請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98124完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林敏聰 | zh_TW |
| dc.contributor.advisor | Minn-Tsong Lin | en |
| dc.contributor.author | 李孟展 | zh_TW |
| dc.contributor.author | Meng-Zhan Li | en |
| dc.date.accessioned | 2025-07-29T16:08:08Z | - |
| dc.date.available | 2025-07-30 | - |
| dc.date.copyright | 2025-07-28 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-21 | - |
| dc.identifier.citation | [1] A. K. Geim and I. V. Grigorieva. Van der Waals heterostructures. Nature, 499:419–425, 2013.
[2] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang. Emerging Photoluminescence in Monolayer MoS2. Nano Letters, 10(4):1271–1275, 2010. [3] K. P. O’Brien, C. H. Naylor, C. Dorow, K. Maxey, A. V. Penumatcha, A. Vyatskikh, T. Zhong, A. Kitamura, S. Lee, C. Rogan, W. Mortelmans, M. S. Kavrik, R. Steinhardt, P. Buragohain, S. Dutta, T. Tronic, S. Clendenning, P. Fischer, E. S. Putna, M. Radosavljevic, M. Metz, and U. Avci. Process Integration and Future Outlook of 2D Transistors. Nature Communications, 14:6400, 2023. [4] N. Fang and K. Nagashio. Accumulation-Mode Two-Dimensional Field-Effect Transistor: Operation Mechanism and Thickness Scaling Rule. ACS Applied Materials & Interfaces, 10(38):32355–32364, 2018. [5] A. Allain, J. Kang, K. Banerjee, and A. Kis. Electrical Contacts to Two-Dimensional Semiconductors. Nature Materials, 14:1195–1205, 2015. [6] C.-S. Pang, R. Zhou, X. Liu, P. Wu, T.-Y. T. Hung, S. Guo, M. E. Zaghloul, S. Krylyuk, A. V. Davydov, J. Appenzeller, and Z. Chen. Mobility Extraction in 2D Transition Metal Dichalcogenide Devices—Avoiding Contact Resistance Implicated Overestimation. Small, 17(34):2100940, 2021. [7] Y. Liu, J. Guo, E. Zhu, L. Liao, S.-J. Lee, M. Ding, I. Shakir, V. Gambin, Y. Huang, and X. Duan. Approaching the Schottky–Mott Limit in van der Waals Metal–Semiconductor Junctions. Nature, 557:696–700, 2018. [8] J.-Y. Siao. Investigation on Electrical Properties of Monolayer Tungsten Diselenide Channel and Contact through Lateral Spin Valve with Perpendicular Magnetic Anisotropy Electrodes. Master’s thesis, National Taiwan University, Taipei, Taiwan, 2019. [9] Y.-T. Lin, Y.-W. Hsu, Z.-Y. Fong, M.-Y. Shen, C.-H. Hsu, S.-J. Chang, Y.-Z. Chiu, S.-H. Chen, N.-E. Chiang, I.-C. Ni, T.-E. Lee, and C.-I. Wu. Photolithography-Induced Doping and Interface Modulation for High-Performance Monolayer WSe2 P-Type Transistors. Nano Letters, 25(9):3571–3578, 2025. [10] G. Vazquez, E. Alvarez, and J. M. Navaza. Surface Tension of Alcohol + Water from 20 to 50 ◦C. Journal of Chemical and Engineering Data, 40(3):611–614, 1995. [11] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306(5696):666–669, 2004. [12] G. Cassabois, P. Valvin, and B. Gil. Hexagonal boron nitride is an indirect bandgap semiconductor. Nature Photonics, 10:262–266, 2016. [13] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Physical Review Letters, 105:136805, 2010. [14] A. Ambrosi, Z. Sofer, and M. Pumera. 2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chemical Communications, 51(40):8450–8453, 2015. [15] L. Van den Hove. The Endless Progression of Moore’s Law. In Proc. SPIE PC12053, Metrology, Inspection, and Process Control XXXVI, page PC1205301, 2022. [16] K. Sotthewes, R. van Bremen, E. Dollekamp, T. Boulogne, K. Nowakowski, D. Kas, H. J. W. Zandvliet, and P. Bampoulis. Universal Fermi-Level Pinning in Transition-Metal Dichalcogenides. Journal of Physical Chemistry C, 123(9):5411–5420, 2019. [17] C. Kim, I. Moon, D. Lee, M. S. Choi, F. Ahmed, S. Nam, Y. Cho, H.-J. Shin, S. Park, and W. J. Yoo. Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides. ACS Nano, 11(2):1588–1596, 2017. [18] D. Liu, Y. Guo, L. Fang, and J. Robertson. Sulfur Vacancies in Monolayer MoS2 and Its Electrical Contacts. Applied Physics Letters, 103(18):183113, 2013. [19] J. Su, L. Feng, Y. Zhang, and Z. Liu. Defect Induced Gap States in Monolayer MoS2 Control the Schottky Barriers of Pt-MoS2 Interfaces. Applied Physics Letters, 110(16):161604, 2017. [20] A. M. Cowley and S. M. Sze. Surface States and Barrier Height of Metal-Semiconductor Systems. In W. Mönch, editor, Electronic Structure of Metal-Semiconductor Contacts, volume 4 of Perspectives in Condensed Matter Physics, pages 74–82. Springer, Dordrecht, 1999. [21] Z. Hu, Z. Wu, C. Han, J. He, Z. Ni, and W. Chen. Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chemical Society Reviews, 47:3100–3128, 2018. [22] J.-R. Chen, P. M. Odenthal, A. G. Swartz, G. C. Floyd, H. Wen, K. Y. Luo, and R. K. Kawakami. Control of Schottky Barriers in Single Layer MoS2 Transistors with Ferromagnetic Contacts. Nano Letters, 13(7):3106–3110, 2013. [23] W. Park, Y. Kim, S. K. Lee, U. Jung, J. H. Yang, C. Cho, Y. J. Kim, S. K. Lim, I. S. Hwang, and B. H. Lee. Contact Resistance Reduction Using Fermi Level Depinning Layer for MoS2 FETs. In 2014 IEEE International Electron Devices Meeting (IEDM), pages 5.1.1–5.1.4, 2014. [24] N. Kaushik, D. Karmakar, A. Nipane, S. Karande, and S. Lodha. Interfacial n-Doping Using an Ultrathin TiO2 Layer for Contact Resistance Reduction in MoS2. ACS Applied Materials & Interfaces, 8(1):256–263, 2016. [25] M. W. Iqbal, M. Z. Iqbal, M. F. Khan, M. A. Shehzad, Y. Seo, J. H. Park, C. Hwang, and J. Eom. High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Scientific Reports, 5:10699, 2015. [26] G. Pande, J.-Y. Siao, W.-L. Chen, C.-J. Lee, R. Sankar, Y.-M. Chang, C.-D. Chen, W.-H. Chang, F.-C. Chou, and M.-T. Lin. Ultralow Schottky Barriers in Hexagonal Boron Nitride-Encapsulated Monolayer WSe2 Tunnel Field-Effect Transistors. ACS Applied Materials & Interfaces, 12(16):18667–18673, 2020. [27] A. Islam, J. Lee, and P. X.-L. Feng. All-dry transferred single- and few-layer MoS2 field effect transistor with enhanced performance by thermal annealing. Journal of Applied Physics, 123(2):025701, 2018. [28] R. Yang, X. Zheng, and P. X.-L. Feng. Multilayer MoS2 transistors enabled by a facile dry-transfer technique and thermal annealing. Journal of Vacuum Science & Technology B, 32(6):061203, 2014. [29] B.-J. Chou, Y.-Y. Chung, W.-S. Yun, C.-F. Hsu, M.-Y. Li, S.-K. Su, S.-L. Liew, V. D.-H. Hou, C.-W. Chen, C.-C. Kei, Y.-Y. Shen, W.-H. Chang, T.-Y. Lee, C.-C. Cheng, I. P. Radu, and C.-H. Chien. High-performance monolayer MoS2 nanosheet GAA transistor. Nanotechnology, 35(12):125204, 2024. [30] Y. Jung, M. S. Choi, A. Nipane, A. Borah, B. Kim, A. Zangiabadi, T. Taniguchi, K. Watanabe, W. J. Yoo, J. Hone, and J. T. Teherani. Transferred via contacts as a platform for ideal two-dimensional transistors. Nature Electronics, 2:187–194, 2019. [31] H.-Y. Chen, J.-J. Lin, S.-S. Wong, Z.-Y. Lin, Y.-C. Hsieh, K.-E. Chang, C.-L. Wu, K. Watanabe, T. Taniguchi, T.-M. Chen, and L. W. Smith. Locally Doped Transferred Contacts for WSe2 Transistors. ACS Applied Electronic Materials, 6(11):8319–8327, 2024. [32] J. Y. Kwak, J. Hwang, B. Calderon, H. Alsalman, N. Munoz, B. Schutter, and M. G. Spencer. Electrical Characteristics of Multilayer MoS2 FET’s with MoS2/Graphene Heterojunction Contacts. Nano Letters, 14(8):4511–4516, 2014. [33] T. Roy, M. Tosun, J. S. Kang, A. B. Sachid, S. B. Desai, M. Hettick, C. C. Hu, and A. Javey. Field-Effect Transistors Built from All Two-Dimensional Material Components. ACS Nano, 8(6):6259–6264, 2014. [34] Y. Du, L. Yang, J. Zhang, H. Liu, K. Majumdar, P. D. Kirsch, and P. D. Ye. MoS2 Field-Effect Transistors With Graphene/Metal Heterocontacts. IEEE Electron Device Letters, 35(5):599–601, 2014. [35] P.-C. Shen, C. Su, Y. Lin, A.-S. Chou, C.-H. Cheng, J. Park, M.-H. Chiu, C.-P. Chuu, C.-Y. Lu, C.-I. Wu, W.-H. Chang, L.-J. Li, K.-T. Lin, C.-Y. Su, C.-W. Chen, J. C. Hone, L.-J. Li, T. F. Heinz, J. Kong, and T. Palacios. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature, 593:211–217, 2021. [36] W. Li, X. Gong, Z. Yu, L. Ma, W. Sun, S. Gao, Ç. Köroğlu, W. Wang, L. Liu, T. Li, H. Ning, D. Fan, Y. Xu, X. Tu, T. Xu, L. Sun, W. Wang, J. Lu, Z. Ni, J. Li, X. Duan, P. Wang, Y. Nie, H. Qiu, Y. Shi, E. Pop, J. Wang, and X. Wang. Approaching the quantum limit in two-dimensional semiconductor contacts. Nature, 613:274–279, 2023. [37] Z. Cheng, Y. Yu, S. Singh, K. Price, S. G. Noyce, Y.-C. Lin, L. Cao, and A. D. Franklin. Immunity to Contact Scaling in MoS2 Transistors Using in Situ Edge Contacts. Nano Letters, 19(8):5077–5085, 2019. [38] Z. Yang, C. Kim, K. Y. Lee, M. Lee, S. Appalakondaiah, C.-H. Ra, K. Watanabe, T. Taniguchi, K. Cho, E. Hwang, J. Hone, and W. J. Yoo. A Fermi-Level-Pinning-Free 1D Electrical Contact at the Intrinsic 2D MoS2–Metal Junction. Advanced Materials, 31(25):1808231, 2019. [39] T. Y. T. Hung, S.-Y. Wang, C.-P. Chuu, Y.-Y. Chung, A. S. Chou, F. S. Huang, T. Chen, M.-Y. Li, C.-C. Cheng, J. Cai, C.-H. Chien, W.-H. Chang, H.-S. P. Wong, and L.-J. Li. Pinning-Free Edge Contact Monolayer MoS2 FET. In 2020 IEEE International Electron Devices Meeting (IEDM), pages 3.3.1–3.3.4, San Francisco, CA, USA, 2020. [40] E. Park, S.-H. Kim, S.-J. Min, K.-H. Han, J.-H. Kim, S.-G. Kim, T.-H. Ahn, and H.-Y. Yu. Quasi-Zero-Dimensional Source/Drain Contact for Fermi-Level Unpinning in a Tungsten Diselenide (WSe2) Transistor: Approaching Schottky-Mott Limit. ACS Nano, 18(43):29771–29778, 2024. [41] A. Pal, V. Mishra, J. Weber, K. Krishnaswamy, K. Ghosh, A. V. Penumatcha, S. Berrada, K. O’Brien, D. Kencke, and K. Banerjee. Characterization and Closed-Form Modeling of Edge/Top/Hybrid Metal-2D Semiconductor Contacts. In 2022 IEEE International Electron Devices Meeting (IEDM), pages 28.5.1–28.5.4, San Francisco, CA, USA, 2022. [42] P.-H. Ho, Y.-Y. Yang, S.-A. Chou, R.-H. Cheng, P.-H. Pao, C.-C. Cheng, I. Radu, and C.-H. Chien. High-Performance WSe2 Top-Gate Devices with Strong Spacer Doping. Nano Letters, 23(22):10236–10242, 2023. [43] C.-C. Chiang, H.-Y. Lan, C.-S. Pang, J. Appenzeller, and Z. Chen. Air-Stable P-Doping in Record High-Performance Monolayer WSe2 Devices. IEEE Electron Device Letters, 43(2):319–322, Feb 2022. [44] H.-Y. Lan, C.-P. Lin, L. Liu, J. Cai, Z. Sun, P. Wu, Y. Tan, S.-H. Yang, T.-H. Hou, J. Appenzeller, and Z. Chen. Uncovering the doping mechanism of nitric oxide in high-performance P-type Wse2 transistors. Nature Communications, 16(1):4160, 2025. [45] H.-J. Chuang, B. Chamlagain, M. Koehler, M. M. Perera, J. Yan, D. Mandrus, D. Tománek, and Z. Zhou. Low-Resistance 2D/2D Ohmic Contacts: A Universal Approach to High-Performance WSe2, MoS2, and MoSe2 Transistors. Nano Letters, 16(3):1896–1902, 2016. [46] P.-H. Ho, J.-R. Chang, C.-H. Chen, C.-H. Hou, C.-H. Chiang, M.-C. Shih, H.-C. Hsu, W.-H. Chang, J.-J. Shyue, Y.-P. Chiu, and C.-W. Chen. Hysteresis-Free Contact Doping for High-Performance Two-Dimensional Electronics. ACS Nano, 17(3):2653–2660, 2023. [47] Y.-H. Chen, K. Xing, S. Liu, L. N. Holtzman, D. L. Creedon, J. C. McCallum, K. Watanabe, T. Taniguchi, K. Barmak, J. Hone, A. R. Hamilton, S.-Y. Chen, and M. S. Fuhrer. P-Type Ohmic Contact to Monolayer WSe2 Field-Effect Transistors Using High-Electron Affinity Amorphous MoO3. ACS Applied Electronic Materials, 4(11):5379–5386, 2022. [48] A. Oberoi, Y. Han, S. P. Stepanoff, A. Pannone, Y. Sun, Y.-C. Lin, C. Chen, J. R. Shallenberger, D. Zhou, M. Terrones, J. M. Redwing, J. A. Robinson, D. E. Wolfe, Y. Yang, and S. Das. Toward High-Performance p-Type Two-Dimensional Field Effect Transistors: Contact Engineering, Scaling, and Doping. ACS Nano, 17(20):19709–19723, 2023. [49] H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey. High-Performance Single Layered WSe2 p-FETs with Chemically Doped Contacts. Nano Letters, 12(7):3788–3792, 2012. [50] I. Kim, N. Higashitarumizu, I. K. M. R. Rahman, S. Wang, H. M. Kim, J. Geng, R. R. Prabhakar, J. W. Ager, and A. Javey. Low Contact Resistance WSe2 p-Type Transistors with Highly Stable, CMOS-Compatible Dopants. Nano Letters, 24(43):13528–13533, 2024. [51] X. Liu, Y. Pan, J. Yang, D. Qu, H. Li, W. J. Yoo, and J. Sun. High performance WSe2 p-MOSFET with intrinsic n-channel based on back-to-back p-n junctions. Applied Physics Letters, 118(23):233101, 2021. [52] S. Dushman. Electron Emission from Metals as a Function of Temperature. Physical Review, 21(6):623–636, 1923. [53] R. K. A. Bennett, L. Hoang, C. Cremers, A. J. Mannix, and E. Pop. Mobility and threshold voltage extraction in transistors with gate-voltage-dependent contact resistance. npj 2D Materials and Applications, 9(1):13, 2025. [54] M.-Z. Li, J.-Y. Siao, Y.-H. Chu, and M.-T. Lin. Nearly Ideal WS2 Schottky Diode with Asymmetric Gate Control Enabled by One-Side Edge Suspension. ACS Applied Electronic Materials, 7(6):2529–2536, 2025. [55] M.-Z. Li, T. Y. T. Hung, W.-S. Yun, D. M. Sathaiya, S.-A. Chou, S. L. Liew, Y.-M. Yang, K.-I. Lin, T.-Y. Lee, C.-C. Cheng, C.-C. Wu, I. P. Radu, and M.-T. Lin. Top-Gated P-MOSFET with CVD-Grown WSe2 Channels via Self-Aligned WOx Conversion for Spacer Doping. Nano Letters, 25(17):7037–7043, 2025. [56] M.-Z. Li, T. Y. T. Hung, W.-S. Yun, S.-A. Chou, C.-F. Hsu, T.-Y. Lee, C.-C. Cheng, I. P. Radu, and M.-T. Lin. Contact Optimization Through Annealing and Edge Functionalization Towards 2D TMD Nanosheet Devices. In 2024 International VLSI Symposium on Technology, Systems and Applications (VLSI TSA), pages 1–2, 2024. [57] A. Latreche. Reverse bias-dependence of Schottky barrier height on silicon carbide: Influence of the temperature and donor concentration. International Journal of Physical Research, 2(2):40–49, 2014. [58] M. A. Khan, S. Rathi, D. Lim, S. J. Yun, D.-H. Youn, K. Watanabe, T. Taniguchi, and G.-H. Kim. Gate Tunable Self-Biased Diode Based on Few Layered MoS2 and WSe2. Chemistry of Materials, 30(3):1011–1016, 2018. [59] X.-X. Li, Z.-Q. Fan, P.-Z. Liu, M.-L. Chen, X. Liu, C.-K. Jia, D.-M. Sun, X.-W. Jiang, Z. Han, V. Bouchiat, J.-J. Guo, J.-H. Chen, and Z.-D. Zhang. Gate-controlled reversible rectifying behaviour in tunnel contacted atomically-thin MoS2 transistor. Nature Communications, 8:970, 2017. [60] H. Tian, Z. Tan, C. Wu, X. Wang, M. A. Mohammad, D. Xie, Y. Yang, J. Wang, L.-J. Li, J. Xu, and T.-L. Ren. Novel Field-Effect Schottky Barrier Transistors Based on Graphene-MoS2 Heterojunctions. Scientific Reports, 4(1):5951–5957, 2014. [61] Y. Wang, J. C. Kim, Y. Li, K. Y. Ma, S. Hong, M. Kim, H. S. Shin, H. Y. Jeong, and M. Chhowalla. P-type Electrical Contacts for 2D Transition-Metal Dichalcogenides. Nature, 610(7930):61–66, 2022. [62] H. Huang, W. Xu, T. Chen, R.-J. Chang, Y. Sheng, Q. Zhang, L. Hou, and J. H. Warner. High-Performance Two-Dimensional Schottky Diodes Utilizing Chemical Vapour Deposition-Grown Graphene–MoS2 Heterojunctions. ACS Applied Materials & Interfaces, 10(43):37258–37266, 2018. [63] C. J. Lee, M. U. Park, S. H. Kim, M. Kim, K.-S. Lee, and K.-H. Yoo. Two-Terminal Self-Gating Random-Access Memory Based on Partially Aligned 2D Heterostructures. Advanced Electronic Materials, 8(10):2200282, 2022. [64] J. Kim, A. Venkatesan, N. A. N. Phan, Y. Kim, H. Kim, D. Whang, and G.-H. Kim. Schottky Diode with Asymmetric Metal Contacts on WS2. Advanced Electronic Materials, 8(3):2100941, 2022. [65] M. Todeschini, A. Bastos da Silva Fanta, F. Jensen, J. B. Wagner, and A. Han. Influence of Ti and Cr Adhesion Layers on Ultrathin Au Films. ACS Applied Materials & Interfaces, 9(42):37374–37385, 2017. [66] F. Schwierz. Graphene Transistors. Nature Nanotechnology, 5:487–496, 2010. [67] Y. Liu, P. Stradins, and S.-H. Wei. Van der Waals Metal-Semiconductor Junction: Weak Fermi Level Pinning Enables Effective Tuning of Schottky Barrier. Science Advances, 2(4):e1600069, 2016. [68] S. M. Sze and K. K. Ng. Physics of Semiconductor Devices. Wiley-Interscience, Hoboken, NJ, 2006. [69] R. Nouchi. Extraction of the Schottky Parameters in Metal-Semiconductor-Metal Diodes from a Single Current-Voltage Measurement. Journal of Applied Physics, 116(18):184506, 2014. [70] P. Hruska, Z. Chobola, and L. Grmela. Diode IU Curve Fitting with Lambert W Function. In Proceedings of the 2006 25th International Conference on Microelectronics, pages 468–471. IEEE, 2006. [71] S.-S. Chee, D. Seo, H. Kim, H. Jang, S. Lee, S. P. Moon, K. H. Lee, S. W. Kim, H. Choi, and M.-H. Ham. Lowering the Schottky Barrier Height by Graphene/Ag Electrodes for High-Mobility MoS2 Field-Effect Transistors. Advanced Materials, 31(2):1804422, 2018. [72] H. H. Kim, S. K. Lee, S. G. Lee, E. Lee, and K. Cho. Wetting-Assisted Crack- and Wrinkle-Free Transfer of Wafer-Scale Graphene onto Arbitrary Substrates over a Wide Range of Surface Energies. Advanced Functional Materials, 26(11):2070–2077, 2016. [73] S. Costa, E. Borowiak-Palen, M. Kruszynska, A. Bachmatiuk, and R. Kalenczuk. Characterization of Carbon Nanotubes by Raman Spectroscopy. Materials Science (Poland), 26:433–441, 2008. [74] A. Sebastian, R. Pendurthi, T. H. Choudhury, J. M. Redwing, and S. Das. Benchmarking Monolayer MoS2 and WS2 Field-Effect Transistors. Nature Communications, 12(1):693, 2021. [75] C.-S. Pang, P. Wu, J. Appenzeller, and Z. Chen. Thickness-Dependent Study of High-Performance WS2-FETs with Ultrascaled Channel Lengths. IEEE Transactions on Electron Devices, 68(4):2123–2129, 2021. [76] C.-S. Pang, T. Y. T. Hung, A. Khosravi, R. Addou, Q. Wang, M. J. Kim, R. M. Wallace, and Z. Chen. Atomically Controlled Tunable Doping in High-Performance WSe2 Devices. Advanced Electronic Materials, 6:1901304, 2020. [77] C.-S. Pang, T. Y. T. Hung, A. Khosravi, R. Addou, R. M. Wallace, and Z. Chen. Doping-Induced Schottky-Barrier Realignment for Unipolar and High Hole Current WSe2 Devices With >108 On/Off Ratio. IEEE Electron Device Letters, 41(7):1122–1125, 2020. [78] A. Prakash and J. Appenzeller. Bandgap Extraction and Device Analysis of Ionic Liquid Gated WSe2 Schottky Barrier Transistors. ACS Nano, 11(2):1626–1632, 2017. [79] C.-H. Chen, C.-L. Wu, J. Pu, M.-H. Chiu, P. Kumar, T. Takenobu, and L.-J. Li. Hole Mobility Enhancement and p-Doping in Monolayer WSe2 by Gold Decoration. 2D Materials, 1(3):034001, 2014. [80] Z. Lu, M. Zhu, G. Zhang, W. Liu, S. Han, and L. Wang. Electrical Characteristics of WSe2 Transistor with Amorphous BN Capping Layer. Results in Physics, 38:105568, 2022. [81] P. R. Pudasaini, M. G. Stanford, A. Oyedele, A. T. Wong, A. N. Hoffman, D. P. Briggs, K. Xiao, D. G. Mandrus, T. Z. Ward, and P. D. Rack. High Performance Top-Gated Multilayer WSe2 Field Effect Transistors. Nanotechnology, 28(47):475202, 2017. [82] Y.-Y. Chung, W.-S. Yun, B.-J. Chou, C.-F. Hsu, S.-M. Yu, G. Arutchelvan, M.-Y. Li, T.-E. Lee, B.-J. Lin, C.-Y. Li, A. Wei, D. M. Sathaiya, C.-T. Chung, S.-L. Liew, V. D.-H. Hou, W.-H. Chang, B.-H. Liu, C.-W. Chen, C.-Y. Su, C.-C. Kei, J. Cai, C.-C. Wu, J. Wu, T.-Y. Lee, C.-H. Chien, C.-C. Cheng, and I. P. Radu. Monolayer-MoS2 Stacked Nanosheet Channel with C-type Metal Contact. In 2023 International Electron Devices Meeting (IEDM), pages 1–4, 2023. [83] S. Stolz, A. Kozhakhmetov, C. Dong, O. Gröning, J. A. Robinson, and B. Schuler. Layer-dependent Schottky contact at van der Waals interfaces: V-doped WSe2 on graphene. npj 2D Materials and Applications, 6(1):66, 2022. [84] Y.-M. Sun, E.R. Engbrecht, T. Bolom, C. Cilino, J.H. Sim, J.M. White, J.G. Ekerdt, and K. Pfeifer. Ultra thin tungsten nitride film growth on dielectric surfaces. Thin Solid Films, 458(1):251–256, 2004. [85] H.-T. Chin, D.-C. Wang, D. P. Gulo, Y.-C. Yao, H.-C. Yeh, J. Muthu, D.-R. Chen, T.-C. Kao, M. Kalbáč, P.-H. Lin, C.-M. Cheng, M. Hofmann, C.-T. Liang, H.-L. Liu, F.-C. Chuang, and Y.-P. Hsieh. Tungsten Nitride (W5N6): An Ultraresilient 2D Semimetal. Nano Letters, 24(1):67–73, 2024. [86] Jung-Soo Ko, Sol Lee, Robert K. A. Bennett, Kirstin Schauble, Marc Jaikissoon, Kathryn Neilson, Anh Tuan Hoang, Andrew J. Mannix, Kwanpyo Kim, Krishna C. Saraswat, and Eric Pop. Sub-Nanometer Equivalent Oxide Thickness and Threshold Voltage Control Enabled by Silicon Seed Layer on Monolayer MoS2 Transistors. Nano Letters, 25(7):2587–2593, 2025. [87] Ang-Sheng Chou, Ching-Hao Hsu, Yu-Tung Lin, Fa-Rong Hou, Edward Chen, Po-Sen Mao, Ming-Yang Li, Sui-An Chou, Dawei Heh, Hsiang-Chi Hu, Yu-Sung Chang, Wen-Chia Wu, Zih-Syuan Huang, Yu-Wei Hsu, Yuan-Chun Su, Terry Y.T. Hung, Po-Hsun Ho, Tsung-En Lee, Chen-Feng Hsu, Goutham Arutchelvan, Yun-Yan Chung, Chao-Hsin Chien, Georgios Vellianitis, Wei-Yen Woon, Jin Cai, Mark van Dal, Wen-Hao Chang, Chih-I Wu, Chao-Ching Cheng, and Iuliana P. Radu. Low-Power CMOS Inverter with Enhancement-Mode Operation and Matched VTH at VDD = 1 V on Monolayer 2D Material Channel. In 2024 IEEE International Electron Devices Meeting (IEDM), pages 1–4, 2024. [88] W. Mortelmans, P. Buragohain, A. Kitamura, C.J. Dorow, C. Rogan, L. Siddiqui, R. Ramamurthy, J. Lux, T. Zhong, S. Harlson, E. Gillispie, T. Wilson, R. Toku, A. Oni, A. Penumatcha, M. Kavrik, M. Jaikissoon, K. Maxey, A. Kozhakhmetov, C-Y. Cheng, C-C. Lin, S. Lee, A. Vyatskikh, N. Arefin, D. Kencke, J. Kevek, T. Tronic, M. Metz, S.B. Clendenning, K.P. O’Brien, and U. Avci. Gate Oxide Module Development for Scaled GAA 2D FETs Enabling SS<75mV/d and Record Id-max>900μA/μm at Lg<50nm. In 2024 IEEE International Electron Devices Meeting (IEDM), pages 1–4, 2024. [89] R. K. A. Bennett and E. Pop. How Do Quantum Effects Influence the Capacitance and Carrier Density of Monolayer MoS2 Transistors? Nano Letters, 23(5):1666–1672, 2023. [90] Y. Zhou, X. Wang, and A. Dodabalapur. Accurate Field-Effect Mobility and Threshold Voltage Estimation for Thin-Film Transistors with Gate-Voltage-Dependent Mobility in Linear Region. Advanced Electronic Materials, 9(2):2200786, 2023. [91] B. Fallahazad, H. C. P. Movva, K. Kim, S. Larentis, T. Taniguchi, K. Watanabe, S. K. Banerjee, and E. Tutuc. Shubnikov–de Haas Oscillations of High-Mobility Holes in Monolayer and Bilayer WSe2: Landau Level Degeneracy, Effective Mass, and Negative Compressibility. Phys. Rev. Lett., 116(8):086601, Feb 2016. [92] D.-H. Lien, S. Z. Uddin, M. Yeh, M. Amani, H. Kim, J. W. Ager, E. Yablonovitch, and A. Javey. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science, 364(6439):468–471, 2019. [93] Yu Li, Ziwei Li, Cheng Chi, Hangyong Shan, Liheng Zheng, and Zheyu Fang. Plasmonics of 2D Nanomaterials: Properties and Applications. Advanced Science, 4(8):1600430, 2017. [94] K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen. The valley hall effect in mos2 transistors. Science, 344(6191):1489–1492, 2014. [95] T. Y. T. Hung, A. Rustagi, S. Zhang, P. Upadhyaya, and Z. Chen. Experimental observation of coupled valley and spin hall effect in p-doped wse2 devices. InfoMat, 2(5):968–974, 2020. [96] E. Barré, J. A. C. Incorvia, S. H. Kim, C. J. McClellan, E. Pop, H.-S. P. Wong, and T. F. Heinz. Spatial Separation of Carrier Spin by the Valley Hall Effect in Monolayer WSe2 Transistors. Nano Letters, 19(2):770–774, 2019. [97] Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlögl. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B, 84:153402, Oct 2011. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98124 | - |
| dc.description.abstract | 基於二維過渡金屬二硫屬化物之電子元件的發展被其接觸問題所限制,而原因在於不適當的蕭特基能障高度。費米能級釘扎效應導致無法僅透過金屬功函數的選取去調控蕭特基能障高度,從而阻礙了具有適當障高的高效能二維電子元件的設計。本論文首先回顧過渡金屬二硫屬化物在接觸問題上的挑戰,進一步探討文獻中提出的解決方案,並提出本研究於接觸工程上的策略,旨在實現具特定功能的電子元件。
本論文包含三個實驗部分:第一部分介紹一種用於背閘預先圖樣化接觸之「懸邊」工程策略,應用於過渡金屬二硫屬化物。利用該策略製備的多層二硫化鎢蕭基二極體具有閘極可調性,並在整個閘壓掃描範圍內展現近乎理想的二極體特性,顯示出在單一二維元件中整合整流與閘控功能的潛力。第二部分提出一種針對低維材料的 P 型摻雜方法,藉由將單層二硒化鎢經氧氣電漿處理轉化為氧化鎢。此摻雜方法可提升電洞濃度,進而減薄蕭特基能障寬度,降低接觸電阻。當此氧化鎢轉化方法應用於三層二硒化鎢的 P 型金氧半場效電晶體作為間隔摻雜策略時,元件的效能因接觸區電阻降低而顯著提升。最後一部分聚焦於邊緣接觸,這是一種具有潛力的二維奈米片接觸方案。為了優化邊緣接觸,兩種技術被提出:退火處理與邊緣功能化;轉移特性量測結果顯示兩者分別透過不同機制改善元件效能。結合這兩種技術與通道長度微縮後,成功製備出高效能的短通道邊緣接觸型 P 型場效電晶體元件。 接觸工程仍然是二維過渡金屬二硫屬化物實用化應用的關鍵挑戰,需要持續的研究。本篇論文中提出的策略有助於解決特定應用中的關鍵問題,並為二維電子產品的可擴展生產提供潛在途徑。 | zh_TW |
| dc.description.abstract | Advancements of two-dimensional transition metal dichalcogenides (2D TMDs)-based electronic devices are hindered by contact limitations, stemming from the undesired Schottky barrier height (SBH). Fermi-level pinning prohibits effective tuning of SBH by solely considering metal work function, making it difficult to design functional 2D electronic devices with suitable barrier heights. This dissertation begins with a review of contact issues in TMDs, discusses the proposed solutions in literature, and presents strategies in contact engineering aimed at realizing specific functional electronic devices.
There are three experimental sections in this dissertation: The first introduces an “edge suspension” engineering strategy for back-gated, pre-patterned contacts to TMDs. A multilayer WS2 Schottky diode with the proposed suspension engineering is gate-tunable and exhibits nearly ideal diode characteristics over the whole gate-sweep window, suggesting a promising design for integrating current rectification and gate modulation in a single 2D device. The second section presents a p-doping method for low-dimensional materials via WOx conversion of 1L-WSe2 using O2 plasma. This p-doping effect thins the Schottky barrier width by increasing the hole concentration, thereby reducing the contact resistance. When applied as a spacer doping strategy for a 3L-WSe2 p-MOSFET, WOx conversion significantly improves performance by lowering resistance in the access regions. The final section focuses on optimizing edge contacts, a potential contact scheme for 2D nanosheet devices, through two techniques: post-annealing and edge functionalization. Transfer characteristic measurements reveal that each method improves performance through distinct mechanisms. By combining both techniques with channel-length scaling, high-performance short-channel edge-contact p-FETs are successfully fabricated. Contact engineering remains a critical challenge for practical applications of 2D TMDs and requires persistent research. The proposed strategies in this dissertation contribute to addressing key issues in specific applications and offer potential routes toward scalable production of 2D electronics. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-29T16:08:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-29T16:08:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements iii
摘要 v Abstract vii Contents ix List of Figures xi List of Tables xix 1 Introduction 1 1.1 Transition Metal Dichalcogenides 1 1.2 Fermi-level Pinning, Schottky barrier height, and Contact Engineering 6 1.2.1 Impacts of the Surface States 6 1.2.2 Existing Strategies for Contact engineering 7 1.3 Extractions of the Contact Properties 12 1.3.1 Experimental Extraction of Schottky Barrier Height 12 1.3.2 Decoupling Channel and Contact Resistance via Four-Probe Measurements 15 1.4 Scope of the Dissertation 19 2 Nearly Ideal and Gate-Tunable WS2 Schottky Diode with One-Side Edge Suspension 21 2.1 Background 21 2.2 Pre-Patterned Contact Approach 24 2.3 Nearly Ideal Diode Characteristics over the Whole Gate-Sweep Window 26 2.4 One Side Edge Suspension and the Corresponding Band Diagram 34 2.5 Edge Suspension for Monolayers 39 3 General P-Doping Approach via WOx Conversion of CVD-Grown 1L-WSe2 43 3.1 Background 43 3.2 Self-limiting WOx Converted from CVD-grown 1L-WSe2 for P-Doping 46 3.3 Characterizations on WSe2 Channels after WOx Conversion 51 3.4 Self-Aligned Spacer Doping for Top-Gated WSe2 P-MOSFET 58 4 Optimization of Edge Contact through Annealing and Edge Functionalization 63 4.1 Background 63 4.2 Baseline Process for P-Type Edge-Contact FETs 65 4.3 Post-Annealing and Edge Functionalization Process 67 4.4 High-Performance Edge-Contact P-FETs with Channel Length Scaling 75 5 Conclusions and Perspectives 81 Bibliography 91 | - |
| dc.language.iso | en | - |
| dc.subject | 二維材料 | zh_TW |
| dc.subject | 接觸工程 | zh_TW |
| dc.subject | 過渡金屬二硫屬化物 | zh_TW |
| dc.subject | 凡德瓦接觸 | zh_TW |
| dc.subject | 蕭基二極體 | zh_TW |
| dc.subject | 接觸參雜 | zh_TW |
| dc.subject | P 型金氧半場效電晶體 | zh_TW |
| dc.subject | 邊緣接觸 | zh_TW |
| dc.subject | 通道長度微縮 | zh_TW |
| dc.subject | p-MOSFET | en |
| dc.subject | Two-Dimensional Materials | en |
| dc.subject | Contact Doping | en |
| dc.subject | Contact Engineering | en |
| dc.subject | Transition Metal Dichalcogenides | en |
| dc.subject | van der Waals Contact | en |
| dc.subject | Schottky Diode | en |
| dc.subject | Channel-Length Scaling | en |
| dc.subject | Edge Contact | en |
| dc.title | 基於二維過渡金屬二硫屬化物之功能性電子元件的接觸工程與相關策略 | zh_TW |
| dc.title | Strategies with Contact Engineering for Functional Electronic Devices Based on Two-Dimensional Transition Metal Dichalcogenides | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 李愷信;路克史密斯;洪以則;Iuliana Radu | zh_TW |
| dc.contributor.oralexamcommittee | Kai-Shin Li;Luke Smith;Terry Y. T. Hung;Iuliana Radu | en |
| dc.subject.keyword | 二維材料,接觸工程,過渡金屬二硫屬化物,凡德瓦接觸,蕭基二極體,接觸參雜,P 型金氧半場效電晶體,邊緣接觸,通道長度微縮, | zh_TW |
| dc.subject.keyword | Two-Dimensional Materials,Contact Engineering,Transition Metal Dichalcogenides,van der Waals Contact,Schottky Diode,Contact Doping,p-MOSFET,Edge Contact,Channel-Length Scaling, | en |
| dc.relation.page | 104 | - |
| dc.identifier.doi | 10.6342/NTU202501863 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-22 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 應用物理研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 30.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
