請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98107完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鐘嘉德 | zh_TW |
| dc.contributor.advisor | Char-Dir Chung | en |
| dc.contributor.author | 黃品皓 | zh_TW |
| dc.contributor.author | Pin-Hao Huang | en |
| dc.date.accessioned | 2025-07-25T16:06:22Z | - |
| dc.date.available | 2025-07-26 | - |
| dc.date.copyright | 2025-07-25 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-21 | - |
| dc.identifier.citation | [1] R. Hadani et al., “Orthogonal time frequency space modulation,” in Proc. IEEE Wireless Commun. Netw. Conf., San Francisco, CA, USA, Mar. 2017, pp. 1-6.
[2] R. Hadani et al., “Orthogonal time frequency space modulation,” 2018, arXiv:1808.00519. [3] P. Raviteja et al., “Interference cancellation and iterative detection for orthogonal time frequency space modulation,” IEEE Trans. Wireless Commun., vol. 17, no. 10, pp. 6501-6515, Oct. 2018. [4] P. Raviteja, Y. Hong, E. Viterbo, and E. Biglieri, “Practical pulse-shaping waveforms for reduced-cyclic-prefix OTFS,” IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 957-961, Jan. 2019. [5] S. Tiwari, S. S. Das, and V. R. Rangamgari, “Low complexity LMMSE receiver for OTFS,” IEEE Commun. Lett., vol. 23, no. 12, pp. 2205-2209, Dec. 2019. [6] Z. Wei, W. Yuan, S. Li, J. Yuan, and D. W. K. Ng, “Transmitter and receiver window designs for orthogonal time-frequency space modulation,” IEEE Trans. Commun., vol. 69, no. 4, pp. 2207-2223, Apr. 2021. [7] P. Raviteja, K. T. Phan, and Y. Hong, “Embedded pilot-aided channel estimation for OTFS in delay-Doppler channels,” IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 4906-4917, May 2019. [8] H. B. Mishra, P. Singh, A. K. Prasad, and R. Budhiraja, “OTFS channel estimation and data detection designs with superimposed pilots,” IEEE Trans. Wireless Commun., vol. 21, no. 4, pp. 2258-2274, Apr. 2022. [9] F. Liu, Z. Yuan, Q. Guo, Z. Wang, and P. Sun, “Message passing-based structured sparse signal recovery for estimation of OTFS channels with fractional Doppler shifts,” IEEE Trans. Commun., vol. 20, no. 12, pp. 7773-7785, Dec. 2021. [10] Z. Wei, W. Yuan, S. Li, J. Yuan, and D. W. K. Ng, “Off-grid channel estimation with sparse Bayesian learning for OTFS systems,” IEEE Trans. Wireless Commun., vol. 21, no. 9, pp. 7407-7426, Sep. 2022. [11] Z. Gui, Y. Li, C. Zhou, Q. Xiong, and X. Xia, “3D-ESP: An efficient subspace pursuit algorithm for MIMO-OTFS channel estimation,” IEEE Trans. Veh. Technol., vol. 73, no. 11, pp. 17714-17719, Nov. 2024. [12] V. Khammammetti and S. K. Mohammed, “OTFS-based multiple-access in high Doppler and delay spread wireless channels,” IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 528-531, Apr. 2019. [13] A. Chatterjee, V. Rangamgari, S. Tiwari, and S. S. Das, “Nonorthogonal multiple access with orthogonal time-frequency space signal transmission,” IEEE Syst. J., vol. 15, no. 1, pp. 383-394, Mar. 2021. [14] Y. Ge, Q. Deng, D. González G., Y. L. Guan, and Z. Ding “OTFS signaling for SCMA with coordinated multipoint vehicle communications,” IEEE Trans. Veh. Technol., vol. 72, no. 7, pp. 9044-9057, Jul. 2023. [15] G. D. Surabhi, R. M. Augustine, and A. Chockalingam, “On the diversity of uncoded OTFS modulation in doubly-dispersive channels,” IEEE Trans. Wireless Commun., vol. 18, no. 6, pp. 3049-3063, Jun. 2019. [16] P. Raviteja, Y. Hong, E. Viterbo, and E. Biglieri, “Effective diversity of OTFS modulation,” IEEE Wireless Commun. Lett., vol. 9, no. 2, pp. 249-253, Feb. 2020. [17] A. S. Bora, K. T. Phan, and Y. Hong, “Diversity analysis of OTFS over block time-varying channels,” IEEE Trans. Veh. Technol., vol. 73, no. 9, pp. 14062-14067, Sep. 2024. [18] M. S. Khan, Y. J. Kim, Q. Sultan, J. Joung, and Y. S. Cho, “Downlink synchronization for OTFS-based cellular systems in high Doppler environments,” IEEE Access, vol. 9, pp. 73575-73589, May 2021. [19] M. Bayat and A. Farhang, “Time and frequency synchronization for OTFS,” IEEE Wireless Commun. Lett., vol. 11, no. 12, pp. 2670-2674, Dec. 2022. [20] C.-D. Chung, M.-Z. Xu, and W.-C. Chen, “Initial time synchronization for OTFS,” IEEE Trans. Veh. Technol., vol. 73, no. 12, pp. 18769-18786, Dec. 2024. [21] A. Farhang, A. Rezazadeh-Reyhani, L. E. Doyle, and B. Farhang-Boroujeny, “Low complexity modem structure for OFDM-based orthogonal time frequency space modulation,” IEEE Wireless Commun. Lett., vol. 7, no. 3, pp. 344-347, Jun. 2018. [22] W. Shen, L. Dai, J. An, P. Fan, and R. W. Heath, Jr., “Channel estimation for orthogonal time frequency space (OTFS) massive MIMO,” IEEE Trans. Signal Process., vol. 67, no. 16, pp. 4204-4217, Aug. 2019. [23] Y. Liu, S. Zhang, F. Gao, J. Ma, and X. Wang, “Uplink-aided high mobility downlink channel estimation over massive MIMO-OTFS system,” IEEE J. Sel. Areas Commun., vol. 38, no. 9, pp. 1994-2009, Sep. 2020. [24] C. Chen, J. Zhang, Y. Han, J. Lu, and S. Jin, “Channel estimation for massive MIMO-OTFS system in asymmetrical architecture,” IEEE Signal Process. Lett., vol. 30, pp. 14121416, Oct. 2023. [25] G. D. Surabhi, R. M. Augustine, and A. Chockalingam, “Peak-to-average power ratio of OTFS modulation,” IEEE Commun. Lett., vol. 23, no. 6, pp. 999-1002, Jun. 2019. [26] S. Gao and J. Zheng, “Peak-to-average power ratio reduction in pilot-embedded OTFS modulation through iterative clipping and filtering,” IEEE Commun. Lett., vol. 24, no. 9, pp. 2055-2059, Sep. 2020. [27] P. Wei, Y. Xiao, W. Feng, N. Ge, and M. Xiao, “Characterizing the peak-to-average power ratio of OTFS signals: A large system analysis,” IEEE Trans. Wireless Commun., vol. 21, no. 6, pp. 3705-3720, Jun. 2022. [28] A. K. Sinha, S. K. Mohammed, P. Raviteja, Y. Hong, and E. Viterbo, “OTFS based random access preamble transmission for high mobility scenarios,” IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 15078-15094, Dec. 2020. [29] X. Geng et al., “Random access preamble design and timing advance estimation for OTFS systems in high-mobility scenarios,” Electronics, vol. 13, no. 7, art. no. 1166, Apr. 2024. [30] M. Aldababsa, S. Özyurt, G. K. Kurt, and O. Kucur, “A survey on orthogonal time frequency space modulation,” IEEE Open J. Commun. Soc., vol. 5, pp. 4483-4518, Jul. 2024. [31] “LTE; Evolved universal terrestrial radio access (E-UTRA); Physical channels and modulation,” 3GPP, Sophia Antipolis Cedex, France, TS 36.211 V15.7.0, Oct. 2019. [32] “NR; Physical layer procedures for control,” 3GPP, Sophia Antipolis Cedex, France, TS 38.213 V16.2.0, Jul. 2020. [33] “5G; NR; Base station (BS) radio transmission and reception,” 3GPP, Sophia Antipolis Cedex, France, TS 38.104 V16.4.0, Jul. 2020. [34] “NR; Medium access control (MAC) protocol specification,” 3GPP, Sophia Antipolis Cedex, France, TS 38.321 V16.1.0, Jul. 2020. [35] T. Kim, I. Bang, and D.-K. Sung, “An enhanced PRACH preamble detector for cellular IOT communications,” IEEE Commun. Lett., vol. 21, no. 12, pp. 2678-2681, Dec. 2017. [36] S. S. Rout, “Enhanced PRACH detection by wavelet de-noising,” in Proc. Int. Conf. Commun. and Signal Process., Chennai, India, Apr. 2019, pp. 195-199. [37] A.-E. Mostafa et al., “Aggregate preamble sequence design and detection for massive IOT with deep learning,” IEEE Trans. Veh. Technol., vol. 70, no. 4, pp. 3800-3816, Apr. 2021. [38] K. Kamata, M. Sawahashi, and Y. Kishiyama, “Detection probability of PRACH preamble for NR in 3GPP TDL channel models,” in Proc. IEEE VTS Asia Pacific Wireless Commun. Symp., Osaka, Japan, Aug. 2021, pp. 1-5. [39] R.-A. Pitaval, B. M. Popović, P. Wang, and F. Berggren, “Overcoming 5G PRACH capacity shortfall: Supersets of Zadoff-Chu sequences with low-correlation zone,” IEEE Trans. Commun., vol. 68, no. 9, pp. 5673-5688, Sep. 2020. [40] J. Jeong and D. Hong, “Two-stage preamble detector for LEO satellite-based NTN IoT random access,” IEEE Trans. Veh. Technol., vol. 72, no.11, pp. 14443-14455, Jun. 2023. [41] H. S. Jang, S. M. Kim, H.-S. Park, and D. K. Sung, “An early preamble collision detection scheme based on tagged preambles for cellular M2M random access,” IEEE Trans. Veh. Technol., vol. 66, no. 7, pp. 5974-5984, Jul. 2017. [42] L. Zhen et al., “Random access preamble design and detection for mobile satellite communication systems,” IEEE J. Sel. Areas Commun., vol. 36, no. 2, pp. 280-291, Feb. 2018. [43] P.-J. Chen, Y.-C. Tseng, S.-H. Lu, W.-C. Chen, and C.-D. Chung, “Random access preamble detection in OFDM systems using constant-amplitude sequences,” in Proc. IEEE Veh. Technol. Conf., Washington DC, USA, Oct. 2024, pp. 1-7. [44] J. J. Benedetto and J. J. Donatelli, “Ambiguity function and frame-theoretic properties of periodic zero-autocorrelation waveforms,” IEEE J. Sel. Topics Signal Process., vol. 1, no. 1, pp. 6-20, Jun. 2007. [45] D. C. Chu, “Polyphase codes with good periodic correlation properties,” IEEE Trans. Inform. Theory, vol. 18, pp. 531-532, Jul. 1972. [46] Y.-C. Tseng, P.-J. Chen, S.-H. Lu, W.-C. Chen, and C.-D. Chung, “Simultaneous channel estimation in multicell multiuser MIMO OFDM systems,” in Proc. IEEE Veh. Technol. Conf., Washington DC, USA, Oct. 2024, pp. 1-7. [47] J. G. Proakis and M. Salehi, Digital Communications, 5th ed. New York: McGraw-Hill, 2008. [48] S.-C. Pei and J.-J. Ding, “Closed-form discrete fractional and affine Fourier transforms,” IEEE Trans. Signal Process., vol. 48, no. 5, pp. 1338-1353, May 2000. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98107 | - |
| dc.description.abstract | 在上行高移動性多用戶環境中,隨機存取前置訊號偵測 (random access preamble detection; RAPD) 透過正交時頻空間 (orthogonal time-frequence space; OTFS) 系統進行競爭隨機存取程序被認為是一種可行的方法。在本論文中,設計了一種全新的前置訊號格式,該格式結合了少量循環字首 (reduced-cyclic-prefix; RCP) 的OTFS波形格式、可循環移位的零自相關序列,以及多個可擴展的前置訊號幀間隔,用以表示可請求的存取通道,並在線性時變 (linear time-varying; LTV)多重路徑通道中實現可靠的RAPD。
此外,本文亦提出一種基於相關功率測量 (correlation power measure; CPM) 的 RAPD 方法,用於在基地台接收端辨識多個提出存取請求的前置訊號序列。該基於CPM的RAPD系統,在多個非同步接收請求訊號經過已知LTV通道下,從理論上分析了其誤警、遺漏偵測和誤識別機率。當系統運作於具有非整數延遲與都卜勒頻移的隨機LTV通道時,相較於傳統RAPD系統,在限制誤警機率與平均遺漏偵測機率上限的前提下,能夠達成更小的平均誤識別機率,從而提供更高的可靠性。同時,基於CPM的RAPD系統亦可透過為前置訊號序列分配幾乎相同的時頻資源,實現可擴展的存取通道容量。 | zh_TW |
| dc.description.abstract | Random-access preamble detection (RAPD) is considered to enable the contention-based random-access procedure for rectangularly-pulsed orthogonal time frequency space (OTFS) systems operating on linear time-varying multipath (LTV) channels in uplink high-mobility multiple-access environments. Particularly, a new preamble signaling format is designed by adopting the reduced-cyclic-prefix OTFS waveform format, cyclically-shiftable zero-autocorrelation sequences, and multiple scalable preamble frame intervals to represent requestable access channels and enable reliable RAPD over LTV channels. A correlation-power-measure (CPM) -based RAPD approach is also developed to identify multiple requesting preamble signals at the base station receiver. The CPM-based RAPD system is analytically studied in terms of false alarm, outage, and false identification probabilities for asynchronous reception of multiple requesting signals over deterministic LTV channels. When operating over random LTV channels exhibiting fractional delay and Doppler shifts, the CPM-based RAPD system can provide higher reliability than conventional RAPD systems in the sense of achieving the smaller average false identification probability while constraining upper bounds to false alarm probability and average outage probability. Meanwhile, the CPM-based RAPD system can provide a scalable capacity of requestable access channels by allocating nearly the same spectral-temporal resource for preamble signaling. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-25T16:06:22Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-25T16:06:22Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii 目次 iv 圖次 vi 表次 viii 中英對照表 ix 數學記號 xii 符號對照表 xiii 第一章 緒論 1 1.1 正交時頻空間調變 1 1.2 隨機存取程序 1 1.3 相關研究 3 1.4 研究動機及貢獻 4 第二章 隨機存取之前置訊號偵測 6 2.1 前置訊號矩陣設計 7 2.1.1 ZC 序列家族 9 2.1.2 MPMA 序列家族 9 2.1.3 Chirp 序列家族 9 2.2 訊號及系統模型 10 2.2.1 用戶端 α 之傳送訊號 10 2.2.2 基地台之接收訊號 11 2.2.3 基地台接收器之訊號預處理 13 第三章 基於CPM之隨機存取前置訊號偵測 21 3.1 基於CPM之前置訊號偵測方法 21 3.2 性能分析 21 3.2.1 誤警機率 22 3.2.2 遺漏偵測機率 23 3.2.3 誤識別機率 25 第四章 CPM-Based RAPD性能結果 27 4.1 通道模型及系統參數 27 4.2 CPM-Based RAPD 性能結果展示 29 第五章 多種RAPD系統之性能比較 36 5.1 SPM-Based RAPD系統之回顧 36 5.2 sCSM-Based RAPD系統之回顧 39 5.3 mCSM-Based RAPD系統之回顧 41 5.4 多種RAPD系統之性能比較 42 5.5 多種RAPD系統之計算複雜度比較 47 第六章 結論 49 REFERENCE 50 附錄 55 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 隨機存取 | zh_TW |
| dc.subject | 線性時變多重路徑通道 | zh_TW |
| dc.subject | 前置訊號偵測 | zh_TW |
| dc.subject | 正交時頻空間 | zh_TW |
| dc.subject | Orthogonal time frequency space | en |
| dc.subject | linear time-varying multipath channel | en |
| dc.subject | preamble detection | en |
| dc.subject | random access | en |
| dc.title | OTFS系統使用零自相關序列進行隨機存取前置訊號偵測 | zh_TW |
| dc.title | Random Access Preamble Detection in OTFS Using Zero-Autocorrelation Sequences | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 陳維昌 | zh_TW |
| dc.contributor.coadvisor | Wei-Chang Chen | en |
| dc.contributor.oralexamcommittee | 蘇育德;林茂昭;古孟霖 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Ted Su;Mao-Chao Lin;Meng-Lin Ku | en |
| dc.subject.keyword | 正交時頻空間,隨機存取,前置訊號偵測,線性時變多重路徑通道, | zh_TW |
| dc.subject.keyword | Orthogonal time frequency space,random access,preamble detection,linear time-varying multipath channel, | en |
| dc.relation.page | 62 | - |
| dc.identifier.doi | 10.6342/NTU202502075 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-22 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| dc.date.embargo-lift | 2025-07-26 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
