請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98095完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 于昌平 | zh_TW |
| dc.contributor.advisor | Chang-Ping Yu | en |
| dc.contributor.author | 賴晉偉 | zh_TW |
| dc.contributor.author | Chin-Wei Lai | en |
| dc.date.accessioned | 2025-07-24T16:10:26Z | - |
| dc.date.available | 2025-07-25 | - |
| dc.date.copyright | 2025-07-24 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-03 | - |
| dc.identifier.citation | Bielen, A., Simatovic, A., Kosic-Vuksic, J., Senta, I., Ahel, M., Babic, S., Jurina, T., Plaza, J. J. G., Milakovic, M., & Udikovic-Kolic, N. (2017). Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries. Water Research, 126, 79-87.
Elgrishi, N., Rountree, K. J., McCarthy, B. D., Rountree, E. S., Eisenhart, T. T., & Dempsey, J. L. (2018). A practical beginner's guide to cyclic voltammetry. Journal of Chemical Education, 95(2), 197-206. Feng, Y. J., Yang, Q., Wang, X., & Logan, B. E. (2010). Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells. Journal of Power Sources, 195(7), 1841-1844. Fu, L., You, S. J., Yang, F. L., Gao, M. M., Fang, X. H., & Zhang, G. Q. (2010). Synthesis of hydrogen peroxide in microbial fuel cell. Journal of Chemical Technology and Biotechnology, 85(5), 715-719. Gajda, I., Greenman, J., Melhuish, C., Santoro, C., & Ieropoulos, I. (2016). Microbial fuel cell-driven caustic potash production from wastewater for carbon sequestration. Bioresource Technology, 215, 285-289. Gozlan, I., Rotstein, A., & Avisar, D. (2013). Amoxicillin-degradation products formed under controlled environmental conditions: Identification and determination in the aquatic environment. Chemosphere, 91(7), 985-992. Hirte, K., Seiwert, B., Schüürmann, G., & Reemtsma, T. (2016). New hydrolysis products of the beta-lactam antibiotic amoxicillin, their pH-dependent formation and search in municipal wastewater. Water Research, 88, 880-888. Jadhav, G. S., & Ghangrekar, M. M. (2009). Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresource Technology, 100(2), 717-723. Jung, Y. J., Kim, W. G., Yoon, Y., Kang, J. W., Hong, Y. M., & Kim, H. W. (2012). Removal of amoxicillin by UV and UV/H2O2 processes. Science of the Total Environment, 420, 160-167. Kakimoto, T., & Funamizu, N. (2007). Factors affecting the degradation of amoxicillin in composting toilet. Chemosphere, 66(11), 2219-2224. Kim, B. H., Ikeda, T., Park, H. S., Kim, H. J., Hyun, M. S., Kano, K., Takagi, K., & Tatsumi, H. (1999). Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnology Techniques, 13(7), 475-478. Kumar, A., Du, F., & Lienhard, J. H. (2021). Caustic soda production, energy efficiency,and electrolyzers. ACS Energy Letters, 6(10), 3563-3566. Lee, S., Kim, C., Liu, X., Lee, S., Kho, Y., Kim, W. K., Kim, P., & Choi, K. (2021). Ecological risk assessment of Amoxicillin, Enrofloxacin, and Neomycin: are their current levels in the freshwater environment safe? Toxics, 9(8), 17, Article 196. Li, J. T., Zhang, S. H., & Hua, Y. M. (2013). Performance of denitrifying microbial fuel cell subjected to variation in pH, COD concentration and external resistance. Water Science and Technology, 68(1), 250-256. Lin, F. Y., Lin, Y. Y., Li, H. T., Ni, C. S., Liu, C. I., Guan, C. Y., Chang, C. C., Yu, C. P., Chen, W. S., Liu, T. Y., & Chen, H. Y. (2022). Trapa natans husk-derived carbon as a sustainable electrode material for plant microbial fuel cells [Article]. Applied Energy, 325, 9, Article 119807. Logan, B. E., Hamelers, B., Rozendal, R. A., Schrorder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: methodology and technology [Review]. Environmental Science & Technology, 40(17), 5181-5192. Logan, B. E., & Regan, J. M. (2006). Microbial challenges and applications. Environmental Science & Technology, 40(17), 5172-5180. Logan, B. E., Wallack, M. J., Kim, K. Y., He, W. H., Feng, Y. J., & Saikaly, P. E. (2015). Assessment of microbial fuel cell configurations and power densities [Review]. Environmental Science & Technology Letters, 2(8), 206-214. Potter, M. C. (1911). Electrical effects accompanying the decomposition of organic compounds. Proceedings of the Royal Society of London Series B-Containing Papers of a Biological Character, 84(571), 260-276. Rabaey, K., Bützer, S., Brown, S., Keller, J., & Rozendal, R. A. (2010). High current generation coupled to caustic production using a lamellar bioelectrochemical system. Environmental Science & Technology, 44(11), 4315-4321. Sodhi, K. K., Kumar, M., & Singh, D. K. (2021). Insight into the amoxicillin resistance, ecotoxicity, and remediation strategies. Journal of Water Process Engineering, 39, 13, Article 101858. Tavakoli, N., Varshosaz, J., Dorkoosh, F., & Zargarzadeh, M. R. (2007). Development and validation of a simple HPLC method for simultaneous in vitro determination of amoxicillin and metronidazole at single wavelength. Journal of Pharmaceutical and Biomedical Analysis, 43(1), 325-329. Thurston, C. F., Bennetto, H. P., Delaney, G. M., Mason, J. R., Roller, S. D., & Stirling, J. L. (1985). Glucose-metabolism in a microbial fuel-cell - stoichiometry of product formation in a thionine-mediated proteus-vulgaris fuel-cell and its relation to coulombic yields. Journal of General Microbiology, 131(JUN), 1393-1401. Wang, J., He, M. F., Zhang, D. L., Ren, Z. Y., Song, T. S., & Xie, J. J. (2017). Simultaneous degradation of tetracycline by a microbial fuel cell and its toxicity evaluation by zebrafish. Rsc Advances, 7(70), 44226-44233. Wen, Q., Kong, F. Y., Zheng, H. T., Cao, D. X., Ren, Y. M., & Yin, J. L. (2011). Electricity generation from synthetic penicillin wastewater in an air-cathode single chamber microbial fuel cell. Chemical Engineering Journal, 168(2), 572-576. Wu, P. H., Li, Y., Wu, P. H., & Yu, C. P. (2021). Microbial fuel cell-driven alkaline thermal hydrolysis for pretreatment of wastewater containing high concentrations of tetracycline in thecathode chamber. Journal of Environmental Chemical Engineering, 9(1), 7, Article 104659. Xia, C., Xia, Y., Zhu, P., Fan, L., & Wang, H. T. (2019). Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science, 366(6462), 226-+. Yu, C. P., Liang, Z. H., Das, A., & Hu, Z. Q. (2011). Nitrogen removal from wastewater using membrane aerated microbial fuel cell techniques. Water Research, 45(3), 1157-1164. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98095 | - |
| dc.description.abstract | 微生物燃料電池(Microbial Fuel Cell, MFC)為一種新興的綠色能源技術,陽極微生物利用廢水中的有機物作為養分,代謝有機物的同時產生電子與質子,電子藉由外部電路將電子輸送到陰極產生電流,質子透過溶液傳輸到陰極以達到電中性,在降解污染物的同時也能夠產出電力進行利用。在質子傳輸過程中若陽極含有高濃度的陽離子,其會取代質子穿透陽離子交換膜通往陰極,並和陰極產生的氫氧根離子生成如氫氧化鈉、氫氧化鉀等腐蝕性強鹼之有價物質;過去研究發現阿莫西林抗生素在鹼性條件下能夠更好的被水解,而水解後之阿莫西林能夠降低抗生素對環境的影響,因此本研究利用陰極產生鹼度的特性對阿莫西林抗生素進行降解,未來能夠應用在製藥廢水或是醫療廢水的相關處理。
本研究使用採自於台北市迪化污水廠之厭氧污泥作為微生物來源,利用H-type雙槽式微生物燃料電池進行實驗,所使用之電極為經過酸熱前處理和活性碳改質之碳氈電極,實驗分為兩個階段,第一階段使用合成NaCl溶液作為陰極溶液,第二階段使用實際藥廠廢水作為陰極溶液。分別添加阿莫西林進行實驗,實驗中設計不同溫度條件以及實驗組進行比對,定時採樣檢測阿莫西林之殘留量,並對水質進行監測。第一階段結果顯示以合成NaCl溶液作為陰極溶液具有最佳產鹼效果,pH最高值達到10,在閉路組的阿莫西林降解最快,其次是開路組和空白組,閉路組在不同溫度下皆在4小時內達到100%的降解率;第二階段結果顯示以藥廠廢水作為陰極溶液的實驗仍然具有產鹼效果但較NaCl溶液來的差,pH上升幅度較小,阿莫西林降解速率依然是閉路組最快,開路組其次,最慢為空白組。相較於第一階段,第二階段閉路組在不同溫度下耗費8-16小時才達到100%降解率,並且和開路組的降解速率差異縮小,根據pH變化分析和阿莫西林測定得出在使用該藥廠廢水作為陰極基質時產鹼效果下降,進而影響了阿莫西林的鹼水解速率。 | zh_TW |
| dc.description.abstract | Microbial Fuel Cells (MFCs) is an emerging green energy technology. The microorganisms in anode utilize organic matters in wastewater. Electrons and protons are produced during the metabolism of the organic matters. Electrons are transferred to the cathode through an external circuit, producing an electric current, while protons are transported through the cation exchange membrane (CEM) to the cathode to maintain electrical neutrality. This process allows for the degradation of pollutants while generating usable electricity. If the anolyte contains a high concentration of cations, they would penetrate CEM toward the cathode instead of protons, reacting with hydroxide ions generated at the cathode to form caustic bases such as sodium hydroxide and potassium hydroxide. Previous research has found that amoxicillin can be hydrolyzed more efficiently under alkaline conditions, and reduces environmental impact. Therefore, this study aims to utilize alkaline produced MFCs to remove amoxicillin antibiotics, which could be applied in the treatment of pharmaceutical or medical wastewater in the future.
In this study, anaerobic sludge was collected from the Dihua Wastewater Treatment Plant in Taipei city and used as the source of anodic microorganism source. The experiment was conducted using H-type dual-chamber microbial fuel cells. The electrodes were carbon felt electrodes, which went through acid and heat pretreatment and were coated with activated carbon. The experiment was divided into two stages. In the first stage, NaCl solution was used as the catholyte, and in the second stage, actual pharmaceutical wastewater was used as the catholyte. Amoxicillin was added in catholyte in both stages, and different temperature conditions and experimental groups were designed for comparison. Sampling was conducted at designed time intervals to determine the residual concentration of amoxicillin, and water quality parameters were also monitored during experiment. Results from the first stage indicated that using NaCl solution as the catholyte had the best alkaline production efficiency, with the highest pH reaching 10. Amoxicillin was degraded fastest in the closed circuit group, followed by the open circuit group, and lastly, the blank group. The closed circuit group achieved 100% hydrolysis rate within 4 hours under different temperature conditions. Results from the second stage showed that using pharmaceutical wastewater as the catholyte could still produce alkalinity but showed less efficiency compared to the first stage with a lower increase in pH. The closed circuit group still had the fastest hydrolysis of amoxicillin, followed by the open circuit group, and the slowest blank group. Compared to the first stage, the closed circuit group took 8-16 hours to reach 100% hydrolysis rate under different temperature conditions, and the difference in hydrolysis rate between the closed and open circuit groups wasn’t obvious as the first stage. The pH variation and amoxicillin residual analysis indicated that the alkalinity production decreased while using the pharmaceutical wastewater as the catholyte, thereby affecting the alkaline hydrolysis rate of amoxicillin. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-24T16:10:26Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-24T16:10:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
論文口試委員審定書 ........................................................ i 致謝 ....................................................... ii 中文摘要 ............................................................... iii Abstract ............................................................... v 目次 ...................................................... vii 圖次 ................................................................... xi 表次 ................................................................. xiii 第一章 緒論 ............................................. 1 1.1 研究背景 .................................................... 1 1.2 研究動機與目的 .................................................... 2 1.3 研究架構圖 .............................................. 3 第二章 文獻回顧 .......................................................... 4 2.1 微生物燃料電池發展 .................................................... 4 2.1.1 微生物燃料電池之沿革 ................................................ 4 2.1.2 微生物燃料電池運作原理 .............................................. 5 2.2 微生物燃料電池產有價物質 .............................................. 7 2.2.1 微生物燃料電池產鹼 .................................................. 7 2.3 抗生素污染 .......................................................... 9 2.3.1 阿莫西林抗生素 .................................................... 10 2.3.2 阿莫西林的使用 .................................................... 10 2.3.3 環境中阿莫西林造成的危害 ........................................... 11 2.3.4 阿莫西林水解 ...................................................... 11 2.4 利用微生物燃料電池處理抗生素 .......................................... 13 2.4.1 陽極處理 .......................................................... 13 2.4.2 陰極處理 ......................................................... 13 第三章 材料與方法 ..................................................... 14 3.1 實驗藥品與設備 ...................................................... 14 3.1.1 實驗藥品 .......................................................... 14 3.1.2 實驗設備 .......................................................... 16 3.2 雙槽式微生物燃料電池系統 ............................................. 17 3.2.1 微生物燃料電池組態 ................................................. 17 3.2.2 菌種來源與培養 .................................................... 18 3.2.3 微生物燃料電池系統運行 ............................................. 18 3.3 材料製備 ........................................................... 20 3.3.1 陽離子交換膜活化 ................................................... 20 3.3.2 電極前處理 ...................................................... 20 3.3.3 電極改質 ......................................................... 21 3.4 電極特性分析 ........................................................ 22 3.4.1 循環伏安法 ........................................................ 22 3.4.2 電化學阻抗分析 .................................................... 23 3.4.3 掃瞄式電子顯微鏡 ................................................. 25 3.5 人工合成陰極液阿莫西林鹼熱水解試驗 .................................... 26 3.5.1 實驗架構 .......................................................... 26 3.5.2 陰極和陽極溶液配製 ................................................. 26 3.5.3 熱水解溫度比較 .................................................... 27 3.5.4 產電效能分析 ...................................................... 27 3.6 藥廠廢水陰極液阿莫西林鹼熱水解試驗 ............................... 28 3.6.1 實驗架構 .......................................................... 28 3.6.2 陰極和陽極溶液配製 ................................................. 28 3.6.3 產電效能分析 ...................................................... 29 3.7 水質數據分析 ........................................................ 30 3.7.1 pH ............................................................... 30 3.7.2 化學需氧量 ........................................................ 30 3.7.3 氨氮分析 .......................................................... 31 3.7.4 懸浮固體物分析 ................................................... 31 3.8 雙氧水產出分析 ...................................................... 33 3.8.1 製備雙氧水檢量線 .................................................. 33 3.8.2 雙氧水水樣測量 .................................................. 35 3.9 阿莫西林水解分析 ..................................................... 35 3.9.1 高效液相層析儀分析 ................................................. 35 3.9.2 反應速率分析 ..................................................... 36 3.9.3 總有機碳分析 ...................................................... 38 3.10 其他儀器分析 ....................................................... 39 3.10.1 離子層析儀 ....................................................... 39 3.10.2 感應耦合電漿光學發射光譜儀分析 ........................ 39 第四章 結果與討論 ........................................................ 40 4.1 電極特性 ............................................................ 40 4.1.1 電化學循環伏安法 ............................................. 40 4.1.2 電化學交流阻抗分析 ................................................. 41 4.1.3 掃描式電子顯微鏡 ................................................... 42 4.2 人工合成陰極液阿莫西林鹼熱水解試驗 ................................... 45 4.2.1 產電能力分析 ...................................................... 45 4.2.2 陰極產鹼能力分析 .................................................. 47 4.2.3 雙氧水產出分析 ................................................... 51 4.2.4 阿莫西林水解 ...................................................... 51 4.2.5 阿莫西林降解之反應動力學 ........................................... 54 4.2.6 總有機碳分析結果 ................................................... 56 4.2.7 陽極COD去除率 ................................................. 58 4.3 藥廠廢水特性 ........................................................ 59 4.3.1 水質分析 .......................................................... 59 4.3.2 懸浮固體物分析 ................................................... 60 4.3.3 離子層析儀分析 ............................................... 60 4.3.4 高效液相層析儀 .................................................. 62 4.3.5 感應耦合電漿光學發射光譜儀分析 .................................... 62 4.4 藥廠廢水陰極液阿莫西林鹼熱水解試驗 .................................. 64 4.4.1 產電能力分析 ..................................................... 64 4.4.2 陰極產鹼能力分析 .............................................. 66 4.4.3 阿莫西林水解 ...................................................... 70 4.4.4 阿莫西林降解之反應動力學 ......................................... 73 4.4.5 總有機碳分析結果 .............................................. 75 4.4.6 陽極COD去除率 ................................................. 77 第五章 結論與建議 ....................................................... 79 5.1 結論 ............................................................... 79 5.2 建議 ...................................................... 81 參考文獻 ................................................... 82 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 水解 | zh_TW |
| dc.subject | 藥廠廢水 | zh_TW |
| dc.subject | 阿莫西林 | zh_TW |
| dc.subject | 厭氧污泥 | zh_TW |
| dc.subject | 產鹼型微生物燃料電池 | zh_TW |
| dc.subject | pharmaceutical wastewater | en |
| dc.subject | Alkaline-producing MFCs | en |
| dc.subject | Anaerobic sludge | en |
| dc.subject | Amoxicillin | en |
| dc.subject | hydrolysis | en |
| dc.title | 運用產鹼型微生物燃料電池進行阿莫西林水解效果評估 | zh_TW |
| dc.title | Insights into the Hydrolysis of Amoxicillin by Utilizing Alkaline-producing Microbial Fuel Cells | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林居慶;張朝欽 | zh_TW |
| dc.contributor.oralexamcommittee | Chu-Ching Lin;Chao-Chin Chang | en |
| dc.subject.keyword | 產鹼型微生物燃料電池,厭氧污泥,阿莫西林,水解,藥廠廢水, | zh_TW |
| dc.subject.keyword | Alkaline-producing MFCs,Anaerobic sludge,Amoxicillin,hydrolysis,pharmaceutical wastewater, | en |
| dc.relation.page | 84 | - |
| dc.identifier.doi | 10.6342/NTU202501178 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-04 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | 2025-07-25 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 2.99 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
