged from Lipinski rule of five and ADMET properties 143
3.5 Evaluations of the inhibitors against UPPSs 145
3.6 Drug-Likeness of 87 and 94 as Judged from Lipinski Rule of Five and ADMET Properties 147
3.7 Virtual screening of chalcone-like compounds against EcUPPS and SaUPPS 149
4. DISCUSSION 153
TABLES 157
FIGURES 172
REFERENCES 187
APPENDIX 201
LIST OF PUBLICATIONS 201
STATEMENT OF ORIGINALITY 202
-
dc.language.isoen-
dc.subjectNgBRzh_TW
dc.subject生物燃料zh_TW
dc.subject纖維素酶zh_TW
dc.subject半纖維素酶zh_TW
dc.subject受質特異性zh_TW
dc.subject點突變zh_TW
dc.subject蛋白質醣基化zh_TW
dc.subject順式異戊二烯轉移酶zh_TW
dc.subject抗生素zh_TW
dc.subject耐藥性zh_TW
dc.subjectMRSAzh_TW
dc.subject查爾酮zh_TW
dc.subject多萜zh_TW
dc.subject新型冠狀病毒肺炎zh_TW
dc.subjectDHDDSzh_TW
dc.subjectCOVID-19en
dc.subjectcis-prenyltransferaseen
dc.subjectdolicholen
dc.subjectprotein glycosylationen
dc.subjectDHDDSen
dc.subjectNgBRen
dc.subjectbiofuelen
dc.subjectcellulaseen
dc.subjecthemicellulaseen
dc.subjectsubstrate specificityen
dc.subjectsite-directed mutagenesisen
dc.subjectantibioticsen
dc.subjectdrug resistanceen
dc.subjectMRSAen
dc.subjectchalconeen
dc.title精準結構功能分析應用:臺灣牛樟樹順式異戊二烯轉移酶的演化、多功能纖維素酶/半纖維素酶改造、以及抗病毒/抗菌抑制劑篩選設計zh_TW
dc.titleApplications of Precise Structure-Function Analyses: Evolution of cis-Prenyltransferases from Taiwan Stout Camphor Tree (Cinnamomum kanehirae), Engineering of Multifunctional Cellulases/Hemicellulases, and Antiviral/Antibacterial Inhibitors Screening and Designen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee楊啟伸;何孟樵;林曉青;郭致榮zh_TW
dc.contributor.oralexamcommitteeChii-Shen Yang;Meng-Chiao Ho;Hsiao-Ching Lin;Chih-Jung Kuoen
dc.subject.keyword順式異戊二烯轉移酶,多萜,蛋白質醣基化,DHDDS,NgBR,生物燃料,纖維素酶,半纖維素酶,受質特異性,點突變,新型冠狀病毒肺炎,抗生素,耐藥性,MRSA,查爾酮,zh_TW
dc.subject.keywordcis-prenyltransferase,dolichol,protein glycosylation,DHDDS,NgBR,biofuel,cellulase,hemicellulase,substrate specificity,site-directed mutagenesis,COVID-19,antibiotics,drug resistance,MRSA,chalcone,en
dc.relation.page254-
dc.identifier.doi10.6342/NTU202502385-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-29-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科學研究所-
dc.date.embargo-lift2025-07-31-
Appears in Collections:生化科學研究所

Files in This Item:
File SizeFormat 
ntu-113-2.pdf38.01 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved