請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98083完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳麒文 | zh_TW |
| dc.contributor.advisor | Chi-Wen Chen | en |
| dc.contributor.author | 王秉宏 | zh_TW |
| dc.contributor.author | Ping-Hung Wang | en |
| dc.date.accessioned | 2025-07-24T16:07:47Z | - |
| dc.date.available | 2025-07-25 | - |
| dc.date.copyright | 2025-07-24 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-18 | - |
| dc.identifier.citation | Angeli, M. G. (2017). Observed and predicted critical hydraulic conditions in natural inhomogeneous slopes. In Geomechanics and water engineering in environmental management (pp. 103-167). Routledge.
Ahmadi-Adli, M., Huvaj, N., & Toker, N. K. (2017). Rainfall-triggered landslides in an unsaturated soil: a laboratory flume study. Environmental Earth Sciences, 76, 1-14. Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1-2), 15-31. Baum, R. L., Savage, W. Z., & Godt, J. W. (2008). TRIGRS: a Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, version 2.0 (p. 75). Reston, VA, USA: US Geological Survey. Böhner, J., Selige, T., 2006. Spatial prediction of soil attributes using terrain analysis and climate regionalisation. SAGA–Analyses and Modelling Applications. Göttinger Geographische Abhandlungen, pp. 13–28 Brunetti, M. T., Peruccacci, S., Rossi, M., Luciani, S., Valigi, D., & Guzzetti, F. (2010). Rainfall thresholds for the possible occurrence of landslides in Italy. Natural Hazards and Earth System Sciences, 10(3), 447-458. Caine, N. (1980). The rainfall intensity-duration control of shallow landslides and debris flows. Geografiska annaler: series A, physical geography, 62(1-2), 23-27. Cannon, S. H., Gartner, J. E., Wilson, R. C., Bowers, J. C., & Laber, J. L. (2008). Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California. Geomorphology, 96(3-4), 250-269. Chang, C., & Wang, G. (2022). Creep of clayey soil induced by elevated pore-water pressure: Implication for forecasting the time of failure of rainfall-triggered landslides. Engineering Geology, 296, 106461. Chang, J. M., Chen, H., Jou, B. J. D., Tsou, N. C., & Lin, G. W. (2017). Characteristics of rainfall intensity, duration, and kinetic energy for landslide triggering in Taiwan. Engineering Geology, 231, 81-87. Chen, C. W., Saito, H., & Oguchi, T. (2015). Rainfall intensity–duration conditions for mass movements in Taiwan. Progress in Earth and Planetary Science, 2, 1-13. Chiang, S. H., & Chang, K. T. (2011). The potential impact of climate change on typhoon-triggered landslides in Taiwan, 2010–2099. Geomorphology, 133(3-4), 143-151. Chien-Yuan, C., Tien-Chien, C., Fan-Chieh, Y., Wen-Hui, Y., & Chun-Chieh, T. (2005). Rainfall duration and debris-flow initiated studies for real-time monitoring. Environmental Geology, 47, 715-724. Cline, M. G. (1949). Basic principles of soil classification. Soil Science, 67(2), 81-92. Cogan, J., & Gratchev, I. (2019). A study on the effect of rainfall and slope characteristics on landslide initiation by means of flume tests. Landslides, 16(12), 2369-2379. Cohen, D., Lehmann, P., & Or, D. (2009). Fiber bundle model for multiscale modeling of hydromechanical triggering of shallow landslides. Water resources research, 45(10). Ditzler, C., Scheffe, K., Monger, H.C., 2017. Soil survey manual. United States Department of Agriculture, Natural Resources Conservation Service Federico, A., Popescu, M., Elia, G., Fidelibus, C., Internò, G., & Murianni, A. (2012). Prediction of time to slope failure: a general framework. Environmental Earth Sciences, 66, 245-256. Fernández, C. I., Del Castillo, T. F., Hamdouni, R. E., & Montero, J. C. (1999). Verification of landslide susceptibility mapping: a case study. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 24(6), 537-544. Formetta, G., Rago, V., Capparelli, G., Rigon, R., Muto, F., & Versace, P. (2014). Integrated physically based system for modeling landslide susceptibility. Procedia Earth and Planetary Science, 9, 74-82. Fukuzono, T. (1985). A new method for predicting the failure time of slope. In Proceedings, 4th Int'l. Conference and Field Workshop on Landslides (pp. 145-150). Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2007). Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorology and atmospheric physics, 98, 239-267. Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2008). The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides, 5, 3-17. Harp, E. L., Wells, W. G., & Sarmiento, J. G. (1990). Pore pressure response during failure in soils. Geological Society of America Bulletin, 102(4), 428-438. He, J., Qiu, H., Qu, F., Hu, S., Yang, D., Shen, Y., ... & Cao, M. (2021). Prediction of spatiotemporal stability and rainfall threshold of shallow landslides using the TRIGRS and Scoops3D models. Catena, 197, 104999. Highland, L. M., & Bobrowsky, P. (2008). The landslide handbook-A guide to understanding landslides (No. 1325). US Geological Survey. Hong, Y., Hiura, H., Shino, K., Sassa, K., Suemine, A., Fukuoka, H., & Wang, G. (2005). The influence of intense rainfall on the activity of large-scale crystalline schist landslides in Shikoku Island, Japan. Landslides, 2, 97-105. Hu, W., Scaringi, G., Xu, Q., Pei, Z., Van Asch, T. W., & Hicher, P. Y. (2017). Sensitivity of the initiation and runout of flowslides in loose granular deposits to the content of small particles: An insight from flume tests. Engineering Geology, 231, 34-44. Intrieri, E., Carlà, T., & Gigli, G. (2019). Forecasting the time of failure of landslides at slope-scale: A literature review. Earth-science reviews, 193, 333-349. Istiyanti, M.L., Goto, S., Kimura, T. et al. Sliding layer estimation of shallow landslides on Aso volcanic mountains in Japan based on tephra layer-physical properties of soil. Geoenviron Disasters 7, 28 (2020). Iverson, R. M. (1997). The physics of debris flows. Reviews of geophysics, 35(3), 245-296. Iverson, R. M., Reid, M. E., Iverson, N. R., LaHusen, R. G., Logan, M., Mann, J. E., & Brien, D. L. (2000). Acute sensitivity of landslide rates to initial soil porosity. Science, 290(5491), 513-516. Jibson, R. W. (1989). Debris flows in southern Puerto Rico. Geological Society of America Special Papers, 236, 29-56. Larsen, M. C., & Simon, A. (1993). A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico. Geografiska Annaler: Series A, Physical Geography, 75(1-2), 13-23. Liao, Z., Hong, Y., Kirschbaum, D., Adler, R. F., Gourley, J. J., & Wooten, R. (2011). Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)’s predictive skill for hurricane-triggered landslides: a case study in Macon County, North Carolina. Natural hazards, 58, 325-339. Matsuura, S., Asano, S., & Okamoto, T. (2008). Relationship between rain and/or meltwater, pore-water pressure and displacement of a reactivated landslide. Engineering Geology, 101(1-2), 49-59. Moriwaki, H., Inokuchi, T., Hattanji, T., Sassa, K., Ochiai, H., & Wang, G. (2004). Failure processes in a full-scale landslide experiment using a rainfall simulator. Landslides, 1, 277-288. Moriwaki, H., & Sato, T. (1998). Motion and fluidization of a Hariharagawa landslide, south Japan. In Environmental Forest Science: Proceedings of the IUFRO Division 8 Conference Environmental Forest Science, held 19–23 October 1998, Kyoto University, Japan (pp. 569-574). Springer Netherlands. Ochiai, H., Okada, Y., Furuya, G., Okura, Y., Matsui, T., Sammori, T., ... & Sassa, K. (2004). A fluidized landslide on a natural slope by artificial rainfall. Landslides, 1, 211-219. Ochiai, H., Sammori, T., & Okada, Y. (2007). Landslide experiments on artificial and natural slopes. Progress in landslide science, 209-226. Okura, Y., Kitahara, H., Ochiai, H., Sammori, T., & Kawanami, A. (2002). Landslide fluidization process by flume experiments. Engineering Geology, 66(1-2), 65-78. Park, D. W., Nikhil, N. V., & Lee, S. R. (2013). Landslide and debris flow susceptibility zonation using TRIGRS for the 2011 Seoul landslide event. Natural Hazards and Earth System Sciences, 13(11), 2833-2849. Rahimi M. and Faza M., Characterization of shallow landslide through rainfall model, Tissue Antigens. (2013) 57, no. 1, 80–92. Rickli, C., & Graf, F. (2009). Effects of forests on shallow landslides–case studies in Switzerland. Forest Snow and Landscape Research, 82(1), 33-44. Saito, H., Nakayama, D., & Matsuyama, H. (2010). Relationship between the initiation of a shallow landslide and rainfall intensity—duration thresholds in Japan. Geomorphology, 118(1-2), 167-175. Saito, M. (1961). Failure of soil due to creep. In Proc. 5th Int. Conf. on SMFE (pp. 315-318). Sarkar, S., & Kanungo, D. P. (2004). An integrated approach for landslide susceptibility mapping using remote sensing and GIS. Photogrammetric Engineering & Remote Sensing, 70(5), 617-625. Sassa, K. (1998). Mechanism of landslide-triggered debris flow. Environmental Forest Science, 471-490. Take, W. A., Bolton, M. D., Wong, P. C. P., & Yeung, F. J. (2004). Evaluation of landslide triggering mechanisms in model fill slopes. Landslides, 1, 173-184. Tang, Q., Gratchev, I., & Ravindran, S. (2023). Effect of rainfall intensity on landslide initiation: flume tests and numerical analysis. Geotechnics, 3(1), 104-115. Varnes, D. J. (1978). Slope movement types and processes. Special report, 176, 11-33. Vassallo, R., Grimaldi, G. M., & Di Maio, C. (2015). Pore water pressures induced by historical rain series in a clayey landslide: 3D modeling. Landslides, 12, 731-744. Wang, G., & Sassa, K. (2001). Factors affecting rainfall-induced flowslides in laboratory flume tests. Geotechnique, 51(7), 587-599. Wang, G., & Sassa, K. (2003). Pore-pressure generation and movement of rainfall-induced landslides: effects of grain size and fine-particle content. Engineering Geology, 69(1-2), 109-125. Yagi, N., Yatabe, R., & Enoki, M. (1985). Laboratory and field experiments on prediction method of Occuring time of slope failure due to rainfall. Landslides, 22(2), 1-7_1. Yoon, E. J., Thorne, J. H., Park, C., Lee, D. K., Kim, K. S., Yoon, H., ... & Song, Y. I. (2019). Modeling spatial climate change landuse adaptation with multi-objective genetic algorithms to improve resilience for rice yield and species richness and to mitigate disaster risk. Environmental Research Letters, 14(2), 024001. Zhuang, J., Peng, J., Wang, G., Iqbal, J., Wang, Y., Li, W., ... & Zhu, X. (2017). Prediction of rainfall‐induced shallow landslides in the Loess Plateau, Yan'an, China, using the TRIGRS model. Earth Surface Processes and Landforms, 42(6), 915-927. 王俊明、李心平、李鎮鍵、臧運忠、謝正倫 (2010)。莫拉克颱風災害綜覽。中華防災學刊,2(1),27-34。 王景平、林銘郎、鄭富書、游明芳、周坤賢 (2005)。松鶴地區土石流災害歷史之探討。中華水土保持學報,36(2),203-213。 李欣輯、劉格非 (2010)。土石流間接災損評估研究 - 以台中縣松鶴一溪為例。中國土木水利工程學刊,22(2),159-166。 李德河 (1996)。賀伯颱風引致阿里山公路低海拔路段 邊坡變動之觀測調查。地工技術,57,81-91。 李錫堤 (2011)。草嶺大崩山之地質與地形演變。中華水土保持學報,42(4),325-335。 李錫堤、董家鈞、林銘郎 (2009)。小林村災變之地質背景探討。地工技術,122,87-94。 何佳芷 (2024)。臺灣西部不同環境條件之集水區誘發崩塌的降雨條件分析。國立臺灣大學地質科學研究所。碩士論文。 林冠瑋 (2010)。台灣地區之河流輸砂量與岩性、逕流量及地震之相關性。國立臺灣大學地質科學研究所。博士論文 周伯原、王咏潔 (2020)。降雨逕流與坡度對表土沖蝕和紋溝發展之影響。中華水土保持學報,50(4),2595-2609。 胡原銘 (2006)。曾文水庫集水區崩塌特性之探討。長榮大學土地管理與開發研究所。碩士論文。 高嘉隆 (2003)。台14省道31~75K沿線邊坡山崩潛感分析。朝陽科技大學營建工程系。碩士論文。 陳宏宇 (1998)。山崩。地球科學園地,第 6 期,第12-21 頁。 楊明德、蘇東青、楊曄芬 (2005)。草嶺地區土石流潛勢調查與評估。中華水土保持學報,36(3),301-312。 陳聯光、游繁結、劉格非、林聖琪、柯明淳 (2009)。莫拉克重大崩塌災害歷程探討。中華水土保持學報,40(4),329-337。 陳樹群、陳少謙、吳俊鋐 (2012)。南投縣神木集水區崩塌特性分析。中華水土保持學報,43(3),214-226。 張賢明 (1991)。不同坡度及雨量強度下逕流及沖蝕之研究。國立中興大學水土保持研究所。碩士論文。 詹勳全、張嘉琪、陳樹群、魏郁軒、王昭堡、李桃生 (2015)。台灣山區淺層崩塌地特性調查與分析。中華水土保持學報,46(1),19-28。 許祐誠 (2024)。以機器學習方法評估歷史崩塌和空間關係對崩塌發生的影響。國立臺灣大學地質科學研究所。碩士論文。 楊樹榮、林忠志、鄭錦桐、潘國樑、蔡如君、李正利 (2011)。臺灣常用山崩分類系統。第十四屆中華民國大地工程研討會,桃園市,臺灣 壽克堅、蘇苗彬、王建峰 (2001)。九份二山崩塌機制與殘坡問題探討。地工技術,(87),25-30。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98083 | - |
| dc.description.abstract | 臺灣受到活躍的板塊作用影響,地質狀態脆弱,且位處季風氣候帶,使得坡地崩塌之災害事件頻傳。隨著氣候變遷所導致之極端氣候日漸加劇,崩塌的發生頻率以及規模都將隨之增加,因此相關的防災、減災及預警之研究顯得更加重要。在過往的研究中,對於坡地崩塌的預警,主要關注在降水與崩塌間的相關性。然而,大多數的研究都為仰賴降水的被動研究,存在變因控制上的問題。另外,受限於監測設備的架設成本,部分研究無法獲得大量數據。若是在實驗室中進行模擬實驗,則可以通過控制坡度、土壤性質、降水強度等變因來主動獲取研究數據,更能夠釐清崩塌發生的機制。
本研究在實驗室中架設了流槽坡地模型,將坡度設定為25°、35°、40°、45°,降水強度設定為50 mm/h、75 mm/h、100 mm/h,試圖以實驗模擬的方式觀察崩塌的發生及相關機制。在模擬過程中,以深度攝影機觀察坡體表面的變化,並且透過埋藏於距土壤表面10–30公分深的振弦式水壓計,測量土壤層中孔隙水壓的變化。最後,藉由降水的控制以及不同坡度的模擬,建立崩塌發生的降水強度降水延時之閾值,以期建立一針對淺層土壤崩塌的預警模型。 在本研究實驗當中出現的崩塌可分為面狀崩塌與槽狀崩塌兩種型態;前者出現於低坡度與低降雨強度條件,而較陡坡度與高強度降雨則更容易形成表面逕流,進而導致槽狀崩塌的發生。在孔隙水壓的觀測結果中發現,在崩塌發生前常伴隨土壤孔隙水壓於10分鐘內上升至少0.5 kPa之現象,顯示此現象具作為崩塌預警前兆的潛力。此外,崩塌區土壤含水量普遍高於其液性限度,顯示達到液性限度為誘發崩塌的重要條件。 降雨強度–延時(I–D)閾值分析指出,坡度越緩或土壤相對密度越高,則需更高強度或更長時間的降雨才能引發崩塌。與統計實測閾值相比,本研究所推導之實驗閾值普遍偏高,這可能與土壤性質、尺度效應或初始含水量等因素相關。 綜上,本研究認為,土壤局部含水不均、孔隙水壓的快速變化與表面逕流的產生,皆為造成坡地發生破壞以及決定崩塌方式的重要機制。此外,以流槽實驗得到之降雨閾值可以和實際統計結果互相參照,惟須注意其可能具有對降雨閾值高估之可能性。這些結果預期將可對淺層崩塌預警系統之建立提供關鍵參考依據。 | zh_TW |
| dc.description.abstract | Taiwan’s geotectonic setting, characterized by active plate interactions and compounded by its location within the East Asian monsoon zone, results in inherently fragile geological conditions. This makes the island particularly susceptible to frequent landslides. As extreme weather events become more severe under ongoing climate change, both the frequency and magnitude of landslides are expected to increase. Consequently, research on disaster prevention, mitigation, and early warning has become increasingly important. Previous studies on landslide early warning have primarily explored the relationship between precipitation and landslide occurrence. However, most of these studies adopt a passive observational approach focused on rainfall data, which limits the ability to clearly understand how different factors interact. Moreover, financial and logistical constraints often hinder the acquisition of sufficient field data. Laboratory-based physical modeling, allows researchers to control variables, such as slope angle, soil properties, and rainfall intensity, and thereby facilitate a mechanistic understanding of landslides.
This study employed a laboratory flume model to simulate slope failure under varying conditions. Slope gradients were set at 25°, 35°, 40°, and 45°, while rainfall intensities of 50 mm/h, 75 mm/h, and 100 mm/h were imposed to examine their respective impacts on slope instability. A depth camera was used to monitor real-time deformation on the slope surface, and vibrating-wire piezometers, installed at depths ranging from 10 to 30 cm below the soil surface, were used to record pore water pressure dynamics during rainfall infiltration. The landslides observed during the experiments could be categorized into two types: planar failures and channelized failures. Planar failures predominantly occurred under conditions of relatively low slope angles and low rainfall intensities. In contrast, steeper slopes combined with higher rainfall intensities were more likely to induce surface runoff, which subsequently led to the formation of channelized failures. A recurring phenomenon was observed where a rapid increase of at least 0.5 kPa in soil pore water pressure within 10 minutes frequently preceded the occurrence of slope failure, suggesting its potential use as a precursor for early warning. Additionally, soil moisture content in failure zones generally exceeded the liquid limit, indicating that reaching this threshold is an important condition for triggering landslides. The intensity and duration (I–D) threshold analysis indicated that gentler slopes or higher relative density of soil require greater rainfall intensity or longer durations to trigger landslides. Compared to thresholds derived from actual landslide events, the I–D thresholds determined in this study were generally higher, likely due to variations in soil properties, scale effects, or initial moisture conditions. This study identifies localized moisture heterogeneity, rapid changes in pore water pressure, and the generation of surface runoff as key mechanisms determining the type of landslides. While flume-derived rainfall thresholds can complement field-based statistical results, their potential tendency to overestimate should be considered. These findings offer valuable insights for enhancing the accuracy and reliability of early warnings for shallow landslides. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-24T16:07:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-24T16:07:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iv 目次 vii 圖次 ix 表次 xii 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 崩塌的定義與分類 3 2.2 崩塌災害與衝擊 5 2.3 崩塌的研究方法與模型 6 2.4 降雨閾值與崩塌防、減災 7 2.5 流槽模擬 8 第三章 實驗材料與方法 10 3.1 實驗裝置 10 3.1.1 流槽槽體 10 3.1.2 實驗條件設置 12 3.1.3 土壤堆置 13 3.1.4 降雨模擬與實驗排水 13 3.1.5 孔隙水壓計 14 3.1.6 深度攝影機 15 3.2 研究材料 17 3.3 實驗方法 17 第四章 實驗結果 19 4.1 土壤性質 19 4.2 模擬結果 20 4.2.1 坡度:25° 20 4.2.1.1 降雨強度:50 mm/h 20 4.2.1.2 降雨強度:75 mm/h 25 4.2.1.3 降雨強度:100 mm/h 30 4.2.2 坡度:35° 35 4.2.2.1 降雨強度:50 mm/h 35 4.2.2.2 降雨強度:75 mm/h 40 4.2.2.3 降雨強度:100 mm/h 45 4.2.3 坡度:40° 50 4.2.3.1 降雨強度:50 mm/h 50 4.2.3.2 降雨強度:75 mm/h 55 4.2.3.3 降雨強度:100 mm/h 60 4.2.4 坡度:45° 65 4.2.4.1 降雨強度:50 mm/h 65 4.2.4.2 降雨強度:75 mm/h 70 4.2.4.3 降雨強度:100 mm/h 75 4.3 土壤含水量 80 第五章 討論 81 5.1 崩塌型態分類 81 5.2 土壤量體變化 82 5.3 土壤含水量 85 5.4 孔隙水壓 86 5.5 降雨閾值 91 5.6 流槽模擬侷限性 95 第六章 結論與建議 96 6.1 結論 96 6.2 建議 97 參考文獻 98 附錄 106 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 崩塌機制 | zh_TW |
| dc.subject | 流槽實驗 | zh_TW |
| dc.subject | 崩塌預警 | zh_TW |
| dc.subject | 降雨閾值 | zh_TW |
| dc.subject | 孔隙水壓 | zh_TW |
| dc.subject | pore water pressure | en |
| dc.subject | rainfall thresholds | en |
| dc.subject | landslide early warning | en |
| dc.subject | landslide mechanisms | en |
| dc.subject | flume test | en |
| dc.title | 運用流槽實驗探討坡度與降水對淺層崩塌機制之影響 | zh_TW |
| dc.title | Investigating the mechanisms of shallow landslides influenced by slope angle and precipitation using flume experiments | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鐘志忠;林冠瑋 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Chung Chung;Guan-Wei Lin | en |
| dc.subject.keyword | 流槽實驗,崩塌機制,孔隙水壓,降雨閾值,崩塌預警, | zh_TW |
| dc.subject.keyword | flume test,landslide mechanisms,pore water pressure,rainfall thresholds,landslide early warning, | en |
| dc.relation.page | 110 | - |
| dc.identifier.doi | 10.6342/NTU202501990 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-21 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 地質科學系 | - |
| dc.date.embargo-lift | 2025-07-25 | - |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 9.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
