請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98145完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉如熹 | zh_TW |
| dc.contributor.advisor | Ru-Shi Liu | en |
| dc.contributor.author | 陳怡安 | zh_TW |
| dc.contributor.author | Yi-An Chen | en |
| dc.date.accessioned | 2025-07-30T16:06:09Z | - |
| dc.date.available | 2025-07-31 | - |
| dc.date.copyright | 2025-07-30 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-03 | - |
| dc.identifier.citation | 1. Ahuja, Deepti.; Kalpna, Varshney.; Varshney.; Pradeep K. Metal Air Battery: A Sustainable and Low Cost Material for Energy Storage. J. Phys. Conf. Ser, 2021, 1, 012065–012076.
2. Zhang, X.; Wang, X. G.; Xie, Z.; Zhou, Z. Recent Progress in Rechargeable Alkali Metal–Air Batteries. Green Energy Environ. 2016, 1, 4–17. 3. Wang, C.; Yu, Y.; Niu, J.; Liu, Y.; Bridges, D.; Liu, X.; Pooran, J.; Zhang, Y.; Hu, A. Recent Progress of Metal–Air Batteries—a Mini Review. Appl. Sci. 2019, 9, 2787–2809. 4. Li, J.; Hou, L.; Yu, M.; Li, Q.; Zhang, T.; Sun, H. Review and Recent Advances of Oxygen Transfer in Li‐Air Batteries. ChemElectroChem 2021, 8, 3588–3603. 5. Cheng, F.; Chen, J. Metal–Air Batteries: From Oxygen Reduction Electrochemistry to Cathode Catalysts. Chem. Soc. Rev. 2012, 41, 2172–2192. 6. Durmus, Y. E.; Zhang, H.; Baakes, F.; Desmaizieres, G.; Hayun, H.; Yang, L.; Kolek, M.; Küpers, V.; Janek, J.; Mandler, D. Side by Side Battery Technologies with Lithium‐Ion Based Batteries. Adv. Energy Mater. 2020, 10, 2000089–2000110. 7. Zhang, J.; Bruce, P.; Zhang, X. Metal-Air Batteries; Handbook of Battery Materials; Wiley-VCH: Weinheim, Germany, 2011; Chapter 4, pp 757–795. 8. Li, L.; Chang, Z. W.; Zhang, X. B. Recent Progress on the Development of Metal‐Air Batteries. Adv. Sustain. Syst. 2017, 1, 1700036–1700087. 9. Christensen, J.; Albertus, P.; Sanchez-Carrera, R. S.; Lohmann, T.; Kozinsky, B.; Liedtke, R.; Ahmed, J.; Kojic, A. A Critical Review of Li/Air Batteries. J. Electrochem. Soc. 2011, 159, R1–R31. 10. Kwak, W. J.; Rosy.; Sharon, D.; Xia, C.; Kim, H.; Johnson, L. R.; Bruce, P. G.; Nazar, L. F.; Sun, Y. K.; Frimer, A. A. Lithium–Oxygen Batteries and Related Systems: Potential, Status, and Future. Chem. Rev. 2020, 120, 6626–6683. 11. Li, J.; Zhang, K.; Wang, B.; Peng, H. Light‐Assisted Metal–Air Batteries: Progress, Challenges, and Perspectives. Angew. Chem. Int. Ed. 2022, 61, e202213026–e202213050. 12. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928–935. 13. Ma, Z.; Yuan, X.; Li, L.; Ma, Z. F.; Wilkinson, D. P.; Zhang, L.; Zhang, J. A Review of Cathode Materials and Structures for Rechargeable Lithium–Air Batteries. Energy Environ. Sci. 2015, 8, 2144–2198. 14. Visco, S. J.; Katz, B. D.; Nimon, Y. S.; & De Jonghe, L. C. (2017). Safety Enhanced L-Ion and Lithium Metal Battery Cells Having Protected Lithium Electrodes with Enhanced Separator Safety Against Dendrite Shorting. U.S. Patent 9,666,850, May 30, 2007. 15. Li, Y.; Wang, X.; Dong, S.; Chen, X.; Cui, G. Recent Advances in Non‐Aqueous Electrolyte for Rechargeable Li–O2 Batteries. Adv. Energy Mater. 2016, 6, 1600751–1600777. 16. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li–O2 and Li–S Batteries with High Energy Storage. Nat. Mater 2012, 11, 19–29. 17. Abraham, K.; Jiang, Z. A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery. J. Electrochem. Soc. 1996, 143, 1–5. 18. Read, J. Characterization of the Lithium/Oxygen Organic Electrolyte Battery. J. Electrochem. Soc. 2002, 149, A1190–A1197. 19. Ogasawara, T.; Débart, A.; Holzapfel, M.; Novák, P.; Bruce, P. G. Rechargeable Li2O2 Electrode for Lithium Batteries. J. Am. Chem. Soc. 2006, 128, 1390–1393. 20. Peng, Z.; Freunberger, S. A.; Hardwick, L. J.; Chen, Y.; Giordani, V.; Bardé, F.; Novák, P.; Graham, D.; Tarascon, J. M.; Bruce, P. G. Oxygen Reactions in a Non‐Aqueous Li+ Electrolyte. Angew. Chem. Int. Ed. Engl. 2011, 50, 6351–6356. 21. Laoire, C. O.; Mukerjee, S.; Abraham, K.; Plichta, E. J.; Hendrickson, M. A. Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications. J. Phys. Chem. C 2009, 113, 20127–20134. 22. Hassoun, J.; Croce, F.; Armand, M.; Scrosati, B. Investigation of the O2 Electrochemistry in a Polymer Electrolyte Solid‐State Cell. Angew. Chem. Int. Ed. Engl. 2011, 50, 2999–3003. 23. Johnson, L.; Li, C.; Liu, Z.; Chen, Y.; Freunberger, S. A.; Ashok, P. C.; Praveen, B. B.; Dholakia, K.; Tarascon, J. M.; Bruce, P. G. The Role of LiO2 Solubility in O2 Reduction in Aprotic Solvents and Its Consequences for Li–O2 Batteries. Nat. Chem 2014, 6, 1091–1099. 24. Aurbach, D.; McCloskey, B. D.; Nazar, L. F.; Bruce, P. G. Advances in Understanding Mechanisms Underpinning Lithium–Air Batteries. Nat. Energy 2016, 1, 1–11. 25. Rahman, M. A.; Wang, X.; Wen, C. High Energy Density Metal-Air Batteries: A Review. J. Electrochem. Soc. 2013, 160, A1759–A1771. 26. Zhang, T.; Tao, Z.; Chen, J. Magnesium–Air Batteries: From Principle to Application. Mater. Horiz. 2014, 1, 196–206. 27. Peng, B.; Liang, J.; Tao, Z.; Chen, J. Magnesium Nanostructures for Energy Storage and Conversion. J. Mater. Chem. 2009, 19, 2877–2883. 28. Vardar, G.; Nelson, E. G.; Smith, J. G.; Naruse, J.; Hiramatsu, H.; Bartlett, B. M.; Sleightholme, A. E.; Siegel, D. J.; Monroe, C. W. Identifying the Discharge Product and Reaction Pathway for a Secondary Mg/O2 Battery. Chem. Mater. 2015, 27, 7564–7568. 29. Wang, Y.; Sun, Y.; Ren, W.; Zhang, D.; Yang, Y.; Yang, J.; Wang, J.; Zeng, X.; NuLi, Y. Challenges and Prospects of Mg–Air Batteries: A Review. Energy Mater. 2022, 2, 2303165–2303210. 30. Dong, Q.; Yao, X.; Luo, J.; Zhang, X.; Hwang, H.; Wang, D. Enabling Rechargeable Non-Aqueous Mg–O2 Battery Operations with Dual Redox Mediators. Chem. Commun. 2016, 52, 13753–13756. 31. Li, W.; Li, C.; Zhou, C.; Ma, H.; Chen, J. Metallic Magnesium Nano/Mesoscale Structures: Their Shape‐Controlled Preparation and Mg/Air Battery Applications. Angew. Chem. Int. Ed. 2006, 45, 6009–6012. 32. Xin, G.; Wang, X.; Wang, C.; Zheng, J.; Li, X. Porous Mg Thin Films for Mg–Air Batteries. Dalton Trans. 2013, 42, 16693–16696. 33. Wang, Y.; Sahadeo, E.; Lee, S. B. An Electrochemically Polymerized Protective Layer for a Magnesium Metal Anode. ACS Appl. Energy Mater. 2022, 5, 2613–2620. 34. Ma, Y.; Li, N.; Li, D.; Zhang, M.; Huang, X. Performance of Mg–14Li–1Al–0.1 Ce as Anode for Mg–Air Battery. J. Power Sources 2011, 196, 2346–2350. 35. Wang, N.; Wang, R.; Peng, C.; Peng, B.; Feng, Y.; Hu, C. Discharge Behaviour of Mg-Al-Pb and Mg-Al-Pb-in Alloys as Anodes for Mg-Air Battery. Electrochim. Acta 2014, 149, 193–205. 36. Xiong, H.; Yu, K.; Yin, X.; Dai, Y.; Yan, Y.; Zhu, H. Effects of Microstructure on the Electrochemical Discharge Behavior of Mg-6wt% Al-1wt% Sn Alloy as Anode for Mg-Air Primary Battery. J. Alloys Compd. 2017, 708, 652–661. 37. Liu, X.; Liu, S.; Xue, J. Discharge Performance of the Magnesium Anodes with Different Phase Constitutions for Mg-Air Batteries. J. Power Sources 2018, 396, 667–674. 38. Li, S.; Li, X.; Zhao, C.; Liang, H.; Liu, K.; Du, X.; Du, W. Recent Progress of Electrolytes for Mg-Air Batteries: A Review. J. Magnes. Alloy 2024, 12, 4395–4421. 39. Deng, M.; Wang, L.; Vaghefinazari, B.; Xu, W.; Feiler, C.; Lamaka, S. V.; Höche, D.; Zheludkevich, M. L.; Snihirova, D. High-Energy and Durable Aqueous Magnesium Batteries: Recent Advances and Perspectives. Energy Storage Mater. 2021, 43, 238–247. 40. Deng, M.; Wang, L.; Höche, D.; Lamaka, S. V.; Snihirova, D.; Vaghefinazari, B.; Zheludkevich, M. L. Clarifying the Decisive Factors for Utilization Efficiency of Mg Anodes for Primary Aqueous Batteries. J. Power Sources 2019, 441, 227201–227213. 41. Sathyanarayana, S.; Munichandraiah, N. A New Magnesium–Air Cell for Long-Life Applications. J. Appl. Electrochem. 1981, 11, 33–39. 42. Leong, K. W.; Wang, Y.; Pan, W.; Luo, S.; Zhao, X.; Leung, D. Y. Doubling the Power Output of a Mg–Air Battery with an Acid-Salt Dual-Electrolyte Configuration. J. Power Sources 2021, 506, 230144–230153. 43. Song, Z.; Wang, J.; Song, Y.; Chen, Z.; Zhang, H.; Wu, Z.; Han, X.; Hu, W. In Situ Interfacial Passivation in Aqueous Electrolyte for Mg–Air Batteries with High Anode Utilization and Specific Capacity. ChemSusChem 2023, 16, e202202207–e202202216. 44. Zhang, J.; Bruce, P.; Zhang, X. Metal-Air Batteries; Handbook of Battery Materials; Wiley-VCH: Weinheim, Germany, 2011; Chapter 3, pp 525–691. 45. Liu, H.; Zhang, T. a. Development of Aqueous Magnesium–Air Batteries: From Structure to Materials. J. Alloys Compd. 2024, 988, 174262–174280. 46. Kim, Y.; Seong, W. M.; Manthiram, A. Cobalt-Free, High-Nickel Layered Oxide Cathodes for Lithium-Ion Batteries: Progress, Challenges, and Perspectives. Energy Storage Mater. 2021, 34, 250–259. 47. Shiga, T.; Hase, Y.; Kato, Y.; Inoue, M.; Takechi, K. A Rechargeable Non-Aqueous Mg–O2 Battery. Chem. Commun. 2013, 49, 9152–9154. 48. Ng, K. L.; Shu, K.; Azimi, G. A Rechargeable Mg|O2 Battery. Iscience 2022, 8, 25–39. 49. Zakharchenko, T. K.; Nazarov, M. А.; Golubev, M. V.; Inozemtseva, A. I.; Gulin, A. A.; Itkis, D. M.; Yashina, L. V. On the Role of Electrolyte in Aprotic Mg–O2 Battery Performance. Electrochim. Acta 2023, 463, 142816–142825. 50. Rasupillai Dharmaraj, V.; Sarkar, A.; Yi, C. H.; Iputera, K.; Huang, S. Y.; Chung, R. J.; Hu, S. F.; Liu, R. S. Battery Performance Amelioration by Introducing a Conducive Mixed Electrolyte in Rechargeable Mg–O2 Batteries. ACS Appl. Mater. Interfaces 2023, 15, 9675–9684. 51. Howlett, P. C.; MacFarlane, D. R.; Hollenkamp, A. F. High Lithium Metal Cycling Efficiency in a Room-Temperature Ionic Liquid. Electrochem. Solid-State Lett. 2004, 7, A97–A101. 52. Yoshimoto, N.; Matsumoto, M.; Egashia, M.; Morita, M. Mixed Electrolyte Consisting of Ethylmagnesiumbromide with Ionic Liquid for Rechargeable Magnesium Electrode. J. Power Sources 2010, 195, 2096–2098. 53. Yan, Y.; Gunzelmann, D.; Pozo-Gonzalo, C.; Hollenkamp, A. F.; Howlett, P. C.; MacFarlane, D. R.; Forsyth, M. Investigating Discharge Performance and Mg Interphase Properties of an Ionic Liquid Electrolyte Based Mg–Air Battery. Electrochim. Acta 2017, 235, 270–279. 54. Galiński, M.; Lewandowski, A.; Stępniak, I. Ionic Liquids as Electrolytes. Electrochim. Acta 2006, 51, 5567–5580. 55. MacFarlane, D. R.; Pringle, J. M.; Howlett, P. C.; Forsyth, M. Ionic Liquids and Reactions at the Electrochemical Interface. Phys. Chem. Chem. Phys. 2010, 12, 1659–1669. 56. Zhu, N.; Zhang, K.; Wu, F.; Bai, Y.; Wu, C. Ionic Liquid-Based Electrolytes for Aluminum/Magnesium/Sodium-Ion Batteries. Energy Mater. Adv. 2021. 57. Khoo, T.; Howlett, P. C.; Tsagouria, M.; MacFarlane, D. R.; Forsyth, M. The Potential for Ionic Liquid Electrolytes to Stabilise the Magnesium Interface for Magnesium/Air Batteries. Electrochim. Acta 2011, 58, 583–588. 58. Du, J.; Wang, Z.; Niu, Y.; Duan, W.; Wu, Z. Double Liquid Electrolyte for Primary Mg Batteries. J. Power Sources, 2014, 247, 840–844. 59. Law, Y. T.; Schnaidt, J.; Brimaud, S.; Behm, R. J. Oxygen Reduction and Evolution in an Ionic Liquid ([Bmp][Tfsa]) Based Electrolyte: A Model Study of the Cathode Reactions in Mg–Air Batteries. J. Power Sources 2016, 333, 173–183. 60. Bozorgchenani, M.; Fischer, P.; Schnaidt, J.; Diemant, T.; Schwarz, R. M.; Marinaro, M.; Wachtler, M.; Jörissen, L.; Behm, R. J. Electrocatalytic Oxygen Reduction and Oxygen Evolution in Mg‐Free and Mg–Containing Ionic Liquid 1‐Butyl‐1‐Methylpyrrolidinium Bis (Trifluoromethanesulfonyl) Imide. ChemElectroChem 2018, 5, 2600–2611. 61. Jusys, Z.; Schnaidt, J.; Behm, R. J. O2 Reduction on a Au Film Electrode in an Ionic Liquid in the Absence and Presence of Mg2+ Ions: Product Formation and Adlayer Dynamics. J. Chem. Phys. 2019, 150, 041724–041740. 62. Antony Jose, S.; Doering, E.; Klein, N.; Mena, E. I.; Owens, C.; Pronk, S.; Menezes, P. L. Magnesium–Air Batteries: Manufacturing, Processing, Performance, and Applications. Processes 2025, 13, 607–629. 63. Liew, S. Y.; Juan, J. C.; Lai, C. W.; Pan, G. T.; Yang, T. C. K.; Lee, T. K. An Eco-Friendly Water-Soluble Graphene-Incorporated Agar Gel Electrolyte for Magnesium-Air Batteries. Ionics 2019, 25, 1291–1301. 64. Li, L.; Chen, H.; He, E.; Wang, L.; Ye, T.; Lu, J.; Jiao, Y.; Wang, J.; Gao, R.; Peng, H. High‐Energy‐Density Magnesium–Air Battery Based on Dual‐Layer Gel Electrolyte. Angew. Chem. 2021, 133, 15445–15450. 65. Rasupillai Dharmaraj, V.; Maurya, D. K.; Sarkar, A.; Su, H. H.; Chen, Y. A.; Chen, H. C.; Lin, Y. P.; Chung, R. J.; Liu, R. S. High‐Performance Mg–O2 Batteries Enabled by Electrospinning Pvdf‐Hfp‐Based Quasi‐Solid‐State Polymer Electrolyte. Adv. Energy Mater, 2016, 28, 7629−7637. 66. Liu, M.; Zhang, Q.; Wang, X.; Gao, J.; Liu, Q.; Wang, E.; Wang, Z. An Ultrahigh Energy Density Mg–Air Battery with Organic Acid–Solid Anolyte Biphasic Electrolytes. Sustainable Energy & Fuels 2023, 7, 3244–3249. 67. Wang, H. F.; Xu, Q. Materials Design for Rechargeable Metal–Air Batteries. Matter 2019, 1, 565–595. 68. Kong, F.; Qiao, Y.; Zhang, C.; Fan, X.; Kong, A.; Shan, Y. Unadulterated Carbon as Robust Multifunctional Electrocatalyst for Overall Water Splitting and Oxygen Transformation. Nano Res. 2020, 13, 401–411. 69. Yu, H.; Shang, L.; Bian, T.; Shi, R.; Waterhouse, G.; Zhao, Y.; Zhou, C.; Wu, L. Z.; Tung, C. H.; Zhang, T. Carbon Nanosheets: Nitrogen-Doped Porous Carbon Nanosheets Templated from G-C3 N4 as Metal-Free Electrocatalysts for Efficient Oxygen Reduction Reaction Adv. Mater. 2016, 28, 5140–5140. 70. Zhang, Y. L.; Goh, K.; Zhao, L.; Sui, X. L.; Gong, X. F.; Cai, J. J.; Zhou, Q. Y.; Zhang, H. D.; Li, L.; Kong, F. R. Advanced Non-Noble Materials in Bifunctional Catalysts for ORR and OER toward Aqueous Metal–Air Batteries. Nanoscale 2020, 12, 21534–21559. 71. Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science 2009, 323, 760–764. 72. Cheng, C.; Li, S.; Xia, Y.; Ma, L.; Nie, C.; Roth, C.; Thomas, A.; Haag, R. Atomic Fe–Nx Coupled Open‐Mesoporous Carbon Nanofibers for Efficient and Bioadaptable Oxygen Electrode in Mg–Air Batteries. Adv. Mater. 2018, 30, 1802669−1802679. 73. Wang, H. F.; Tang, C.; Zhang, Q. A Review of Precious‐Metal‐Free Bifunctional Oxygen Electrocatalysts: Rational Design and Applications in Zn−Air Batteries. Adv. Funct. Mater. 2018, 28, 1803329−1803351. 74. Wang, M.; Xie, J.; Lu, Z.; Wang, J.; Yin, X.; Cao, Y. Biphase Alloy Nanoheterojunction Encapsulated within N‐Doped Carbon Nanotubes as Bifunctional Oxygen Electrocatalyst for High‐Performance Zn–Air and Mg–Air Batteries. Adv. Funct. Mater. 2025, 2423767−2423776. 75. Perez, J.; Gonzalez, E. R.; Ticianelli, E. A. Oxygen Electrocatalysis on Thin Porous Coating Rotating Platinum Electrodes. Electrochim. Acta 1998, 44, 1329–1339. 76. Gao, J.; Zou, J.; Zeng, X.; Ding, W. Carbon Supported Nano Pt–Mo Alloy Catalysts for Oxygen Reduction in Magnesium–Air Batteries. RSC Advances 2016, 6, 83025–83030. 77. Wang, D.; Xin, H. L.; Hovden, R.; Wang, H.; Yu, Y.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally Ordered Intermetallic Platinum–Cobalt Core–Shell Nanoparticles with Enhanced Activity and Stability as Oxygen Reduction Electrocatalysts. Nat. Mater. 2013, 12, 81–87. 78. Jiang, L.; Hsu, A.; Chu, D.; Chen, R. Oxygen Reduction Reaction on Carbon Supported Pt and Pd in Alkaline Solutions. J. Electrochem. Soc. 2009, 156, B370−B376. 79. Cao, Y.; Yang, H.; Ai, X.; Xiao, L. The Mechanism of Oxygen Reduction on MnO2-Catalyzed Air Cathode in Alkaline Solution. J. Electroanal. Chem. 2003, 557, 127–134. 80. Li, C. S.; Sun, Y.; Lai, W. H.; Wang, J. Z.; Chou, S. L. Ultrafine Mn3o4 Nanowires/Three-Dimensional Graphene/Single-Walled Carbon Nanotube Composites: Superior Electrocatalysts for Oxygen Reduction and Enhanced Mg/Air Batteries. ACS Appl. Mater. Interfaces 2016, 8, 27710–27719. 81. Boukoureshtlieva, R.; Milusheva, Y.; Popov, I.; Trifonova, A.; Momchilov, A. Application of Pyrolyzed Cobalt (Ii) Tetramethoxyphenyl Porphyrin Based Catalyst in Metal-Air Systems and Enzyme Electrodes. Electrochim. Acta 2020, 353, 136472−136483. 82. Liu, Y.; Zhou, G.; Zhang, Z.; Lei, H.; Yao, Z.; Li, J.; Lin, J.; Cao, R. Significantly Improved Electrocatalytic Oxygen Reduction by an Asymmetrical Pacman Dinuclear Cobalt (Ii) Porphyrin–Porphyrin Dyad. Chem. Sci. 2020, 11, 87–96. 83. Gao, J.; Li, X.; Liu, Q.; Fan, H.; Gao, S.; Song, Y.; Wang, E. A Chloride-Free Electrolyte to Suppress the Anodic Hydrogen Evolution Corrosion of Magnesium Anode in Aqueous Magnesium Air Batteries. Chem. Eng. J. 2023, 464, 142655−142666. 84. Li, H. Z.; Cao, J.; Gao, L. M.; Chen, Q. H.; Yang, J. J.; Liao, B. K.; Guo, X. P. Improving the Discharge Performance of Aqueous Mg–Air Battery Using Dicarboxylic Acid Additives. Mater. Res. Bull. 2025, 182, 113160−113170. 85. Wang, L.; Snihirova, D.; Deng, M.; Wang, C.; Höche, D.; Lamaka, S. V.; Zheludkevich, M. L. Indium Chloride as an Electrolyte Additive for Primary Aqueous Mg Batteries. Electrochim. Acta 2021, 373, 137916−137926. 86. Zhou, Y.; Lu, X.; Seyeux, A.; Światowska, J.; Wang, F. A Novel Insight into the Enhanced Electrochemical Performance of Mg–Air Battery in Mixed Aqueous and Organic Electrolytes. Corros. Sci. 2024, 240, 112512−112526. 87. Ling, N.; Song, S.; Wang, C.; Fan, H.; Zhang, J.; Wang, L. Novel Dual-Function Electrolyte Additive for High-Power Aqueous Mg–Air Battery: Improvement of Both Discharge Potential and Utilization Efficiency. Chem. Eng. Sci. 2024, 285, 119624−119633. 88. Park, J. B.; Lee, S. H.; Jung, H. G.; Aurbach, D.; Sun, Y. K. Redox Mediators for Li–O2 Batteries: Status and Perspectives. Adv. Mater. 2018, 30, 1704162−1704173. 89. Azuma, S.; Moro, I.; Sano, M.; Ozawa, F.; Saito, M.; Nomura, A. Mechanistic Analysis of Lithium–Air Battery with Organic Redox Mediator-Coated Air-Electrode. J. Electrochem. Soc. 2024, 171, 100511−100516. 90. Huang, K.; Lu, Z.; Dai, S.; Fei, H. Recent Progress of Halide Redox Mediators in Lithium–Oxygen Batteries: Functions, Challenges, and Perspectives. J. Chem. Eng. 2024, 1, 737–756. 91. Shiga, T.; Hase, Y.; Yagi, Y.; Takahashi, N.; Takechi, K. Catalytic Cycle Employing a Tempo–Anion Complex to Obtain a Secondary Mg–O2 Battery. J. Phys. Chem. Lett. 2014, 5, 1648–1652. 92. Jiang, C.; Yan, J.; Mao, Q.; Lu, Z.; Chen, S.; Chen, Z.; Peng, Z.; Wang, D. Coordination Shell Complexing of Superoxide Anion for Stable Lithium Air Battery. Energy Storage Mater. 2025, 104132−104138. 93. Bard, Allen J.; Larry R. Faulkner.; Henry S. White. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons: Hoboken, USA, 2022. 94. Chen, W.; Yu, H.; Lee, S. Y.; Wei, T.; Li, J.; Fan, Z. Nanocellulose: A Promising Nanomaterial for Advanced Electrochemical Energy Storage. Chem. Soc. Rev. 2018, 47, 2837−2872. 95. Compton, R.; Banks, C. Understanding Voltammetry; Imperial College Press, London, UK, 2011; Chapter 9, pp 355–369. 96. Xu, K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. 2004, 104, 4303−4418. 97. Ermrich, M.; Opper, D. XRD for the Analyst: Getting Acquainted with the Principles; PANalytical: Almelo, EA, 2013. 98. Khan, H.; Yerramilli, A. S.; D'Oliveira, A.; Alford, T. L.; Boffito, D. C.; Patience, G. S. Experimental Methods in Chemical Engineering: X‐ray Diffraction Spectroscopy—XRD. Can. J. Chem. Eng 2020, 98, 1255−1266. 99. Chauhan, A.; Chauhan, P. Powder Xrd Technique and Its Applications in Science and Technology. J Anal Bioanal Tech 2014, 5, 1−5. 100. Kartashov, O. O.; Chernov, A. V.; Polyanichenko, D. S.; Butakova, M. A. Xas Data Preprocessing of Nanocatalysts for Machine Learning Applications. Materials 2021, 14, 7884−7900. 101. Iglesias‐Juez, A.; Chiarello, G. L.; Patience, G. S.; Guerrero‐Pérez, M. O. Experimental Methods in Chemical Engineering: X‐Ray Absorption Spectroscopy—Xas, Xanes, Exafs. Can. J. Chem. Eng 2022, 100, 3−22. 102. Vickerman, J. C.; Gilmore, I. S. Surface Analysis–The Principal Techniques, 2nd Edition; Manchester Interdisciplinary Biocentre, University of Manchester, UK; National Physical Laboratory, Teddington, UK, 2000. 103. Krishna, D. N. G.; Philip, J. Review on Surface-Characterization Applications of X-Ray Photoelectron Spectroscopy (Xps): Recent Developments and Challenges. Appl Surf Sci Adv 2022, 12, 100332−100362. 104. Choudhary, O.; Kalita, P.; Doley, P.; Kalita, A. Scanning Electron Microscope-Advantages and Disadvantages in Imaging Components by Op Choudhary, Pc Kalita, Pj Doley and A. Kalita. Life sci. leafl. 2017, 85, 1−7. 105. Zhou, W.; Apkarian, R.; Wang, Z. L.; Joy, D. Scanning Microscopy for Nanotechnology: Techniques and Applications; Springer science & business media: Land Berlin, 2007, 1−40. 106. Das, P. Optical Properties of Low Dimensional Structures Using Cathodoluminescence in a High Resolution Scanning Electron Microscope; Dissertation; University of Calcutta: Kolkata, India, 2014; Chapter 2, pp 30. 107. Braidy, N.; Béchu, A.; de Souza Terra, J. C.; Patience, G. S. Experimental Methods in Chemical Engineering: Transmission Electron Microscopy—Tem. Can. J. Chem. Eng 2020, 98, 628−641. 108. Li, Q.; Anpo, M.; You, J.; Yan, T.; Wang, X. Springer Handbook of Advanced Catalyst Characterization; Springer International Publishing: Land Berlin, Germany, 2023. 109. Aoki, T. Photoluminescence Spectroscopy; Characterization of Materials; Wiley: Hoboken, NJ, 2002; pp 1–12. 110. Gao, X.; Chen, Y.; Johnson, L.; Bruce, P. G. Promoting Solution Phase Discharge in Li–O2 Batteries Containing Weakly Solvating Electrolyte Solutions. Nature materials 2016, 15, 882–888. 111. Muralikrishna, U.; Krishnamurthy, M. Spectroscopic Studies on the Electron Donor—Acceptor Interaction between Piperidines and Tetrachloro-1, 2-Benzoquinone. Spectrochimica Acta Part A: Molecular Spectroscopy 1984, 40, 65–68. 112. Bayliss, N.; Cant, N. Solvent Perturbations in the Near-Ultraviolet Spectrum of Benzene. Spectrochim. Acta 1962, 18, 1287–1294. 113. Appel, A. M.; Helm, M. L. Determining the Overpotential for a Molecular Electrocatalyst. ACS Catal. 2014, 4, 630–633. 114. Niu, S.; Li, S.; Du, Y.; Han, X.; Xu, P. How to Reliably Report the Overpotential of an Electrocatalyst. ACS Energy Lett. 2020, 5, 1083–1087. 115. Tian, F.; Anderson, A. B. Effective Reversible Potential, Energy Loss, and Overpotential on Platinum Fuel Cell Cathodes. J. Phys. Chem. C 2011, 115, 4076–4088. 116. Chen, W.; Huang, J.; Wei, J.; Zhou, D.; Cai, J.; He, Z. D.; Chen, Y. X. Origins of High Onset Overpotential of Oxygen Reduction Reaction at Pt-Based Electrocatalysts: A Mini Review. Electrochem. Commun. 2018, 96, 71–76. 117. Kim, M.; Lee, J.; Kim, Y.; Park, Y.; Kim, H.; Choi, J. W. Surface Overpotential as a Key Metric for the Discharge–Charge Reversibility of Aqueous Zinc-Ion Batteries. J. Am. Chem. Soc. 2023, 145, 15776–15787. 118. Song, S.; Xia, S.; Wei, Y.; Lv, X.; Sun, S.; Li, Q. Fluoro-Polymer-Coated Carbon Nanotubes for Improved Interfacial Interactions and Dielectric Properties in Mwcnts/Pvdf Composites. J. Mater. Sci. 2020, 55, 3212–3227. 119. Yang, Z.; Yang, M.; Hahn, N. T.; Connell, J.; Bloom, I.; Liao, C.; Ingram, B. J.; Trahey, L. Toward Practical Issues: Identification and Mitigation of the Impurity Effect in Glyme Solvents on the Reversibility of Mg Plating/Stripping in Mg Batteries. Front. Chem. 2022, 10, 966332–966346. 120. Burke, P. J.; Bayindir, Z.; Kipouros, G. J. X-Ray Photoelectron Spectroscopy (XPS) Investigation of the Surface Film on Magnesium Powders. Appl. Spectrosc. 2012, 66, 510–518. 121. Liu, J.; Chen, F.; Yang, W.; Guo, J.; Xu, G.; Jia, F.; Shi, L. Excess Soluble Alkalis to Prepare Highly Efficient MgO with Relative Low Surface Oxygen Content Applied in DMC Synthesis. Sci. Rep. 2021, 11, 20931–20948. 122. Cao, L.; Li, D.; Pollard, T.; Deng, T.; Zhang, B.; Yang, C.; Chen, L.; Vatamanu, J.; Hu, E.; Hourwitz, M. J. Fluorinated Interphase Enables Reversible Aqueous Zinc Battery Chemistries. Nat. Nanotechnol. 2021, 16, 902–910. 123. Kaspar, P.; Sobola, D.; Castkova, K.; Dallaev, R.; Stastna, E.; Sedlak, P.; Knapek, A.; Trcka, T.; Holcman, V. Case Study of Polyvinylidene Fluoride Doping by Carbon Nanotubes. Materials 2021, 14, 1428–1439. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98145 | - |
| dc.description.abstract | 環保意識高漲下,各國提倡藉電能作為汽車之動力來源,故具高能量密度與環保優勢之鎂氧氣(Mg–O2)電池受廣泛注目,然Mg–O2電池之發展受限於高過電位與循環能力不佳之問題,故本研究藉加入3,4,5,6-四氯-1,2-苯醌(3,4,5,6-tetrachloro-1,2-benzoquinone; TCBQ)作為氧化還原介質(redox mediator)以改善Mg–O2電池性能。
本研究首先藉量測吸收光譜與循環伏安法(cyclic voltammetry; CV)確認其反應路徑與催化效能,並比較添加TCBQ與否之Mg–O2電池差異,藉電化學測試結果可得知添加TCBQ使Mg–O2電池起始電壓由1.18 V提升至1.59 V,增幅達35%,而最大放電電容量則由19,722 mAh g–1提升至27,788 mAh g–1,增加約41%,且穩定循環次數由7圈提升至58圈,增長超過8倍,電池過電位自1.7 V降低至0.7 V,減少近60%。 本研究亦藉同步輻射X光繞射(synchrotron X-ray diffraction; S-XRD) 、X光吸收光譜(X-ray absorption spectroscopy; XAS) 、X光光電子能譜(X-ray photoelectron spectroscopy; XPS) 、掃描式電子顯微鏡(scanning electron microscope; SEM) 及穿透式電子顯微鏡(transmission electron microscopy; TEM) 儀器技術分析經放電後之陰極,可得知無論添加TCBQ與否其放電產物皆為MgO,且TCBQ使放電產物更均勻分布於陰極上。 本研究之新穎性為成功藉添加TCBQ作為氧化還原介質催化氧還原反應,解決Mg–O2電池面臨高過電位與循環能力不佳問題,以提升Mg–O2電池性能,為添加於Mg–O2電池之氧化還原介質提供新選擇。 | zh_TW |
| dc.description.abstract | In response to the growing global emphasis on environmental protection, the use of electric energy as a vehicle power source has been increasingly advocated worldwide. Magnesium–oxygen (Mg–O2) batteries, characterized by their high energy density and environmental benefits, have emerged as promising candidates for next-generation energy storage systems. However, their practical application remains limited due to challenges such as high overpotential and poor cycling stability.
In this study, 3,4,5,6-tetrachloro-1,2-benzoquinone (TCBQ) was introduced as a redox mediator to address these issues and enhance the overall performance of Mg–O2 batteries. The reaction pathways and catalytic efficiency of TCBQ were investigated through absorption spectroscopy and cyclic voltammetry (CV) measurements. Electrochemical testing revealed that the addition of TCBQ significantly increased the initial discharge voltage from 1.18 V to 1.59 V (a 35% enhancement), elevated the maximum discharge capacity from 19,722 mAh g⁻¹ to 27,788 mAh g⁻¹ (a 41% improvement), extended the stable cycle life from 7 cycles to 58 cycles, and reduced the overpotential from 1.7 V to 0.7 V, representing a nearly 60% reduction. Furthermore, synchrotron X-ray diffraction (S-XRD), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analyses indicated that the primary discharge product was magnesium oxide (MgO) regardless of the presence of TCBQ, with a more homogeneous distribution observed when TCBQ was incorporated. These results demonstrate that TCBQ effectively catalyzes the oxygen reduction reaction, thereby mitigating the major limitations of Mg–O2 batteries. This study provides a new strategy for improving the electrochemical performance and cycle life of Mg–O2 batteries through the use of redox mediators. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:06:09Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-30T16:06:09Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv 目次 v 圖次 viii 表次 xii 英文縮寫表 xiii 第一章 緒論 1 1.1金屬空氣電池 1 1.2鋰氧氣電池 3 1.3鎂氧氣電池 10 1.4鎂空氣電池中之陽極材料 13 1.4.1金屬鎂表面修飾與塗層技術 13 1.4.2金屬鎂合金化設計 16 1.5鎂空氣電池中之電解質 19 1.5.1水性電解質 19 1.5.2非水系電解質 22 1.5.2.1有機溶劑電解質 23 1.5.2.2離子液體電解質 24 1.5.2.3聚合物電解質 27 1.6鎂空氣電池中之陰極材料與催化劑 31 1.6.1碳材料 32 1.6.2無金屬雜原子摻雜 32 1.6.3貴金屬 35 1.6.4過渡金屬氧化物 36 1.6.5含氮金屬大環化合物 37 1.7鎂電解質之添加劑介紹 39 1.7.1緩蝕劑 39 1.7.2氧化還原介質 41 1.8研究動機與目的 46 第二章 實驗步驟與儀器分析原理 47 2.1化學藥品 47 2.2實驗步驟 49 2.2.1液態電解質之配製 49 2.2.2陰極漿料之混合與塗佈 50 2.2.3鈕扣型鎂氧氣電池之組裝與充放電測試 50 2.3分析儀器與其原理 53 2.3.1循環伏安法(cyclic voltammetry; CV) 53 2.3.2充放電量測儀(cycling machine) 55 2.3.3同步輻射X光繞射(synchrotron X-Ray diffraction; S-XRD) 56 2.3.4 X光吸收光譜(X-ray absorption spectroscopy; XAS) 58 2.3.5 X光光電子能譜(X-ray photoelectron spectroscopy; XPS) 60 2.3.6掃描式電子顯微鏡(scanning electron microscope; SEM) 64 2.3.7穿透式電子顯微鏡(transmission electron microscopy; TEM) 66 2.3.8光致發光光譜(photoluminescence spectroscopy; PL) 68 第三章 結果與討論 71 3.1氧化還原介質之分析 71 3.1.1吸收光譜鑑定 71 3.1.2 循環伏安法量測 73 3.2電化學性能分析 75 3.2.1電池性能測試用鎂氧氣電池 75 3.2.2最大放電測試 76 3.2.3循環充放電測試 77 3.3 陰極放電產物之鑑定 81 3.3.1 X光繞射鑑定 81 3.3.2穿透式電子顯微鏡鑑定 82 3.3.3掃描式電子顯微鏡鑑定 85 3.3.4 X光吸收光譜鑑定 95 3.3.5 X光光電子能譜鑑定 99 第四章 結論 104 參考文獻 105 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 鎂氧氣電池 | zh_TW |
| dc.subject | 氧化還原介質 | zh_TW |
| dc.subject | 6-四氯-1 | zh_TW |
| dc.subject | 2-苯醌 | zh_TW |
| dc.subject | 循環伏安法 | zh_TW |
| dc.subject | 氧還原反應 | zh_TW |
| dc.subject | 6-tetrachloro-1 | en |
| dc.subject | oxygen reduction reaction | en |
| dc.subject | cyclic voltammetry | en |
| dc.subject | 2-benzoquinone | en |
| dc.subject | magnesium–oxygen battery | en |
| dc.subject | redox mediator | en |
| dc.title | 利用氧化還原介質提升鎂氧氣電池性能 | zh_TW |
| dc.title | Improve the Performance of Magnesium–Oxygen Batteries with Redox Mediators | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳致融;魏大華;王丞浩;廖譽凱 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Jung Chen;Da-Hua Wei;Chen-Hao Wang;Yu-Kai Liao | en |
| dc.subject.keyword | 鎂氧氣電池,氧化還原介質,3,4,5,6-四氯-1,2-苯醌,循環伏安法,氧還原反應, | zh_TW |
| dc.subject.keyword | magnesium–oxygen battery,redox mediator,3,4,5,6-tetrachloro-1,2-benzoquinone,cyclic voltammetry,oxygen reduction reaction, | en |
| dc.relation.page | 115 | - |
| dc.identifier.doi | 10.6342/NTU202501363 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-04 | - |
| dc.contributor.author-college | 重點科技研究學院 | - |
| dc.contributor.author-dept | 奈米工程與科學學位學程 | - |
| dc.date.embargo-lift | 2025-07-31 | - |
| 顯示於系所單位: | 奈米工程與科學學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 10.31 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
