Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98180
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳文超zh_TW
dc.contributor.advisorWen-Chau Wuen
dc.contributor.author謝帛諠zh_TW
dc.contributor.authorPO-HSUAN HSIEHen
dc.date.accessioned2025-07-30T16:14:02Z-
dc.date.available2025-07-31-
dc.date.copyright2025-07-30-
dc.date.issued2025-
dc.date.submitted2025-07-15-
dc.identifier.citation[1] World Health Organization et al. Global status report on the public health response to dementia 2021. World Health Organization, 2021.
[2] World Health Organization et al. Global action plan on the public health response to dementia 2017–2025. World Health Organization, 2017.
[3] Alistair Burns and Steve Iliffe. Alzheimer’s disease. BMJ, 338, 2009. ISSN 0959-b158.8138. doi: 10.1136/bmj.b158. URL https://www.bmj.com/content/338/bmj.
[4] Gabriele Lozupone, Alessandro Bria, Francesco Fontanella, Frederick JA Meijer, and Claudio De Stefano. Axial: Attention-based explainability for interpretable alzheimer's localized diagnosis using 2d cnns on 3d mri brain scans. arXiv preprint arXiv:2407.02418, 2024.
[5] Jiaming Xin, Ancong Wang, Rui Guo, Weifeng Liu, and Xiaoying Tang. Cnn and swin-transformer based efficient model for alzheimer’s disease diagnosis with smri. Biomedical Signal Processing and Control, 86:105189, 2023.
[6] Jiayu Ye, Dan Pan, An Zeng, Yiqun Zhang, Qiuping Chen, and Yang Liu. Mssnet: An efficient spatial attention model for early recognition of alzheimer’s disease. IEEE Transactions on Emerging Topics in Computational Intelligence, 2025.
[7] Ekin Yagis, Luca Citi, Stefano Diciotti, Chiara Marzi, Selamawet Workalemahu Atnafu, and Alba G Seco De Herrera. 3d convolutional neural networks for diagnosis of alzheimes disease via structural mri. In 2020 IEEE 33rd international symposium on computer-based medical systems (CBMS), pages 65–70. IEEE, 2020.
[8] Sreevani Katabathula, Qinyong Wang, and Rong Xu. Predict alzheimer's disease using hippocampus mri data: a lightweight 3d deep convolutional network model with visual and global shape representations. Alzheimer’s research & therapy, 13 (1):104, 2021.
[9] Yuanchen Wu, Yuan Zhou, Weiming Zeng, Qian Qian, and Miao Song. An attention-based 3d cnn with multi-scale integration block for alzheimer’s disease classification. IEEE Journal of Biomedical and Health Informatics, 26(11):5665–5673, 2022.
[10] Yanteng Zhang, Qizhi Teng, Xiaohai He, Tong Niu, Lipei Zhang, Yan Liu, and Chao Ren. Attention-based 3d cnn with multi-layer features for alzheimer’s disease diagnosis using brain images. In 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pages 1–4. IEEE, 2023.
[11] Wanyun Lin, Weiming Lin, Gang Chen, Hejun Zhang, Qinquan Gao, Yechong Huang, Tong Tong, Min Du, and Alzheimer’s Disease Neuroimaging Initiative. Bidirectional mapping of brain mri and pet with 3d reversible gan for the diagnosis of alzheimer's disease. Frontiers in Neuroscience, 15:646013, 2021.
[12] Ronald Carl Petersen, Paul S Aisen, Laurel A Beckett, Michael C Donohue, Anthony Collins Gamst, Danielle J Harvey, CR Jack Jr, William J Jagust, Leslie M Shaw, Arthur W Toga, et al. Alzheimer's disease neuroimaging initiative (adni) clinical characterization. Neurology, 74(3):201–209, 2010.
[13] Nicholas J Tustison, Philip A Cook, Andrew J Holbrook, Hans J Johnson, John Muschelli, Gabriel A Devenyi, Jeffrey T Duda, Sandhitsu R Das, Nicholas C Cullen, Daniel L Gillen, et al. The antsx ecosystem for quantitative biological and medical imaging. Scientific reports, 11(1):9068, 2021.
[14] Bradley C Lowekamp, David T Chen, Luis Ibáñez, and Daniel Blezek. The design of simpleitk. Frontiers in neuroinformatics, 7:45, 2013.
[15] Brian B Avants, Nick Tustison, Gang Song, et al. Advanced normalization tools (ants). Insight j, 2(365):1–35, 2009.
[16] MNI ICBM. 152 non-linear 6th generation symmetric average brain stereotaxic registration model.
[17] Ron Brookmeyer, Sarah Gray, and Claudia Kawas. Projections of alzheimer’s disease in the united states and the public health impact of delaying disease onset.American journal of public health, 88(9):1337–1342, 1998.
[18] Ron Brookmeyer, Elizabeth Johnson, Kathryn Ziegler-Graham, and H Michael Arrighi. Forecasting the global burden of alzheimer's disease. Alzheimer's & dementia, 3(3):186–191, 2007.
[19] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.
[20] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint arXiv:1312.4400, 2013.
[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 2012.
[22] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1492–1500, 2017.
[23] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 6848– 6856, 2018.
[24] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.
[25] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning, pages 448–456. pmlr, 2015.
[26] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on computer vision (ECCV), pages 3–19, 2018.
[27] Saurabh Singh and Shankar Krishnan. Filter response normalization layer: Eliminating batch dependence in the training of deep neural networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 11237– 11246, 2020.
[28] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4700–4708, 2017.
[29] Qilong Wang, Banggu Wu, Pengfei Zhu, Peihua Li, Wangmeng Zuo, and Qinghua Hu. Eca-net: Efficient channel attention for deep convolutional neural networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 11534–11542, 2020.
[30] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13, pages 818–833. Springer, 2014.
[31] Clifford R Jack Jr, Ronald C Petersen, Yue Cheng Xu, Stephen C Waring, Peter C O’Brien, Eric G Tangalos, Glenn E Smith, Robert J Ivnik, and Emre Kokmen. Medial temporal atrophy on mri in normal aging and very mild alzheimer’s disease. Neurology, 49(3):786–794, 1997.
[32] Laura W de Jong, Karin van der Hiele, Ilya M Veer, JJ Houwing, RGJ Westendorp, ELEM Bollen, Paul W de Bruin, HAM Middelkoop, Mark A van Buchem, and Jeroen van der Grond. Strongly reduced volumes of putamen and thalamus in alzheimer’s disease: an mri study. Brain, 131(12):3277–3285, 2008.
[33] John P Aggleton, Agathe Pralus, Andrew JD Nelson, and Michael Hornberger. Thalamic pathology and memory loss in early alzheimer's disease: moving the focus from the medial temporal lobe to papez circuit. Brain, 139(7):1877–1890, 2016.
[34] Laurens Ansem van de Mortel, Rajat Mani Thomas, Guido Alexander van Wingen,and Alzheimer's Disease Neuroimaging Initiative. Grey matter loss at different stages of cognitive decline: A role for the thalamus in developing alzheimer's disease. Journal of Alzheimer's Disease, 83(2):705–720, 2021.
[35] Heidi IL Jacobs, David A Hopkins, Helen C Mayrhofer, Emiliano Bruner, Fred W Van Leeuwen, Wijnand Raaijmakers, and Jeremy D Schmahmann. The cerebellum in alzheimer's disease: evaluating its role in cognitive decline. Brain, 141(1):37–47, 2018.
[36] Helena M Gellersen, Xavier Guell, and Saber Sami. Differential vulnerability of the cerebellum in healthy ageing and alzheimer's disease. NeuroImage: Clinical, 30: 102605, 2021.
[37] Christine C Guo, Rachel Tan, John R Hodges, Xintao Hu, Saber Sami, and Michael Hornberger. Network-selective vulnerability of the human cerebellum to alzheimer's disease and frontotemporal dementia. Brain, 139(5):1527–1538, 2016.
[38] Matt Paradise, Claudia Cooper, and Gill Livingston. Systematic review of the effect of education on survival in alzheimer’s disease. International psychogeriatrics, 21 (1):25–32, 2009.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98180-
dc.description.abstract阿茲海默症 (Alzheimer's disease, AD) 大約佔所有失智症 60% - 70%,它是一種不可逆的神經性退化疾病,目前世界上的治療方法的成效尚不明確,因此患者的病況會隨著時間的進展慢慢的惡化,不僅會影響患者本身,也為家庭帶來沈重的負擔。根據世界衛生組織 (WHO) 的統計,全球失智症人口正逐年攀升,若缺乏一個能快速、準確且大規模應用的輔助診斷工具,現有的臨床醫療體系將面臨巨大挑戰。
本研究旨在發展一個輕量化且具備可解釋性分析的三維卷積神經網路 (3D CNN) 框架,用於分析全腦結構性磁振造影 (structural Magnetic Resonance Imaging, sMRI) 影像,以輔助阿茲海默症的診斷。模型採用輕量化設計,整合了群組卷積 (group convolution)、全域池化 (global pooling) 與高效通道注意力機制 (efficient channel attention),並以全腦影像作為模型輸入,避免預定義的腦區分割處理,而失去了部分的潛在特徵。在可解釋性分析方面,使用基於遮罩敏感度 (occlusion sensitivity-based) 方法,視覺化模型於分類決策時所關注之關鍵腦區。並透過階層回歸 (hierarchical regression)分析,驗證模型輸出預測值與簡短智能評估量表 (Mini-Mental State Examination, MMSE) 之間的相關性。
結果顯示,本模型僅使用 batch size 為 2 以及模型參數量僅 3.3 百萬 (M),即於獨立測試集達到 90.6% 的準確率。可解釋性分析結果,模型的分類決策主要依據海馬迴、丘腦以及小腦等與 AD 病理高度相關的腦區。此外,階層式回歸分析顯示,模型輸出預測值之 logit 值與 MMSE 分數間存在顯著負相關性 (β = -0.600, p < 0.001),即使在控制年齡、性別和教育程度等因素後,仍可有效解釋 MMSE 分數之變異。
本研究所提出之 3D CNN 模型在輕量化的同時,亦具備良好的 AD 分類能力,並透過可解釋性分析,展現其決策過程的透明度與的臨床的應用價值,為臨床提供具有潛力的 AD 輔助診斷工具。
zh_TW
dc.description.abstractAlzheimer’s disease (AD) is an irreversible neurodegenerative disorder and accounts for approximately 60% to 70% of all dementia cases. The efficacy of current treatments for AD remain unclear. Consequently, the patient's condition progressively deteriorates over time, not only affecting the patient but also imposing a heavy burden on families. According to the World Health Organization (WHO), the global dementia population is increasing annually. Without a rapid, accurate, and scalable auxiliary diagnostic tool, the existing clinical healthcare system will face significant challenges.
This study aimed to develop a lightweight and interpretable 3D Convolutional Neural Network (CNN) framework for analyzing whole-brain structural Magnetic Resonance Imaging (sMRI) scans to aid in the diagnosis of AD. The model adopted a lightweight design, and integrated group convolution, global pooling, and efficient channel attention. The model took whole-brain images as input to avoid predefined brain region segmentation processes that might lead to the loss of potential features. For interpretability analysis, an occlusion sensitivity-based method was used to visualize the key brain regions the model focused on during classification decisions. Furthermore, hierarchical regression analysis was employed to examine the correlation between the model's output predictions and Mini-Mental State Examination (MMSE) scores.
Results showed that the proposed model achieved an accuracy of 90.6% on an independent test set using a batch size of only 2 and a model parameter count of just 3.3 million. The interpretability analysis revealed that the model's classification decisions primarily relied on brain regions known to associate with AD pathology, such as the hippocampus, thalamus, and cerebellum. Additionally, hierarchical regression analysis indicated a significant negative correlation between the logit values of the model's output predictions and MMSE scores (β = -0.600, p < 0.001). This correlation remained effective in explaining the variance in MMSE scores even after controlling for age, gender, and education level.
In conclusion, the 3D CNN model proposed in this study demonstrated excellent AD classification capability while being lightweight and clinically interpretable. The model may serve as a potential auxiliary diagnostic tool for AD.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:14:02Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-30T16:14:02Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
目次 vi
圖次 ix
表次 x
第一章 緒論 1
1.1 研究背景 1
1.2 相關研究 2
1.2.1 基於二維卷積神經網路 2
1.2.2 基於三維卷積神經網路 3
1.2.3 PET 模態 4
1.2.4 彙整與深入探討 5
1.3 研究目的 7
第二章 研究材料與方法 8
2.1 研究流程 8
2.2 實作環境 9
2.3 研究資料集 9
2.4 資料清洗 10
2.4.1 受試者篩選 10
2.4.2 影像前處理 11
2.4.3 年齡匹配 13
2.5 模型建立與訓練方法 15
2.5.1 資料集配置與模型建立 15
2.5.2 訓練超參數與資料擴增方法 15
2.5.3 模型評估指標 17
2.6 3D CNN 模型架構 19
2.6.1 Group Convolution Layer 20
2.6.2 Pointwise Convolution Layer 20
2.6.3 Normalization Layer 21
2.6.4 Stem Block 22
2.6.5 Skip Concatenation Block 23
2.6.6 Efficient Channel Attention Block 24
2.6.7 3D CNN 模型超參數與配置 25
2.7 模型與臨床可解釋性分析方法 27
2.7.1 個體層級之模型可解釋性分析方法 27
2.7.2 群體層級之模型可解釋性整合 29
2.7.3 臨床可解釋性分析方法 30
第三章 研究結果與討論 31
3.1 受試者統計結果 31
3.2 模型訓練結果 32
3.3 可解釋性分析結果與討論 34
3.4 不同方法之比較 38
第四章 結論 40
參考文獻 41
-
dc.language.isozh_TW-
dc.subject阿茲海默症zh_TW
dc.subject深度學習zh_TW
dc.subject結構性磁振造影zh_TW
dc.subject失智症zh_TW
dc.subject3D 卷積神經網路zh_TW
dc.subject3D Convolution Neural Networken
dc.subjectStructure Magnetic Resonance Imagingen
dc.subjectDementiaen
dc.subjectAlzheimer’s Diseaseen
dc.subjectDeep Learningen
dc.title以深度學習診斷阿茲海默症之臨床可解釋性研究zh_TW
dc.titleInvestigating the clinical interpretability of deep learning-based diagnosis of Alzheimer’s diseaseen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鐘孝文;林益如;蔡炳煇;陳雅芳zh_TW
dc.contributor.oralexamcommitteeHsiao-Wen Chung;Yi-Ru Lin;Ping-Huei Tsai;YA-FANG CHENen
dc.subject.keyword深度學習,阿茲海默症,失智症,結構性磁振造影,3D 卷積神經網路,zh_TW
dc.subject.keywordDeep Learning,Alzheimer’s Disease,Dementia,Structure Magnetic Resonance Imaging,3D Convolution Neural Network,en
dc.relation.page46-
dc.identifier.doi10.6342/NTU202501679-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-17-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
dc.date.embargo-lift2030-07-09-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-07-09
7.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved