Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 商學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98059
標題: 人工智慧如何影響雲端生態系的結構與商業模式:以微軟雲端服務平台生態系為例
The impact of artificial intelligence on the structure and business models of cloud ecosystems: a case study of the Microsoft cloud service ecosystem
作者: 蕭于婷
Yu-Ting Hsiao
指導教授: 郭瑞祥
Ruey-Shan Guo
關鍵字: 人工智慧,雲端生態系,商業模式,數位轉型,
Artificaitl Intelligent,Cloud Ecosystem,Business Model,Digital Transformation,
出版年 : 2025
學位: 碩士
摘要:   隨著生成式人工智慧(Generative AI)技術的快速演進,雲端平台生態系的價值創造邏輯與商業模式正面臨深刻轉變。本研究聚焦於微軟雲端服務生態系作為代表性個案,探討 AI 如何重新定義雲端生態系的價值主張、價值結構與合作夥伴關係。過去,微軟透過模組化的產品組合與嚴謹的生態系協調機制,建立起強韌的雲端平台地位;然而,隨著生成式 AI 能力(如語意理解、任務預測、內容生成)的滲透,其價值活動配置、夥伴角色與生態系權力結構皆產生質變。
  為系統性解析此一顛覆性變化,本文採用 Ron Adner 所提出之「生態系作為結構」(Ecosystems as Structure)理論為研究架構,強調企業在面對跨層級、跨模組的顛覆壓力下,需重新調整價值元素的排列邏輯與協作機制。研究方法上,本文以次級資料蒐集與個案深度剖析為主,並依據微軟自 2014 年起至今之生態系策略演進進行歷程分析。
  研究發現顯示,AI 並非僅作為價值主張的延伸工具,而是引發整體價值結構的再設計。微軟藉由導入 AI Copilot、Azure OpenAI Service 等技術,將平台任務起點從使用者輸入轉為 AI 理解與生成,並重構原有價值模組間的邏輯分工。此外,AI 模型提供者、資料標註商與 API 開發者等新興參與者逐步取代傳統 SI、ISV 的關鍵地位,出現明顯的「價值反轉」現象。為因應此一轉變,微軟亦啟動生態系治理策略重組,包括擴大 AI 平台層控制範圍、重新設定合作門檻與誘因結構,藉此維繫平台對生態系的整合力與主導性。
  本研究貢獻在於,藉由導入生態系顛覆與價值反轉的觀點,提供一套檢視 AI 對平台型企業帶來結構性挑戰的分析框架,並提出企業如何在面對 AI 驅動下的生態競爭重構時,進行價值設計、夥伴協調與防禦進攻策略調整的具體建議,期能為學術研究與產業實務提供參考。
With the rapid advancement of generative artificial intelligence (Generative AI), the logic of value creation and business models within cloud platform ecosystems are undergoing profound transformation. This study focuses on Microsoft Azure as a representative case to explore how AI redefines the ecosystem’s value proposition, value architecture, and partner relationships. Historically, Microsoft established a robust cloud platform through modular product portfolios and a well-structured ecosystem coordination mechanism. However, as generative AI capabilities—such as semantic understanding, task prediction, and content generation—become deeply embedded, significant shifts have occurred in the platform’s value activities, partner roles, and ecosystem governance.
To systematically analyze this disruptive transformation, this research adopts the “ecosystems as structure” framework proposed by Ron Adner, emphasizing that firms must realign the configuration of value elements and coordination logic under pressures of cross-level and cross-module disruptions. Methodologically, this study applies secondary data collection and in-depth case analysis, tracing the evolution of Microsoft’s ecosystem strategies from 2014 to the present.
The findings reveal that AI is not merely an auxiliary tool to extend existing value propositions, but rather a catalyst for a fundamental redesign of the value architecture. Through the integration of technologies such as AI Copilot and Azure OpenAI Service, Microsoft has shifted the starting point of platform tasks from user input to AI-driven interpretation and generation, thereby restructuring the division of labor among value modules. In parallel, new ecosystem participants—such as AI model providers, data labeling firms, and API developers—have emerged as central actors, gradually displacing traditional system integrators (SIs) and independent software vendors (ISVs), leading to a clear phenomenon of value inversion. In response, Microsoft has restructured its ecosystem governance strategy by expanding control at the AI platform layer, redefining participation thresholds, and reconfiguring incentive structures, in order to preserve platform dominance and integration capacity.
This research contributes to the literature by introducing a structural framework to examine how AI disrupts platform ecosystems through value inversion and ecosystem redesign. It also provides actionable insights for platform leaders on how to reconfigure value creation, coordinate partners, and adjust defensive and offensive strategies in the age of AI-driven ecosystem competition—offering valuable implications for both academia and industry.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98059
DOI: 10.6342/NTU202501417
全文授權: 同意授權(限校園內公開)
電子全文公開日期: 2030-06-30
顯示於系所單位:商學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
1.89 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved