請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98089完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉建豪 | zh_TW |
| dc.contributor.advisor | Chien-Hao Liu | en |
| dc.contributor.author | 倪良賢 | zh_TW |
| dc.contributor.author | Liang-Hsien Ni | en |
| dc.date.accessioned | 2025-07-24T16:09:08Z | - |
| dc.date.available | 2025-07-25 | - |
| dc.date.copyright | 2025-07-24 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-23 | - |
| dc.identifier.citation | [1] R. C. Hansen, “Fundamental limitations in antennas,” Proc. IEEE, vol. 69, no. 2, pp. 170-182, 1981.
[2] H. A. Wheeler, “Fundamental limitations of small antennas,” Proc. IRE, vol. 35,no. 12, pp. 1479-1484, 2006. [3] L. J. Chu, “Physical limitations of omni-directional antennas,” J. Appl. Phys., vol. 19, no. 12, pp. 1163-1175, 1948. [4] F. T. Dagefu et al., “A survey of small, low-frequency antennas: Recent designs, practical challenges, and research directions,” IEEE Trans. Antennas Propag., vol. 65, no. 1, pp. 14-26, 2021. [5] H. Wheeler, “Small antennas,” IEEE Trans. Antennas Propag.,vol. 23, no. 4, pp. 462-469, 2003. [6] A. D. Yaghjian and S. R. Best, “Impedance, bandwidth, and Q of antennas,” IEEE Trans. Antennas Propag., vol. 53, no. 4, pp. 1298-1324, 2005. [7] H. Wong et al., “Small antennas in wireless communications,” Proc. IEEE, vol. 100, no. 7, pp. 2109-2121, 2012. [8] S. R. Best and D. L. Hanna, “A performance comparison of fundamental small-antenna designs,” IEEE Trans. Antennas Propag., vol. 52, no. 1, pp. 47-70, 2010. [9] D. M. Pozar, “Microstrip antennas,” Proc. IEEE, vol. 80, no. 1, pp. 79-91, 2002. [10] T. Nan et al., “Acoustically actuated ultra-compact NEMS magnetoelectric antennas,” Nat. Commun., vol. 8, no. 1, p. 296, 2017. [11] C.-J. Lee et al., “Small antennas based on CRLH structures: Concept, design, and applications,” IEEE Trans. Antennas Propag., vol. 53, no. 2, pp. 10-25, 2011. [12] A. K. Shackelford, K.-F. Lee, and K. M. Luk, “Design of small-size wide-bandwidth microstrip-patch antennas,” IEEE Trans. Antennas Propag., vol. 45, no. 1, pp. 75-83, 2003. [13] C. Wang, Y. Cui, and M. Wei, “Mechanically-rotating electret ULF/VLF antenna transmitter,” in Proc. 2019 IEEE Int. Symp. Antennas Propag. USNC-URSI Radio Sci. Meet., 2019, pp. 1383-1384. [14] G. Piazza, P. J. Stephanou, and A. P. Pisano, “Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators,” J. Microelectromech. Syst., vol. 15, no. 6, pp. 1406-1418, 2006. [15] Y. Fu et al., “Research on radiation characteristics of acoustic excited miniaturized antenna based on lithium niobate piezoelectric crystal,” in Proc. 2022 IEEE MTT-S Int. Microw. Workshop Ser. Adv. Mater. Process. RF THz Appl. (IMWS-AMP), pp. 1-3,2022. [16] X. Wang, J. Shi, and T. Jiang, “Study on resonance frequency of miniaturized lithium niobate antenna,” in Proc. 2022 IEEE 10th Asia-Pac. Conf. Antennas Propag. (APCAP), pp. 1-2, 2022. [17] F. E. A. Nogueira et al., “Piezoelectric temperature acoustic sensor of LiNbO₃ crystal fibers operating at radio frequencies, ” J. Cryst. Growth, vol. 643, Art. no. 127799, 2024. [18] A. Emad et al., “Resonant torsional micro-actuators using thin-film lithium niobate,” in Proc. 2019 IEEE 32nd Int. Conf. Micro Electro Mech. Syst. (MEMS), 2019, pp. 282-285. [19] Z. Zhou et al., “Modeling electromagnetic radiation induced from a piezoelectric shear-mode resonator,” IEEE J. Multiscale Multiphys. Comput. Tech., vol. 1, pp. 129-138, 2016. [20] X. Bai et al., “The simulation of resonant mode and effective electromechanical coupling coefficient of lithium niobate crystal with different orientations, ” J. Phys.: Conf. Ser., vol. 1607, Art. no. 012064, 2020. [21] S. Sanna and W. G. Schmidt, “Lithium niobate X-cut, Y-cut, and Z-cut surfaces from ab initio theory,” Phys. Rev. B, vol. 81, no. 21, Art. no. 214116, 2010. [22] R. D. Janardhana and N. Jackson, “A simulated investigation of lithium niobate orientation effects on standing acoustic waves,” Sensors, vol. 23, no. 19, Art. no. 8317, 2023. [23] W. Zhang, Z. Liu, and Z. Wang, “Band structures and transmission spectra of piezoelectric superlattices,” Phys. Rev. B, vol. 71, no. 19, Art. no.195114, 2005. [24] X. Zhang et al., “Phonon-polariton dispersion and the polariton-based photonic band gap in piezoelectric superlattices,” Phys. Rev. B, vol. 69, no. 8, Art. no.085118, 2004. [25] A. Fedotova et al., “Second-harmonic generation in resonant nonlinear metasurfaces based on lithium niobate,” Nano Lett., vol. 20, no. 12, pp. 8608–8614, 2020. [26] M. Manzo et al., “Two-dimensional domain engineering in LiNbO₃ via a hybrid patterning technique,” Opt. Mater. Express, vol. 1, no. 3, pp. 365–371, 2011. [27] S. Cho et al., “23.8-GHz acoustic filter in periodically poled piezoelectric film lithium niobate with 1.52-dB IL and 19.4% FBW,” IEEE Microw. Wireless Technol. Lett., vol. 34, no. 4, pp. 391–394, 2024. [28] F. Yang et al., “Symmetric second-harmonic generation in sub-wavelength periodically poled thin film lithium niobate,” Optica, vol. 11, no. 8, pp. 1050–1055, 2024. [29] 陽明益, “壓電超晶格之極子特性研究,” 博士論文, 國立臺灣大學機械工程學研究所, 2008. [30] Y.-F. Chou and C.-H. Shih, “Electromagnetic radiation of polaritons in piezoelectric superlattices,” Proc. SPIE Behav. Mech. Multifunct. Mater. Compos. 2011, pp. 501–508, 2011. [31] A. E. Hassanieen et al., “Acoustically driven electromagnetic radiating elements,” Sci. Rep., vol. 10, no. 1, Art. no.17006, 2020. [32] J. Cao et al., “Dual-band piezoelectric artificial structure for very low frequency mechanical antenna,” Adv. Compos. Hybrid Mater., vol. 5, no. 1, pp. 410–418, 2022. [33] X. Xiao et al., “Nondestructive determination of film thickness with laser-induced surface acoustic waves,” Chinese Physics B, vol. 27, no. 9, Art. no. 096802, 2018 [34] J. Jun, H. Seo, and K.-Y. Jhang, “Nondestructive evaluation of thermal aging in Al6061 alloy by measuring acoustic nonlinearity of laser-generated surface acoustic waves,” Metals, vol. 10, no. 1, p. 38, 2019. [35] T. J. Lewis, “The piezoelectric effect,” in Proc. Annu. Rep. Conf. Electr. Insul. Dielectr. Phenom. (CEIDP), IEEE, 2005, pp. 717–720. [36] A. Arnau and D. Soares, “Fundamentals of piezoelectricity,” in Piezoelectric Transducers and Applications, Berlin, Heidelberg: Springer, 2009, pp. 1–38. [37] M. C. Sekhar et al., “A review on piezoelectric materials and their applications,” Cryst. Res. Technol, vol. 58, no. 2, Art. no. 2200130, 2023. [38] A. Kokkinopoulos, G. Vokas, and P. Papageorgas, “Energy harvesting implementing embedded piezoelectric generators–The potential for the Attiki Odos traffic grid,” Energy Procedia, vol. 50, pp. 1070–1085, 2014. [39] S. R. Best, “A discussion on power factor, quality factor and efficiency of small antennas,” in Proc. IEEE Antennas Propag. Soc. Int. Symp. (APSURSI), pp. 2269–2272, 2007. [40] W. Li et al., “A survey of antenna miniaturization technology based on the new mechanism of acoustic excitation,” IEEE Trans. Antennas Propag., vol. 71, no. 1, pp. 263–274, 2022. [41] D. J. Griffiths, Introduction to Electrodynamics, Cambridge, U.K.: Cambridge Univ. Press, 2023. [42] J. A. Bickford et al., “Low frequency mechanical antennas: Electrically short transmitters from mechanically-actuated dielectrics,” in Proc. IEEE Int. Symp. Antennas Propag. USNC/URSI Nat. Radio Sci. Meeting (APSURSI), pp. 1475–1476, 2017. [43] J. A. Bickford et al., “Performance of electrically small conventional and mechanical antennas,” IEEE Trans. Antennas Propag., vol. 67, no. 4, pp. 2209–2223, 2019. [44] Z. Yao et al., “Bulk acoustic wave-mediated multiferroic antennas: Architecture and performance bound,” IEEE Trans. Antennas Propag., vol. 63, no. 8, pp. 3335–3344, 2015. [45] X. Cai et al., “Finite element analysis and optimization of acoustically actuated magnetoelectric microantennas,” IEEE Trans. Antennas Propag., vol. 71, no. 6, pp. 4640–4650, 2023. [46] M. Zaeimbashi et al., “Ultra-compact dual-band smart NEMS magnetoelectric antennas for simultaneous wireless energy harvesting and magnetic field sensing,” Nat. Commun., vol. 12, no. 1, p. 3141, 2021. [47] R. D. Mindlin, “Electromagnetic radiation from a vibrating quartz plate,” Int. J. Solids Struct., vol. 9, no. 6, pp. 697–702, 1973. [48] J. P. Domann and G. P. Carman, “Strain powered antennas,” J. Appl. Phys, vol.121, no. 4, Art. no. 044904, 2017. [49] G. Xu and S. Xiao, “Modeling of piezoelectric resonator antennas for VLF electromagnetic radiation,” in Proc. Cross Strait Radio Sci. Wireless Technol. Conf. (CSRSWTC), pp. 1–3, 2020. [50] X. Ma and H. Zheng, “A VLF resonant antenna based on piezoelectric ceramics,” in Proc. 4th IEEE Int. Conf. Electron. Inf. Commun. Technol. (ICEICT), pp. 338–341, 2021. [51] R. Khajehtourian and M. I. Hussein, “Dispersion characteristics of a nonlinear elastic metamaterial,” AIP Adv., vol. 4, no. 12, Art. no. 124308, 2014. [52] H. Al Ba'ba'a, M. Nouh, and T. Singh, “Formation of local resonance band gaps in finite acoustic metamaterials: A closed-form transfer function model,” J. Sound Vib., vol. 410, pp. 429–446, 2017. [53] Y.-J. Xin et al., “Comprehensive analysis of band gap of phononic crystal structure and objective optimization based on genetic algorithm,” Phys. B: Condens. Matter, vol. 667, Art. no. 415157, 2023. [54] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., vol. 58, no. 20, Art. no. 2059, 1987 [55] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., vol. 58, no. 23, Art. no. 2486, 1987. [56] K. Uchino, Ed., Advanced Piezoelectric Materials: Science and Technology, Cambridge, U.K.: Woodhead Publishing, 2017. [57] H. N. Lee et al., “Strong polarization enhancement in asymmetric three-component ferroelectric superlattices,” Nature, vol. 433, no. 7024, pp. 395–399, 2005. [58] R. Venkatasubramanian, “Lattice thermal conductivity reduction and phonon localization-like behavior in superlattice structures,” Phys. Rev. B, vol. 61, no. 4, Art. no. 3091, 2000. [59] R. G. Batchko et al., “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett., vol. 75, no. 12, pp. 1673–1675, 1999. [60] H. Ito, C. Takyu, and H. Inaba, “Fabrication of periodic domain grating in LiNbO₃ by electron beam writing for application of nonlinear optical processes,” Electron. Lett., vol. 27, no. 14, pp. 1221–1222, 1991. [61] Y.-F. Chou and M.-Y. Yang, “Energy conversion in piezoelectric superlattices,” in Behav. Mech. Multifunct. Compos. Mater. 2007, vol. 6526, no. 7, pp. 1–9, 2007. [62] 許展榮, “利用壓電超晶格極子之機械波與電磁波共生特性開發FM天線,” 碩 士論文, 國立臺灣大學機械工程學研究所, 2017. [63] 張哲源, “壓電微型化天線陣列應用於VHF波源判定,” 碩士論文, 國立臺灣 大學機械工程學研究所, 2020. [64] 白立宇, “脈衝雷射激發壓電超晶格受聲學致動的電磁輻射,” 碩士論文, 國立臺灣大學機械工程學研究所, 2021. [65] 孟慶軒, “增強壓電超晶格極子天線之電磁輻射能力,” 碩士論文, 國立臺灣大學機械工程學研究所, 2022. [66] 陳柏云, “機械制動壓電極子天線之電磁輻射效應,” 碩士論文, 國立臺灣大學機械工程學研究所, 2023. [67] 魏珩育, “脈衝雷射激發引致彈性波傳與電磁輻射之有限元素分析,” 碩士論文, 國立臺灣大學機械工程學研究所, 2024. [68] L. R. Johnson, “Green's function for Lamb's problem,” Geophys. J. Int., vol. 37, no. 1, pp. 99–131, 1974. [69] J. Zhou and H. Zhang, “Exact Rayleigh-wave solution from a point source in homogeneous elastic half-space,” Bull. Seismol. Soc. Am., vol. 110, no. 2, pp. 783–792, 2020. [70] P. Kumar, A. Chattopadhyay, and A. K. Singh, “Shear wave propagation due to a point source,” Procedia Eng., vol. 173, pp. 1544–1551, 2017. [71] J.-H. Woo et al., “Finite element simulation of elastic wave propagation in a concrete plate–modeling and damage detection,” J. Ocean Eng. Technol., vol. 21, no. 6, pp. 26–33, 2007. [72] X. Li et al., “Numerical study on evaluating the concrete-bedrock interface condition for hydraulic tunnel linings using the SASW method,” Appl. Sci., vol. 8, no. 12, Art. no. 2428, 2018. [73] H. Fan et al., “Forward modeling of P- and S-waves response of fractures intersected with horizontal wells in tight reservoirs,” Front. Earth Sci., vol. 11, Art. no. 1149171, 2023. [74] K.-Y. Chen, “Finite‐difference simulation of elastic wave with separation in pure P‐ and S‐modes,” J. Comput. Methods Phys., vol. 2014, no. 1, Art. no. 108713, 2014. [75] B. A. Auld, Acoustic fields and waves in solids. Wiley, 1973. [76] F. Shakeriaski et al., “Recent advances in generalized thermoelasticity theory and the modified models: A review,” J. Comput. Des. Eng., vol. 8, no. 1, pp. 15–35, 2021. [77] S. Choi and K.-Y. Jhang, “Internal defect detection using laser-generated longitudinal waves in ablation regime,” J. Mech. Sci. Technol., vol. 32, pp. 4191–4200, 2018. [78] T. Požar et al., “Isolated detection of elastic waves driven by the momentum of light,” Nat. Commun., vol. 9, no. 1, Art. no. 3340, 2018. [79] R. J. LeVeque, “Finite difference methods for differential equations,” Draft Version Use AMath, vol. 585, no. 6, p. 112, 1998. [80] V. Cerveny and R. Ravindra, “Theory of seismic head waves,” Am. J. Phys., vol. 41, no. 5, pp. 755–757, 1973. [81] S. W. Ellingson, Electromagnetics, Vol. 2, VT Publishing, Blacksburg, VA, USA, 2020. [82] Y. Kalkal and V. Kumar, “Understanding energy propagation during reflection of an evanescent electromagnetic wave,” Am. J. Phys., vol. 89, no. 9, pp. 877–884, 2021. [83] R. F. Milsom, N. H. C. Reilly, and M. Redwood, “Analysis of generation and detection of surface and bulk acoustic waves by interdigital transducers,” IEEE Trans. Sonics Ultrason., vol. 24, no. 3, pp. 147–166, 1977. [84] M. Deng, “Simulation of generation of bulk acoustic waves by interdigital transducers,” in Proc. IEEE Ultrason. Symp., pp. 855–858, 2001 [85] X. Pang and Y.-K. Yong, “Simulation of nonlinear resonance, amplitude–frequency, and harmonic generation effects in SAW and BAW devices,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 67, no. 2, pp. 422–430, 2019. [86] E. Courjon et al., “Lamb wave transducers built on periodically poled Z-cut LiNbO₃ wafers,” J. Appl. Phys., vol. 102, no. 11, Art. no. 114103, 2007. [87] 張哲源, “壓電微型化天線陣列應用於VHF波源判定,” 碩士論文, 國立臺灣大學機械工程學研究所, 2020. [88] C. K. Chui and Q. Jiang, “Wavelet analysis,” in Appl. Math.: Data Compression, Spectral Methods, Fourier Analysis, Wavelets, and Appl., Paris, France: Atlantis Press, pp. 499–546, 2013 [89] G. Leonardi, “Reduction of train-induced vibrations by using barriers,” Res. J. Appl. Sci. Eng. Technol., vol. 7, pp. 3623–3632, 2014. [90] L. Zhang et al., “Recent progress on structure manipulation of poly (vinylidene fluoride)-based ferroelectric polymers for enhanced piezoelectricity and applications, ” Adv. Funct. Mater., vol. 33, no. 38, Art.no. 2301302, 2023. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98089 | - |
| dc.description.abstract | 壓電晶體本身具有壓電效應,可以將機械能與電磁能相互轉換,以及兩者互相耦合產生的極子波,而不同壓電晶體具有不同材料參數,以及在不同切面下也有不同的材料參數,機械能與電磁能兩者耦合強度也與其材料有關,壓電超晶格為具有週期性結構的壓電材料,其為不同極化方向壓電晶體週期性排列,相較於單一壓電晶體,具有較強的耦合強度,透過外部激發,電磁式或機械式激發,將產生之機械能與電磁能兩者耦合進而產生電磁輻射。
然而在本實驗室學長論文中,使用之材料參數以及壓電超晶格理論推導使用座標軸與實際使用晶片座標軸不相同,因此在參考時會有所影響,因此在本研究中重新定義座標軸。而在激發方式中,多數研究透過電磁式激發壓電超晶格,因機械式激發多數為接觸式,接觸時會影響其結構內部機械場,而在近期研究中,有使用非接觸性脈衝雷射來進行機械式激發,可以在不進行直接接觸情況下激發壓電超晶格。 本文的研究目的主要會分為兩個部份,第一部分為重新定義Z-cut鈮酸鋰的座標軸並重新計算理論解,接著帶入週期性邊界條件,計算壓電超晶格的頻散曲線,並觀察聲子與光子兩者耦合產生的極子在不同耦合情況下,機械能與電磁能的組成比例,並透過等效介電係數與頻率關係圖,觀察在共振頻率附近,機械能與電磁能耦合效應;第二部份則是著重在壓電晶體中聲子受到點波源激發後,觀察其聲子波傳現象,使用理論解分離彈性波中所產生的縱波與橫波,並透過商用有限元素模擬軟體COMSOL進行波傳模擬,使用軟體中彈性波模組以及固體力學模組與靜電模組兩者耦合的壓電模組,將計算出理論解與模擬結果兩者進行相互驗證,並使用模擬結果來證明在鈮酸鋰中,透過電性激發與機械式激發皆可以激發出電磁輻射。 | zh_TW |
| dc.description.abstract | Piezoelectric crystals inherently exhibit the piezoelectric effect, enabling the interconversion between mechanical energy and electromagnetic energy. These two forms of energy are coupled to generate polaritonic waves. Different piezoelectric crystals possess distinct material parameters, which also vary with the crystallographic cut. The coupling strength between mechanical and electromagnetic energy is material-dependent. A piezoelectric superlattice is a piezoelectric material with a periodic structure, consisting of periodically arranged piezoelectric crystals with alternating polarization directions. Compared to single piezoelectric crystals, piezoelectric superlattices exhibit stronger coupling. When externally excited—either electrically or mechanically—the generated mechanical and electromagnetic energies can couple and radiate as electromagnetic waves.
However, in previous studies, including the thesis by a senior colleague, the material parameters and theoretical derivation of the piezoelectric superlattice were based on a coordinate system different from that of the actual fabricated chip. This discrepancy affects the applicability of the reference results. Therefore, this study redefines the coordinate system based on the actual Z-cut lithium niobate substrate. In terms of excitation methods, most studies have employed electrical excitation of the piezoelectric superlattice. Mechanical excitation methods are typically contact-based and may disturb the internal mechanical field of the structure. Recent research, however, has demonstrated the feasibility of using non-contact pulsed lasers for mechanical excitation, enabling the activation of piezoelectric superlattices without direct physical contact. This study is divided into two main parts. The first part redefines the coordinate system of Z-cut lithium niobate and recalculates the theoretical solution. Periodic boundary conditions are then applied to compute the dispersion relation of the piezoelectric superlattice. The coupling between phonons and photons is analyzed to determine the energy composition ratio of mechanical and electromagnetic energy under various coupling conditions. The effective permittivity as a function of frequency is also examined to study the coupling behavior near the resonance frequency. The second part focuses on the wave propagation of phonons in piezoelectric crystals excited by a point source. Theoretical solutions are used to separate the generated elastic waves into longitudinal and transverse components. These results are verified using the commercial finite element software COMSOL Multiphysics. The simulation is carried out using the coupled piezoelectric module, which integrates the Elastic Waves Module, Solid Mechanics Module, and Electrostatics Module. The theoretical and simulation results are compared to validate their consistency. The simulation further confirms that both electrical and mechanical excitations in lithium niobate can generate electromagnetic radiation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-24T16:09:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-24T16:09:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract iv 目次 vi 圖次 viii 表次 xiv 符號表 xv 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 5 1.2.1 壓電晶體 5 1.2.2 壓電超晶格 11 1.2.3 機械式激發 21 1.2.4 點波源與指叉電極激發彈性波 24 第二章 壓電超晶格理論 28 2.1 壓電超晶格簡介 29 2.2 壓電超晶格統御方程式 30 2.2.1 為極化方向 37 2.2.2 頻散曲線 39 2.2.3 頻散曲線能量分布 44 2.2.4 等效介電係數 53 第三章 點波源激發理論解 63 3.1 有限差分法分離彈性波 63 3.1.1 波動方程式 64 3.1.2 有限差分法 67 3.2 結果與討論 70 第四章 有限元素模擬 81 4.1 點波源有限元素模擬 81 4.2 鈮酸鋰點波源激發 87 4.3 鈮酸鋰指叉電極激發 90 第五章 結論與未來展望 96 5.1 結論 96 5.2 未來展望 97 參考文獻 98 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 點波源 | zh_TW |
| dc.subject | 波傳方程式 | zh_TW |
| dc.subject | 有限差分法 | zh_TW |
| dc.subject | 壓電晶體 | zh_TW |
| dc.subject | 有限元素模擬 | zh_TW |
| dc.subject | 壓電超晶格 | zh_TW |
| dc.subject | Piezoelectric crystal | en |
| dc.subject | Piezoelectric superlattice | en |
| dc.subject | Finite element simulation | en |
| dc.subject | Point source | en |
| dc.subject | Finite difference method | en |
| dc.subject | Wave propagation equation | en |
| dc.title | Z-cut鈮酸鋰壓電極子波傳解析解與機械式激發電磁輻射分析 | zh_TW |
| dc.title | Analytical solution of wave propagation in Z-cut Lithium Niobate and mechanical excitation-induced electromagnetic radiation analysis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 莊嘉揚;周元昉 | zh_TW |
| dc.contributor.oralexamcommittee | Jia-Yang Juang;Yuan-Fang Chou | en |
| dc.subject.keyword | 壓電晶體,壓電超晶格,有限元素模擬,點波源,有限差分法,波傳方程式, | zh_TW |
| dc.subject.keyword | Piezoelectric crystal,Piezoelectric superlattice,Finite element simulation,Point source,Finite difference method,Wave propagation equation, | en |
| dc.relation.page | 106 | - |
| dc.identifier.doi | 10.6342/NTU202502268 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-24 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2025-07-25 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 18.16 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
