請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98093完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王兆麟 | zh_TW |
| dc.contributor.advisor | Jaw-Lin Wang | en |
| dc.contributor.author | 郭博丞 | zh_TW |
| dc.contributor.author | Po-Cheng Kuo | en |
| dc.date.accessioned | 2025-07-24T16:10:00Z | - |
| dc.date.available | 2025-07-25 | - |
| dc.date.copyright | 2025-07-24 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-18 | - |
| dc.identifier.citation | 1. Cheng, Y.R., B.Y. Jiang, and C.C. Chen, Acid-sensing ion channels: dual function proteins for chemo-sensing and mechano-sensing. J Biomed Sci, 2018. 25(1): p. 46.
2. Lin, J.H., et al., Sensing acidosis: nociception or sngception? J Biomed Sci, 2018. 25(1): p. 85. 3. Papalampropoulou-Tsiridou, M., et al., Distribution of acid-sensing ion channel subunits in human sensory neurons contrasts with that in rodents. Brain Commun, 2022. 4(6): p. fcac256. 4. Ichikawa, H. and T. Sugimoto, The co-expression of ASIC3 with calcitonin gene-related peptide and parvalbumin in the rat trigeminal ganglion. Brain Res, 2002. 943(2): p. 287-91. 5. Lin, S.H., W.H. Sun, and C.C. Chen, Genetic exploration of the role of acid-sensing ion channels. Neuropharmacology, 2015. 94: p. 99-118. 6. Jasti, J., et al., Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature, 2007. 449(7160): p. 316-23. 7. Chalfie, M., Neurosensory mechanotransduction. Nat Rev Mol Cell Biol, 2009. 10(1): p. 44-52. 8. Omerbasic, D., et al., ASICs and mammalian mechanoreceptor function. Neuropharmacology, 2015. 94: p. 80-6. 9. Moshourab, R.A., et al., Stomatin-domain protein interactions with acid-sensing ion channels modulate nociceptor mechanosensitivity. J Physiol, 2013. 591(22): p. 5555-74. 10. Wetzel, C., et al., A stomatin-domain protein essential for touch sensation in the mouse. Nature, 2007. 445(7124): p. 206-9. 11. Hruska-Hageman, A.M., et al., Interaction of the synaptic protein PICK1 (protein interacting with C kinase 1) with the non-voltage gated sodium channels BNC1 (brain Na+ channel 1) and ASIC (acid-sensing ion channel). Biochemical Journal, 2002. 361(3): p. 443-450. 12. Lim, J., et al., ASIC1a is required for neuronal activation via low-intensity ultrasound stimulation in mouse brain. Elife, 2021. 10. 13. Han, D.S., et al., Involvement of ASIC3 and Substance P in Therapeutic Ultrasound-Mediated Analgesia in Mouse Models of Fibromyalgia. J Pain, 2023. 24(8): p. 1493-1505. 14. Gu, Y. and C. Gu, Physiological and pathological functions of mechanosensitive ion channels. Mol Neurobiol, 2014. 50(2): p. 339-47. 15. Inoue, R., Z. Jian, and Y. Kawarabayashi, Mechanosensitive TRP channels in cardiovascular pathophysiology. Pharmacol Ther, 2009. 123(3): p. 371-85. 16. Hua, S.Z., et al., A mechanosensitive ion channel regulating cell volume. Am J Physiol Cell Physiol, 2010. 298(6): p. C1424-30. 17. Martinac, B., Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci, 2004. 117(Pt 12): p. 2449-60. 18. Coste, B., et al., Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science, 2010. 330(6000): p. 55-60. 19. Santana Nunez, D., et al., Piezo1 induces endothelial responses to shear stress via soluble adenylyl Cyclase-IP(3)R2 circuit. iScience, 2023. 26(5): p. 106661. 20. Woo, S.H., et al., Piezo2 is the principal mechanotransduction channel for proprioception. Nat Neurosci, 2015. 18(12): p. 1756-62. 21. Liu, H., et al., Piezo1 Channels as Force Sensors in Mechanical Force-Related Chronic Inflammation. Front Immunol, 2022. 13: p. 816149. 22. Liu, C. and C. Montell, Forcing open TRP channels: Mechanical gating as a unifying activation mechanism. Biochem Biophys Res Commun, 2015. 460(1): p. 22-5. 23. O'Neil, R.G. and S. Heller, The mechanosensitive nature of TRPV channels. Pflugers Arch, 2005. 451(1): p. 193-203. 24. Dalrymple, A., et al., Mechanical stretch regulates TRPC expression and calcium entry in human myometrial smooth muscle cells. Mol Hum Reprod, 2007. 13(3): p. 171-9. 25. Senatore, S., et al., Response to mechanical stress is mediated by the TRPA channel painless in the Drosophila heart. PLoS Genet, 2010. 6(9): p. e1001088. 26. Xiao, E., et al., Brief reports: TRPM7 Senses mechanical stimulation inducing osteogenesis in human bone marrow mesenchymal stem cells. Stem Cells, 2015. 33(2): p. 615-21. 27. Fu, S., et al., Activation of TRPV4 by mechanical, osmotic or pharmaceutical stimulation is anti-inflammatory blocking IL-1beta mediated articular cartilage matrix destruction. Osteoarthritis Cartilage, 2021. 29(1): p. 89-99. 28. O'Conor, C.J., et al., TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc Natl Acad Sci U S A, 2014. 111(4): p. 1316-21. 29. Luo, X., et al., IL-23/IL-17A/TRPV1 axis produces mechanical pain via macrophage-sensory neuron crosstalk in female mice. Neuron, 2021. 109(17): p. 2691-2706 e5. 30. Zoio, P. and A. Oliva, Skin-on-a-Chip Technology: Microengineering Physiologically Relevant In Vitro Skin Models. Pharmaceutics, 2022. 14(3). 31. Liu, Z. and H. Chen, Application and Challenges of Signal Processing Techniques for Lamb Waves Structural Integrity Evaluation: Part A-Lamb Waves Signals Emitting and Optimization Techniques, in Structural Health Monitoring from Sensing to Processing. 2018. 32. Yan, Q., et al., SurfingAttack: Interactive Hidden Attack on Voice Assistants Using Ultrasonic Guided Waves, in Proceedings 2020 Network and Distributed System Security Symposium. 2020. 33. Kiefer, D.A., et al., Calculating the full leaky Lamb wave spectrum with exact fluid interaction. J Acoust Soc Am, 2019. 145(6): p. 3341. 34. Park, S.-J., H.-W. Kim, and Y.-S. Joo, Leaky Lamb Wave Radiation from a Waveguide Plate with Finite Width. Applied Sciences, 2020. 10(22). 35. Vallée, J.-C., et al., Edge and Notch Detection in a Plate Using Time Reversal Process of Leaky Lamb Waves. Applied Sciences, 2021. 12(1). 36. Nelson, T.R., et al., Ultrasound biosafety considerations for the practicing sonographer and sonologist. J Ultrasound Med, 2009. 28(2): p. 139-50. 37. Sarvazyan, A.P., O.V. Rudenko, and W.L. Nyborg, Biomedical applications of radiation force of ultrasound: historical roots and physical basis. Ultrasound Med Biol, 2010. 36(9): p. 1379-94. 38. Chu, Y.C., et al., Design of an ultrasound chamber for cellular excitation and observation. J Acoust Soc Am, 2019. 145(6): p. EL547. 39. Chu, Y.C., et al., Elevation of Intra-Cellular Calcium in Nucleus Pulposus Cells with Micro-Pipette-Guided Ultrasound. Ultrasound Med Biol, 2021. 47(7): p. 1775-1784. 40. Smirnov, I. and N. Mikhailova, An Analysis of Acoustic Cavitation Thresholds of Water Based on the Incubation Time Criterion Approach. Fluids, 2021. 6(4). 41. Zhang, M., et al., Application progress of ultrasonication in flour product processing: A review. Ultrason Sonochem, 2023. 99: p. 106538. 42. Perner, C. and C.L. Sokol, Protocol for dissection and culture of murine dorsal root ganglia neurons to study neuropeptide release. STAR Protoc, 2021. 2(1): p. 100333. 43. Walder, R.Y., et al., ASIC1 and ASIC3 play different roles in the development of Hyperalgesia after inflammatory muscle injury. J Pain, 2010. 11(3): p. 210-8. 44. Gudipaty, S.A., et al., Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature, 2017. 543(7643): p. 118-121. 45. Kang, S., et al., Simultaneous disruption of mouse ASIC1a, ASIC2 and ASIC3 genes enhances cutaneous mechanosensitivity. PLoS One, 2012. 7(4): p. e35225. 46. Zhai, K., et al., Calcium Entry through TRPV1: A Potential Target for the Regulation of Proliferation and Apoptosis in Cancerous and Healthy Cells. Int J Mol Sci, 2020. 21(11). 47. Wiklund, M., R. Green, and M. Ohlin, Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices. Lab Chip, 2012. 12(14): p. 2438-51. 48. Goaillard, J.M. and E. Marder, Ion Channel Degeneracy, Variability, and Covariation in Neuron and Circuit Resilience. Annu Rev Neurosci, 2021. 44: p. 335-357. 49. Yang, X., et al., Structure deformation and curvature sensing of PIEZO1 in lipid membranes. Nature, 2022. 604(7905): p. 377-383. 50. Burks, S.R., et al., Focused ultrasound activates voltage-gated calcium channels through depolarizing TRPC1 sodium currents in kidney and skeletal muscle. Theranostics, 2019. 9(19): p. 5517-5531. 51. Lewis, A.H., et al., Transduction of Repetitive Mechanical Stimuli by Piezo1 and Piezo2 Ion Channels. Cell Rep, 2017. 19(12): p. 2572-2585. 52. Fitzgerald, E.M., Regulation of voltage-dependent calcium channels in rat sensory neurones involves a Ras-mitogen-activated protein kinase pathway. J Physiol, 2000. 527 Pt 3(Pt 3): p. 433-44. 53. Alkhani, H., et al., Contribution of TRPC3 to Store-Operated Calcium Entry and Inflammatory Transductions in Primary Nociceptors. Molecular Pain, 2014. 10: p. 1744-8069-10-43. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98093 | - |
| dc.description.abstract | 非侵入性神經調控技術迅速發展,其中低強度超音波(Low-Intensity Ultrasound, LIUS)因具備高穿透性、聚焦性佳與空間解析度高等優勢,逐漸成為調控深層腦區活動的重要工具。特別是在無需植入光纖或電極,LIUS可與基因工程結合,發展為超音波遺傳學(Sonogenetics)的新興技術,使得特定細胞能對低強度超音波產生選擇性反應。然而,超音波在細胞層級誘發哪些離子通道及其對應的力學模組,目前仍缺乏系統性的研究。
本研究分為兩大部分。第一部分為超音波微管裝置物理性質的驗證,探討不同參數(如輸入電壓、佔空比)下,產生的聲輻射力與剪應力的變化,並量化其力學模組。第二部分為細胞層級實驗,利用小鼠神經母細胞瘤(N2a)與背根神經節細胞(DRG)進行超音波刺激,利用鈣離子螢光染劑(Fura-2)與Metafluor軟體即時量測細胞內鈣離子濃度變化。進一步透過離子通道抑制劑與基因剔除細胞株,釐清特定離子通道在細胞對超音波刺激反應中的作用。 實驗結果發現,N2a細胞中對剪應力特別敏感,其鈣離子反應依賴三個離子通道:ASIC1a, Piezo1與TRPV1,本研究特別利用基因剔除與細胞轉染技術,驗證出ASIC1a扮演特別重要的角色。DRG透過LoxP-Cre技術標記ASIC1a+,對於相同能量下,聲壓聲流主導的刺激皆無鈣離子反應的顯著變化;本體感覺與痛覺神經中,不論是低還是高能量輸出的力學模組,造成的鈣離子反應也無顯著變化。在本體感覺神經中,反應依賴ASIC3與Piezo2;在痛覺神經中,反應除了依賴Piezo2之外,ASIC1a與ASIC3也扮演重要角色。 本研究建立了一套可量化且具重現性的細胞層級超音波刺激系統,透過物理與生物指標的交叉分析,釐清低強度超音波刺激下,力學模組對不同細胞的活化具決定性影響,以及與特定離子通道(ASIC1a、ASIC3、Piezo2)之間的關聯,深化對神經細胞受超音波調控的認識,並為未來發展精準、非侵入性的神經調控技術提供理論基礎。 | zh_TW |
| dc.description.abstract | Non-invasive neuromodulation has advanced rapidly, with low-intensity ultrasound (LIUS) emerging as a promising tool for deep brain modulation due to its high penetration and precise focus. When combined with genetic engineering, LIUS enables sonogenetics—a technique for selectively activating target cells without invasive implants. However, the specific ion channels and mechanical force modalities involved in ultrasound-induced cellular responses remain poorly understood.
This study is divided into two major parts. The first part involves characterizing the physical properties of the micropipette-guided ultrasound system, focusing on how variations in input voltage and duty cycle influence the resulting acoustic pressure and shear stress, thereby defining the mechanical force modalities. The second part consists of cellular-level experiments in which low-intensity ultrasound was applied to mouse neuroblastoma (N2a) cells and dorsal root ganglion (DRG) neurons. Calcium influx was monitored in real-time using the fluorescent calcium indicator Fura-2 and the Metafluor software. Specific ion channels involved in the ultrasound-induced calcium responses were further identified through the use of pharmacological inhibitors and genetically modified knockout cell lines. Experimental results showed that N2a cells were particularly sensitive to shear stress, with calcium responses primarily mediated by ASIC1a, Piezo1, and TRPV1. Using gene knockout and transfection techniques, ASIC1a was confirmed to play a crucial role. In DRG neurons marked with ASIC1a⁺ via LoxP-Cre recombination, no significant calcium response was observed under either pressure- or shear-dominant conditions with equivalent acoustic energy. Across different DRG subtypes, no significant calcium response was noted under either low or high energy conditions. In proprioceptive neurons, responses were dependent on ASIC3 and Piezo2, while in nociceptive neurons, Piezo2, ASIC1a, and ASIC3 all played important roles. This study successfully established a quantifiable and reproducible cellular-level ultrasound stimulation platform. Through integrated physical and biological analyses, it clarified how mechanical force modalities decisively influence cellular activation under low-intensity ultrasound and identified key mechanosensitive ion channels–ASIC1a, ASIC3, and Piezo2–in this process. These findings deepen our understanding of how neural cells are modulated by ultrasound and provide a theoretical foundation for developing precise, non-invasive neuromodulation technologies in the future. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-24T16:10:00Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-24T16:10:00Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文審定書 ii
致謝 iii 中文摘要 iv Abstract v 目次 vi 圖目次 ix 表目次 xii 第一章 緒論 1 1-1 研究動機 1 1-2 研究背景 1 1-2-1 酸敏感性離子通道 1 1-2-2 機械力敏感性離子通道 4 1-2-3 超音波與聲學 6 1-2-3.1 聲波簡介 6 1-2-3.2 波傳遞模式 7 1-2-3.3 聲阻抗 10 1-2-4 超音波參數 11 1-2-4.1 脈衝重現週期與佔空比 11 1-2-4.2 聲強度 12 1-2-5 超音波物理效應 13 1-2-5.1 基本性質 13 1-2-5.2 聲壓(聲輻射力) 14 1-2-5.3 聲流 15 1-2-5.4 空蝕效應 15 1-2-6 壓電原理 16 1-3 研究目的 17 1-4 研究架構 19 1-5 研究限制 20 第二章 研究材料與方法 21 2-1 實驗設備 21 2-1-1 整體實驗架構 21 2-1-2 超音波微管裝置 22 2-1-3 訊號產生器與放大器 23 2-1-4 溶液置換系統 23 2-1-5 鈣離子影像螢光顯微鏡 24 2-2 實驗細胞與材料 25 2-2-1 小鼠神經母細胞瘤(Neuro-2a neuroblastoma cells, N2a) 25 2-2-2 背根神經節細胞(Dorsal Root Ganglion neuron, DRG) 26 2-2-3 漢克平衡酸鹼緩衝溶液 26 2-2-4 鈣離子螢光染劑(Fura-2/AM) 27 2-3 鈣離子影像分析方法 28 第三章 實驗設計 30 3-1 超音波微管之機械性質探討與量測 30 3-1-1 聲壓量測規畫 31 3-1-2 聲流量測規畫 32 3-2 小鼠神經母細胞瘤之鈣離子反應探討 33 3-2-1 檢驗不同力學模組與條件因素造成之鈣離子變化 34 3-2-2 利用不同試劑檢驗N2a細胞膜上離子通道 37 3-2-3 利用基因編輯檢驗ASIC1a的重要性 40 3-3 小鼠背根神經節細胞之鈣離子反應探討 41 第四章 實驗結果 45 4-1 超音波微管之聲壓量測結果 45 4-2 超音波微管之聲流量測結果 47 4-3 小鼠神經母細胞瘤之鈣離子反應實驗結果 53 4-3-1 N2a細胞受力學模組刺激之反應結果 53 4-3-2 檢驗N2a細胞膜上離子通道實驗結果 60 4-3-3 基因編輯N2a細胞受力學模組刺激之反應結果 62 4-4 小鼠背根神經節(ASIC1a+/+)之鈣離子反應實驗結果 64 4-5 不同亞型DRG之鈣離子反應實驗結果 67 4-5-1 不同亞型DRG基因剔除之鈣離子反應實驗結果 68 4-5-2 不同亞型DRG藥理之鈣離子反應實驗結果 71 第五章 研究結論與討論 72 5-1 結論 72 5-2 討論 73 5-3 未來展望 75 參考資料 76 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 力學模組 | zh_TW |
| dc.subject | 機械敏感性離子通道 | zh_TW |
| dc.subject | 鈣離子反應 | zh_TW |
| dc.subject | 超音波遺傳學 | zh_TW |
| dc.subject | 低強度超音波 | zh_TW |
| dc.subject | Calcium Response | en |
| dc.subject | Low-Intensity Ultrasound | en |
| dc.subject | Sonogenetics | en |
| dc.subject | Mechanical Modality | en |
| dc.subject | Mechanosensitive Ion Channels | en |
| dc.title | 低能量超音波刺激力學模組與神經細胞離子通道之相關性研究 | zh_TW |
| dc.title | Interaction between Low-Intensity Ultrasound Stimulation Pattern and Neuronal Cell Ion Channels | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳志成;葉秩光;陳文翔 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Cheng Chen;Chih-Kuang Yeh;Wen-Shiang Chen | en |
| dc.subject.keyword | 低強度超音波,超音波遺傳學,力學模組,機械敏感性離子通道,鈣離子反應, | zh_TW |
| dc.subject.keyword | Low-Intensity Ultrasound,Sonogenetics,Mechanical Modality,Mechanosensitive Ion Channels,Calcium Response, | en |
| dc.relation.page | 79 | - |
| dc.identifier.doi | 10.6342/NTU202502043 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-21 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| dc.date.embargo-lift | 2025-07-25 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 4.95 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
