請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98144完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李綱 | zh_TW |
| dc.contributor.advisor | Kang Li | en |
| dc.contributor.author | 王耀徵 | zh_TW |
| dc.contributor.author | Yao-Cheng Wang | en |
| dc.date.accessioned | 2025-07-30T16:05:57Z | - |
| dc.date.available | 2025-07-31 | - |
| dc.date.copyright | 2025-07-30 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-24 | - |
| dc.identifier.citation | K. Jo, J. Kim, D. Kim, C. Jang, and M. Sunwoo, “Development of autonomous car—part i: Distributed system architecture and development process,” IEEE Transactions on Industrial Electronics, vol. 61, no. 12, pp. 7131–7140, 2014.
Society of Automotive Engineering, “SAE J3016 Surface Vehicle Recommended Practice,” Jun 2018. L. Nielsen, M. Nyberg, E. Frisk, C. Bäckström, A. Henriksson, I. Klein, F. Gustafsson, and S. Gunnarsson, “Issues in diagnosis, supervision, and safety,” 1996. E. Takeuchi and T. Tsubouchi, “A 3-d scan matching using improved 3-d normaldistributions transform for mobile robotic mapping,” in 2006 IEEE/RSJInternational Conference on Intelligent Robots and Systems, pp. 3068–3073, IEEE, 2006. 林舜友, “融合影像與圖資之自駕運具定位系統性能提升研究,” Jan 2017. M. Tossaint, J. Samson, F. Toran, J. Ventura-Traveset, M. Hernández-Pajares, J. Juan, J. Sanz, and P. Ramos-Bosch, “The stanford–esa integrity diagram: A new tool for the user domain sbas integrity assessment,” Navigation, vol. 54, no. 2, pp. 153–162, 2007. 53 T. G. R. Reid, D. R. Ward, J. M. N. Shapiro, and M. J. Kochenderfer, “Localization requirements for autonomous vehicles,” SAE InternationalJournal of Connected and Automated Vehicles, vol. 2, no. 3, 2019. A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti dataset,” The International Journal of Robotics Research, vol. 32, no. 11, pp. 1231–1237, 2013. 周庚緯, “基於深度神經網路的自動駕駛車輛之定位系統錯誤偵測與排除,” Jul 2023. 交通部, “公路路線設計規範,” jun 2023. Accessed: 2023-06-XX. International Electrotechnical Commission, “IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related systems,” 2010. Available at: https://webstore.iec.ch/publication/5510. International Organization for Standardization, “ISO 26262: Road vehicles – Functional safety,” 2018. Available at: https://www.iso.org/standard/68383.html. N. H. T. S. Administration, “Critical reasons for crashes investigated in the national motor vehicle crash causation survey,” 2015. Report No. DOT HS 812 115. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18, pp. 234–241, Springer, 2015. 54 J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in neural information processing systems, vol. 33, pp. 6840–6851, 2020. A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates, et al., “Deep speech: Scaling up end-to-end speech recognition,” arXiv preprint arXiv:1412.5567, 2014. A. Welte, S. Xu, and P. Bonnifait, “Protection levels for high integrity localization for autonomous driving,” ENSTA Bretagne, Univ. Angers, 2017. W. Huang and X. Su, “Design of a fault detection and isolation system for intelligent vehicle navigation system,” International Journal of Navigation and Observation, vol. 2015, no. 1, p. 279086, 2015. P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,” in Sensor fusion IV: control paradigms and data structures, vol. 1611, pp. 586–606, Spie, 1992. P. Biber and W. Straßer, “The normal distributions transform: A new approach to laser scan matching,” in Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453), vol. 3, pp. 2743–2748, IEEE, 2003. M. Magnusson, A. Nuchter, C. Lorken, A. J. Lilienthal, and J. Hertzberg, “Evaluation of 3d registration reliability and speed-a comparison of icp and ndt,” in 2009 IEEE International Conference on Robotics and Automation, pp. 3907–3912, IEEE, 2009. W. Wen, L.-T. Hsu, and G. Zhang, “Performance analysis of ndt-based graph slam for autonomous vehicle in diverse typical driving scenarios of hong kong,” Sensors, vol. 18, no. 11, p. 3928, 2018. 55 R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “g 2 o: A general framework for graph optimization,” in 2011 IEEE international conference on robotics and automation, pp. 3607–3613, IEEE, 2011. F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo localization for mobile robots,” in Proceedings 1999 IEEE international conference on robotics and automation (Cat. No. 99CH36288C), vol. 2, pp. 1322–1328, IEEE, 1999. D. Fox, “Kld-sampling: Adaptive particle filters,” Advances in neural information processing systems, vol. 14, 2001. J. Levinson, M. Montemerlo, and S. Thrun, “Map-based precision vehicle localization in urban environments.,” in Robotics: science and systems, vol. 4, pp. 121–128, Atlanta, GA, USA, 2007. J. Al Hage, P. Xu, P. Bonnifait, and J. Ibanez-Guzman, “Localization integrity for intelligent vehicles through fault detection and position error characterization,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 4, pp. 2978–2990, 2020. R. Wang, Z. Xiong, J. Liu, J. Xu, and L. Shi, “Chi-square and sprt combined fault detection for multisensor navigation,” IEEE Transactions on Aerospace and Electronic Systems, vol. 52, no. 3, pp. 1352–1365, 2016. 蘇泓珈, “自駕車輛自主定位系統之多感測器故障偵測與隔離方法,” Oct 2021. B. Schölkopf, R. C. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt, “Support vector method for novelty detection,” Advances in neural information processing systems, vol. 12, 1999. 56 F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422, 2008. M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: Identifying densitybased local outliers,” in Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104, ACM, 2000. K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soderstrom, “Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding,”in Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 387–395, 2018. B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and H. Chen, “Deep autoencoding gaussian mixture model for unsupervised anomaly detection,” in Proceedings of the 2018 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), pp. 263–277, Springer, 2018. J. Lines and A. Bagnall, “Time series classification with ensembles of elastic distance measures,” Data Mining and Knowledge Discovery, vol. 29, pp. 565–592, 2015. H. Deng, G. Runger, E. Tuv, and M. Vladimir, “A time series forest for classification and feature extraction,” Information Sciences, vol. 239, pp. 142–153, 2013. Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch with deep neural networks: A strong baseline,” in 2017 International joint conference on neural networks (IJCNN), pp. 1578–1585, IEEE, 2017. F. Karim, S. Majumdar, H. Darabi, and S. Chen, “Lstm fully convolutional networks for time series classification,” IEEE access, vol. 6, pp. 1662–1669, 2017. 57 S. Drake, “Converting gps coordinates [phi, lambda, h] to navigation coordinates (enu),” Tech. Rep. DSTO-TN-0432, 2002. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020. M. Liu, S. Ren, S. Ma, J. Jiao, Y. Chen, Z. Wang, and W. Song, “Gated transformer networks for multivariate time series classification,” arXiv preprint arXiv:2103.14438, 2021. T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” in Proceedings of the IEEE international conference on computer vision, pp. 2980–2988, 2017. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014. S. U. Jan, Y.-D. Lee, J. Shin, and I. Koo, “Sensor fault classification based on support vector machine and statistical time-domain features,” IEEE Access, vol. 5, pp. 8682–8690, 2017. R. Dunia, S. J. Qin, T. F. Edgar, and T. J. McAvoy, “Identification of faulty sensors using principal component analysis,” AIChE Journal, vol. 42, no. 10, pp. 2797–2812, 1996. 58 W. Feller, An introduction to probability theory and its applications, Volume 2, vol. 2. John Wiley & Sons, 1991. J. Cosmen-Schortmann, M. Azaola-Sáenz, M. Martinez-Olague, and M. ToledoLópez, “Integrity in urban and road environments and its use in liability critical applications,” in 2008 IEEE/ION Position, Location and Navigation Symposium, pp. 972–983, IEEE, 2008. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998. K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for statistical machine translation,” in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734, 2014. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98144 | - |
| dc.description.abstract | 本研究延續本實驗室前期的錯誤偵測與排除架構,使用雙塔結構的 Transformer 對多感測器的數據進行資訊整合與特徵學習,改善傳統方法在多重故障辨識上的不足。在訓練模型的過程中,本研究分析並模擬感測器的錯誤訊號,結合開源資料集進行自監督學習。此外,根據道路設計規範與車輛自主定位需求,文中明確界定定位失效的判斷標準,用來評估模型在定位精度與系統安全性的效益。實驗結果顯示,本模型在單一感測器故障情境下可排除 80 % 以上的失效案例;在多感測器同時故障的情境下,亦能成功偵測超過 70 % 的錯誤訊號,展現出良好的穩定性與偵測能力。此外,本模型可於無顯示卡加速的環境下運行,適用於資源受限的車載系統部署。 | zh_TW |
| dc.description.abstract | This study builds upon our laboratory’s previous fault detection and exclusion (FDE) framework by employing a dual-tower Transformer architecture to perform information integration and feature learning from multi-sensor data, addressing the limitations of traditional methods in identifying multiple simultaneous faults. During model training, common sensor faults are analyzed and simulated, and self-supervised learning is conducted using an open-source dataset. In addition, based on road design standards and the requirements of autonomous vehicle localization, this study defines clear criteria for localization failure, which serve as the basis for evaluating the model’s effectiveness in improving localization accuracy and system safety. Experimental results show that our model can excluding over 80 % of localization failures caused by single-sensor faults. In scenarios involving multiple simultaneous sensor failures, the model successfully detects more than 70 % of faulty signals, demonstrating strong stability and detection capability. Moreover, the model operates efficiently without GPU acceleration, making it suitable for deployment in resource-constrained in-vehicle systems. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:05:57Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-30T16:05:57Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目次 v 圖次 viii 表次 ix 第一章緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 第二章文獻探討 5 2.1 感測器模組及誤差來源分析 5 2.1.1 全球導航衛星系統 5 2.1.2 光學雷達 6 2.2 多感測器錯誤偵測與排除 8 2.2.1 模型基底方法 8 2.2.2 資料導向方法 10 第三章研究方法12 3.1 數據預處理 12 3.1.1 光學雷達 12 3.1.2 全球衛星導航系統 13 3.1.3 慣性量測單元 14 3.1.4 滑動窗口 15 3.2 深度模型架構 16 3.2.1 Transformer Encoder 16 3.2.2 Gated Transformer Networks 19 3.3 模型訓練方法 20 3.3.1 訓練架構 21 3.3.2 損失函數 21 3.3.3 錯誤注入方法 22 3.4 評估標準 24 3.4.1 分類性能評估 25 3.4.2 定位有效性評估 27 第四章實驗結果與討論 36 4.1 實驗數據 36 4.2 實驗結果 37 4.2.1 常態分佈 39 4.2.2 t 分佈 40 4.2.3 累計誤差 42 4.2.4 資料定格 46 4.2.5 多感測器錯誤 47 第五章結論與未來建議 51 5.1 結論 51 5.2 未來建議 52 參考文獻 53 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 自動駕駛 | zh_TW |
| dc.subject | 定位系統 | zh_TW |
| dc.subject | 故障檢測與排除 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | Localization Systems | en |
| dc.subject | Fault Detection and Exclusion | en |
| dc.subject | Autonomous Vehicles | en |
| dc.subject | Deep Learning | en |
| dc.title | 基於 Transformer 的自主載具定位系統之故障檢測與排除 | zh_TW |
| dc.title | Transformer-based Fault Detection and Exclusion in Localization Systems for Autonomous Vehicles | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林峻永;陳亮光 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Yeon Lin;Liang-Kuang Chen | en |
| dc.subject.keyword | 自動駕駛,定位系統,故障檢測與排除,深度學習, | zh_TW |
| dc.subject.keyword | Autonomous Vehicles,Localization Systems,Fault Detection and Exclusion,Deep Learning, | en |
| dc.relation.page | 59 | - |
| dc.identifier.doi | 10.6342/NTU202501900 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-26 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2025-07-31 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
