Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 會計學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98075
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王泰昌zh_TW
dc.contributor.advisorTaychang Wangen
dc.contributor.author官歆芸zh_TW
dc.contributor.authorHsin-Yun Kuanen
dc.date.accessioned2025-07-24T16:05:48Z-
dc.date.available2025-07-25-
dc.date.copyright2025-07-24-
dc.date.issued2025-
dc.date.submitted2025-07-16-
dc.identifier.citationAggarwal, C. C. (2018). Neural Networks and Deep Learning. In: Springer.
Ball, R., & Brown, P. (1968). An Empirical Evaluation of Accounting. Journal of Accounting Research, 6(2), 159–178.
Bao, D. H., Lewis, M. T., Lin, W. T., & Manegold, J. G. (1983). Applications of time‐series analysis in accounting: A review. Journal of Forecasting, 2(4), 405-423.
Barker, R., Penman, S., Linsmeier, T. J., & Cooper, S. (2020). Moving the Conceptual Framework Forward: Accounting for Uncertainty. Contemporary Accounting Research, 37(1), 322–357.
Barth, M. E., Li, K., & McClure, C. G. (2023). Evolution in value relevance of accounting information. The Accounting Review, 98(1), 1–28.
Bernard, V. L., & Thomas, J. K. (1989). Post-earnings-announcement drift: delayed price response or risk premium? Journal of Accounting Research, 27, 1-36.
Bilinski, P., & Eames, M. (2019). Analyst revenue forecast reporting and the quality of revenues and expenses. Journal of Business Finance & Accounting, 46(1-2), 136-158.
Bolotov, I. (2022). XTARIMAU: Stata module to find the best [S] ARIMA [X] models in heterogeneous panels with the help of arimaauto.
Bradshaw, M. T. (2011). Analysts' forecasts: what do we know after decades of work? Available at SSRN 1880339.
Breiman, L. (2001). Random forests. Machine Learning, pp. 45, 5–32.
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Cart. Classification and Regression Trees.
Brown, A. B., Lin, G., & Zhou, A. (2022). Analysts' forecast optimism: The effects of managers' incentives on analysts' forecasts. Journal of Behavioral and Experimental Finance, p. 35, 100708.
Brown, L. D. (1993). Earnings forecasting research: its implications for capital markets research. International Journal of Forecasting, 9(3), 295–320.
Brown, L. D., Call, A. C., Clement, M. B., & Sharp, N. Y. (2015). Inside the “black box” of sell‐side financial analysts. Journal of Accounting Research, 53(1), 1–47.
Butler, M., Kraft, A., & Weiss, I. S. (2007). The effect of reporting frequency on the timeliness of earnings: The cases of voluntary and mandatory interim reports. Journal of Accounting and Economics, 43(2-3), 181-217.
Cao, K., & You, H. (2020). Fundamental analysis via machine learning. HKUST Business School Research Paper (2020-009).
Cerulli, G. (2022). Machine learning using stata/python. The Stata Journal, 22(4), 772–810.
Chandra, U., & Ro, B. T. (2008). The role of revenue in firm valuation. Accounting Horizons, 22(2), 199-222.
Chen, H.-Y., Chen, S.-S., Hsin, C.-W., & Lee, C.-F. (2014). Does revenue momentum drive or ride earnings or price momentum? Journal of Banking & Finance, 38, 166-185.
Chen, J.-C., Liu, Y.-R., & Chiao, C. (2022). Unexpected Monthly Revenue in the Taiwan Stock Market: A Comprehensive Analysis. Journal of Management & Business Research, 39(4), 503-545.
Chen, T.-C., & Wu, Y. J. (2020). The influence of R&D intensity on financial performance: The mediating role of human capital in the semiconductor industry in Taiwan. Sustainability, 12(12), 5128.
Chen, W.-D., & Yu, C.-T. (2022). The information value of interim accounting disclosures: evidence from mandatory monthly revenue reports. Review of Quantitative Finance and Accounting, 58(1), 245-295.
Chen, X., Cho, Y. H., Dou, Y., & Lev, B. (2022). Predicting future earnings changes using machine learning and detailed financial data. Journal of Accounting Research, 60(2), 467–515.
Chordia, T., Subrahmanyam, A., & Tong, Q. (2014). Have capital market anomalies attenuated in the recent era of high liquidity and trading activity? Journal of Accounting and Economics, 58(1), 41-58.
Chung, I. H., Williams, D. W., & Do, M. R. (2022). For better or worse? revenue forecasting with machine learning approaches. Public Performance & Management Review, 45(5), 1133-1154.
Core, J. E., Guay, W. R., & Van Buskirk, A. (2003). Market valuations in the new economy: An investigation of what has changed. Journal of Accounting and Economics, 34(1-3), 43-67.
Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21-27.
Cowen, A., Groysberg, B., & Healy, P. (2006). Which types of analyst firms are more optimistic? Journal of Accounting and Economics, 41(1-2), pp. 119–146.
Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 2(4), 303–314.
Dong, H., Guo, X., Reichgelt, H., & Hu, R. (2020). Predictive power of ARIMA models in forecasting equity returns: a sliding window method. Journal of Asset Management, 21(6), 549-566.
Ertimur, Y., Livnat, J., & Martikainen, M. (2003). Differential market reactions to revenue and expense surprises. Review of Accounting Studies, 8, 185-211.
Ertimur, Y., Mayew, W. J., & Stubben, S. R. (2011). Analyst reputation and the issuance of disaggregated earnings forecasts to I/B/E/S. Review of Accounting Studies, pp. 16, 29–58.
Fama, E. F., & French, K. R. (2015). A five-factor asset pricing model. Journal of Financial Economics, 116(1), 1–22.
Fink, J. (2021). A review of the post-earnings-announcement drift. Journal of Behavioral and Experimental Finance, p. 29, 100446.
Fix, E. (1985). Discriminatory Analysis: Nonparametric Discrimination, Consistency Properties (Vol. 1). USAF school of Aviation Medicine.
Foster, G., Olsen, C., & Shevlin, T. (1984). Earnings releases, anomalies, and the behavior of security returns. Accounting Review, 574-603.
Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, 1189–1232.
Gilliam, T. A. (2014). Revenue Management: The Use of Order Backlog to Meet Revenue Reporting Targets The Florida State University.
Graham, J. R., Harvey, C. R., & Rajgopal, S. (2005). The economic implications of corporate financial reporting. Journal of Accounting and Economics, 40(1-3), pp. 3–73.
Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning. The Review of Financial Studies, 33(5), 2223–2273.
Harvey, C. R., Liu, Y., & Zhu, H. (2016). … and the cross-section of expected returns. The Review of Financial Studies, 29(1), 5–68.
Hopwood, W., & Newbold, P. (1980). Time series analysis in accounting: A survey and analysis of recent issues. Journal of Time Series Analysis, 1(2), 135–144.
Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359–366.
Hou, K., Van Dijk, M. A., & Zhang, Y. (2012). The implied cost of capital: A new approach. Journal of Accounting and Economics, 53(3), 504–526.
Hou, K., Xue, C., & Zhang, L. (2015). Digesting anomalies: An investment approach. The Review of Financial Studies, 28(3), 650-705.
Houston, J. F., Lev, B., & Tucker, J. W. (2010). To guide or not to guide? Causes and consequences of stopping quarterly earnings guidance. Contemporary Accounting Research, 27(1), 143–185.
Huang, H.-C., Hwang, S.-Y., Chang, S., & Kang, Y. (2017). Forecasting company revenue trend using financial news.
Huang, T.-C., & Hairston, S. (2023). Analyst revenue forecasts and firm revenue misstatements. European Accounting Review, 32(2), 379–414.
Hung, W., Lu, C.-C., & Yang, J. J. (2023). Monthly Revenue Growth and Cross-Sectional Stock Returns.
Hunt, J. O., Myers, J. N., & Myers, L. A. (2022). Improving earnings predictions and abnormal returns with machine learning. Accounting Horizons, 36(1), 131–149.
Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: the forecast package for R. Journal of Statistical Software, 27, 1-22.
Jegadeesh, N., & Livnat, J. (2006). Revenue surprises and stock returns. Journal of Accounting and Economics, 41(1-2), 147-171.
Jegadeesh, N., & Titman, S. (1993). Returns to buying winners and selling losers: Implications for stock market efficiency. The Journal of Finance, 48(1), 65–91.
Jiang, T., Gradus, J. L., & Rosellini, A. J. (2020). Supervised machine learning: a brief primer. Behavior Therapy, 51(5), 675–687.
Kajüter, P., Lessenich, A., Nienhaus, M., & van Gemmern, F. (2022). Consequences of interim reporting: A literature review and future research directions. European Accounting Review, 31(1), 209-239.
Kama, I. (2009). On the market reaction to revenue and earnings surprises. Journal of Business Finance & Accounting, 36(1‐2), 31-50.
Keung, E. C. (2010). Do supplementary sales forecasts increase the credibility of financial analysts' earnings forecasts? The Accounting Review, 85(6), 2047-2074.
Kim, A., Muhn, M., & Nikolaev, V. (2024). Financial statement analysis with large language models. arXiv Preprint arXiv:2407.17866.
Kothari, S., Laguerre, T. E., & Leone, A. J. (2002). Capitalization versus expensing: Evidence on the uncertainty of future earnings from capital expenditures versus R&D outlays. Review of Accounting Studies, 7(4), 355–382.
Ku, K. P. (2011). Earnings and Sales Momentum (Chinese). Journal of Management (Chinese), 28(6), 521–544.
Kureljusic, M., & Karger, E. (2023). Forecasting in financial accounting with artificial intelligence–A systematic literature review and future research agenda. Journal of Applied Accounting Research(ahead-of-print).
Kureljusic, M., & Reisch, L. (2022). Revenue forecasting for European capital market-oriented firms: A comparative prediction study between financial analysts and machine learning models. Corporate Ownership & Control, 19(2), 159-178.
Lai, Chi-Cheng, Lin, Wen-Yi, and Liu, Y. Angela. 2011. The Conflicts of Interest on Security Analysts' Earnings Forecasts in Taiwan, NTU Management Review 22, 357–389.
Lev, B. (2018). The deteriorating usefulness of financial report information and how to reverse it. Accounting and Business Research, 48(5), 465–493.
Lewis, C. D. (1982). Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting. In: Butterworth Scientific.
Li, K. K., & Mohanram, P. (2014). Evaluating cross-sectional forecasting models for implied cost of capital. Review of Accounting Studies, 19, 1152-1185.
Libbrecht, M. W., & Noble, W. S. (2015). Machine learning applications in genetics and genomics. Nature Reviews Genetics, 16(6), 321-332.
Lim, T. (2001). Rationality and analysts' forecast bias. The Journal of Finance, 56(1), 369–385.
Liu, L., & Sun, D. (2020). Research on financial revenue forecast based on optimal ARIMA model. Advances in Applied Mathematics, 9(3), 414-420.
Lopez-Lira, A., & Tang, Y. (2023). Can chatgpt forecast stock price movements? return predictability and large language models. arXiv preprint arXiv:2304.07619.
Lorenz, T., & Homburg, C. (2018). Determinants of analysts' revenue forecast accuracy. Review of Quantitative Finance and Accounting, 51, 389-431.
Martineau, C. (2019). The evolution of financial market efficiency: Evidence from earnings announcements, SSRN Scholarly Paper ID 3111607. Social Science Research Network, Rochester, NY.
Matsumoto, D. A. (2002). Management's incentives to avoid negative earnings surprises. The Accounting Review, 77(3), 483–514.
McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, pp. 5, 115–133.
McLean, R. D., & Pontiff, J. (2016). Does academic research destroy stock return predictability? The Journal of Finance, 71(1), 5–32.
Mensah, Y. M., & Werner, R. H. (2008). The capital market implications of the frequency of interim financial reporting: an international analysis. Review of Quantitative Finance and Accounting, 31, 71-104.
Novy-Marx, R., & Velikov, M. (2016). A taxonomy of anomalies and their trading costs. The Review of Financial Studies, 29(1), 104-147.
Penman, S. H. (2013). Financial Statement Analysis and Security Valuation. McGraw-hill.
Ramnath, S., Rock, S., & Shane, P. (2008). The financial analyst forecasting literature: A taxonomy with suggestions for further research. International Journal of Forecasting, 24(1), 34-75.
Rees, L. L., & Sivaramakrishnan, S. (2004). The effect of meeting or beating revenue forecasts on the association between quarterly returns and earnings forecast errors. Available at SSRN 655421.
Ripley, B. D. (2002). Time series in R 1.5. 0. The Newsletter of the R Project Volume, 2, 2.
Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5, 197-227.
Smith, Kevin C., 2025, Beyond the event window: Earnings horizon and the informativeness of earnings announcements, The Accounting Review 100(2), 351–382.
Schipper, K. (1991). Analysts' forecasts. Accounting Horizons, 5(4), 105–121.
Soliman, M. T. (2008). The use of DuPont analysis by market participants. The Accounting Review, 83(3), 823-853.
Srivastava, A. (2014). Why have measures of earnings quality changed over time? Journal of Accounting and Economics, 57(2-3), 196-217.
Taylor, S., & Tong, A. (2023). How important are semi‐annual earnings announcements? An information event perspective. Accounting & Finance, 63(3), 3585–3607.
Tsao, S.-M., Lu, H.-T., & Keung, E. C. (2018). Interim reporting frequency and the mispricing of accruals. Accounting Horizons, 32(3), 29-47.
Veenman, D., & Verwijmeren, P. (2018). Do investors fully unravel persistent pessimism in analysts' earnings forecasts? The Accounting Review, 93(3), 349-377.
Vineeth, V. S., Kusetogullari, H., & Boone, A. (2020). Forecasting sales of truck components: a machine learning approach. 2020 IEEE 10th International Conference on Intelligent Systems (IS),
Wang, C.-H., Lu, Y.-H., Huang, C.-W., & Lee, J.-Y. (2013). R&D, productivity, and market value: An empirical study from high-technology firms. Omega, 41(1), 143-155.
Wang, Q., Li, S., Li, R., & Ma, M. (2018). Forecasting US shale gas monthly production using a hybrid ARIMA and metabolic nonlinear grey model. Energy, 160, 378-387.
Wang, Z.-M., & Lien, D. (2022). Is maximum daily return a lottery? Evidence from monthly revenue announcements. Review of Quantitative Finance and Accounting, 59(2), 545-600.
Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., & Zhou, D. (2022). Chain-of-thought prompting elicits reasoning in large language models. Advances in Neural Information Processing Systems, 35, 24824-24837.
Yang, C. H., & Chen, J. R. (2003). Innovation and Market Value in Newly‐Industrialized Countries: The Case of Taiwanese Electronics Firms. Asian Economic Journal, 17(2), 205-220.
Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology, 67(2), 301-320.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98075-
dc.description.abstract本研究探討機器學習(ML)模型在營收預測與投資策略上的表現,特別聚焦於每月揭露的資料。我們評估六種 ML 模型,其中隨機森林(Random Forest)在預測準確度上表現最佳,且優於分析師預測。根據其預測建構的投資策略,在扣除交易成本後可產生年化超額報酬 51.29%。我們提出的大多數 ML 模型在報酬表現上優於大型語言模型(LLMs)與自我回歸整合移動平均(ARIMA)模型,顯示這些方法在提升投資績效方面具有明顯優勢。zh_TW
dc.description.abstractThis study examines the predictive performance of machine learning (ML) models in revenue forecasting and investment strategies, focusing on monthly disclosures. Six ML models are evaluated, with Random Forest achieving the highest accuracy and exceeding analyst forecasts. Strategies based on its predictions yield an annualized excess return of 51.29% after transaction costs. Most of the ML models we propose generate higher returns than large language models (LLMs) and Autoregressive Integrated Moving Average (ARIMA) models, demonstrating their effectiveness in improving investment performance.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-24T16:05:48Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-24T16:05:48Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 i
中文摘要 ii
英文摘要 iii
目次 iv
圖次 vii
表次 viii
1. Introduction 1
2. Literature Review 8
2.1 The Market Impact of Monthly Revenue Disclosures 8
2.2 The Effectiveness and Limitations of Analyst Revenue Forecasts 10
2.3 The Role of Machine Learning in Financial Forecasting 12
3. Sample Selection and Research Methodology 13
3.1 Data and Sample Selection 13
3.2 Machine Learning Approaches for Revenue Forecasting 17
3.2.1 Decision Tree 17
3.2.2 Random Forest 18
3.2.3 Gradient Boosting 18
3.2.4 Neural Networks 19
3.2.5 Nearest Neighbors 19
3.2.6 Elastic Net 20
3.2.7 Model Training and Optimization 20
3.3 Predictive Performance of Machine Learning and Analysts 21
3.4 Forecasting Revenue Changes Using Machine Learning Models 23
3.5 Stock Portfolio Strategies Based on ML Revenue Forecasts 24
4. Empirical Results 25
4.1 Revenue Forecast Accuracy of Machine Learning and Analyst Estimates 26
4.2 Assessing the Forecast Accuracy of Machine Learning Models for Revenue 27
4.3 Portfolio Performance from Machine Learning Revenue Forecasts 29
4.4 Isolating Predictive Performance from Revenue Announcement Effects 44
4.5 Short-Term Abnormal Returns from Machine Learning Revenue Forecasts 45
4.6 Post-Revenue Announcement Drift and Machine Learning Forecasts 47
4.7 Machine Learning Predictions in the Technology Sector 48
4.8 Robustness tests 51
4.8.1 Effect of Training Window Length in Machine Learning Forecasts 51
4.8.2 Portfolio Performance and Revenue per Share Analysis 53
4.8.3 Portfolio Performance After Excluding the Construction Industry 54
5. Additional Analysis 55
5.1 Strategy Profitability After Accounting for Transaction Costs 55
5.2 Investment Performance of Large Language Model Forecasts 57
5.3 Investment Performance of ARIMA-Based Forecasts 60
5.4 Investment Performance of EPS Forecasts 62
6. Conclusion 64
References 67
Appendix A. Variables Definitions 73
Appendix B. Feature Variables and Economic Significance 74
Appendix C. Intuitive Explanation of Machine Learning Models 77
-
dc.language.isoen-
dc.subject機器學習zh_TW
dc.subject大型語言模型zh_TW
dc.subject分析師預測zh_TW
dc.subject財務分析zh_TW
dc.subject台灣股市zh_TW
dc.subjectARIMA模型zh_TW
dc.subject營收預測zh_TW
dc.subjectARIMA modelen
dc.subjectPredicted revenueen
dc.subjectMachine learningen
dc.subjectLarge language modelen
dc.subjectAnalyst forecasten
dc.subjectFinancial analysisen
dc.subjectTaiwan stock marketen
dc.title機器學習在財務預測的應用: 月營收預測與超額報酬表現之比較研究zh_TW
dc.titleThe Power of Machine Learning in Financial Forecasting: A Comparative Study of Monthly Revenue Prediction and Alpha Generationen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee陳業寧;曾怡潔;林瑞青;王曉雯zh_TW
dc.contributor.oralexamcommitteeYehning Chen;Yi-Jie Tseng;Ruey-Ching Lin;Hsiao-Wen Wangen
dc.subject.keyword營收預測,機器學習,大型語言模型,分析師預測,財務分析,台灣股市,ARIMA模型,zh_TW
dc.subject.keywordPredicted revenue,Machine learning,Large language model,Analyst forecast,Financial analysis,Taiwan stock market,ARIMA model,en
dc.relation.page77-
dc.identifier.doi10.6342/NTU202501949-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-16-
dc.contributor.author-college管理學院-
dc.contributor.author-dept會計學系-
dc.date.embargo-lift2025-07-25-
顯示於系所單位:會計學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf3.04 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved