Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 進修推廣部
  3. 事業經營碩士在職學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98027
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾智揚zh_TW
dc.contributor.advisorChih-Yang Tsengen
dc.contributor.author何永清zh_TW
dc.contributor.authorYu-Ching Hoen
dc.date.accessioned2025-07-23T16:30:38Z-
dc.date.available2025-07-24-
dc.date.copyright2025-07-23-
dc.date.issued2025-
dc.date.submitted2025-07-21-
dc.identifier.citation中文部分
1.亞太電信(n.d.)。實績案例。取自 https://www.aptg.com.tw/esp/solution/application/aptg-faceplus/cases/
2.中國信託國際商業銀行(n.d.)。生物認證登入服務條款。取自 https://www.cncbinternational.com/_document/inmotion/tc/biometric_inmotion_tnc.pdf
3.自由時報(n.d.)。銀行業率先導入國際級資安標準FIDO生物辨識登入。取自 https://market.ltn.com.tw/article/15306
4.國家實驗研究院科技政策研究與資訊中心(2023)。2022年度年報。取自 https://www.stpi.narl.org.tw
5.國家實驗研究院科技政策研究與資訊中心(n.d.)。組織架構圖。取自 https://www.stpi.narl.org.tw
6.張嵐霆(2012年4月12日)。日本國內ATM首度採用無卡式手掌靜脈辨識。iThome。取自 https://www.ithome.com.tw/news/73148
7.玉山銀行(n.d.)。生物辨識。取自 https://www.esunbank.com/zh-tw/marketing/digital/BiometricsRecognition
8.台灣人權促進會(2018)。誰在監控你?台灣公共場所人臉辨識系統應用現況與爭議。取自 https://www.tahr.org.tw/news/2288
9.工商時報(2021年11月15日)。軟體大廠訊連科技旗下人臉辨識FaceMe通過美國iBeta生物防偽攻擊測試。取自 https://www.ctee.com.tw/news/20211115701092-430502
10.台達電子(n.d.)。門禁管理。取自 https://www.deltaww.com/zh-TW/solutions/Smart-Building/Access-Control-Management
11.台達電子(n.d.)。建築方案-門禁管理產品。取自 https://www.deltaww.com/zh-TW/products/Building-Solution/Access-Control-Management
12.遠傳電信(n.d.)。實績案例。取自 https://www.aptg.com.tw/esp/solution/application/aptg-faceplus/cases/
13.彰化縣政府(n.d.)。彰化縣政府人臉辨識法規。取自 https://lawsearch.chcg.gov.tw/GLRSNEWSOUT/LawContent.aspx?id=FL088020
14.內政部移民署. (n.d.). 什麼是自動查驗通關系統?. 取自https://www.immigration.gov.tw/5385/7445/7889/7892/50744/
15.內政部移民署. (n.d.). 內政部入出國及移民署自動查驗通關系統簡介. 取自 https://www.dgbas.gov.tw/public/Data/1123014312771.pdf
16.內政部移民署. (n.d.). 建置新世代自動查驗通關系統. 取自https://www.immigration.gov.tw/5385/5388/7178/225118/
17.內政部移民署. (n.d.). 本國國民申辦自動查驗通關及使用說明. 取自 https://www.immigration.gov.tw/5385/7445/7889/7892/50760/
18.內政部移民署. (n.d.). 自動查驗通關擴大使用對象國人出入國通關更便利. 取自https://www.immigration.gov.tw/5385/7229/7238/383474/
19.科技大觀園. (n.d.). 觀光的科學與技術:便捷的自動查驗通關系統. 取自https://scitechvista.nat.gov.tw/Article/c000003/detail?ID=f8efc53d-5240-4171-aae7-130ae60d5667
20.數位時代(2020). 黑人誤判率過高惹議,亞馬遜暫緩警方使用人臉辨識服務一年.取自https://www.bnext.com.tw/article/58055/amazon-rekognition-facial-recognition-police-ban-one-year-ai-racial-bias
英文部分
1.Bryde, D. J. (1995). Establishing a project organization and a project-management process for telecommunications project management. International Journal of Project Management, 13(1), 25–31. https://doi.org/10.1016/0263-7863(95)95700-N
2.Jain, A., Ross, A., & Prabhakar, S. (2004). An introduction to biometric recognition. IEEE Transactions on Circuits and Systems for Video Technology, 14(1), 4–20. https://doi.org/10.1109/TCSVT.2003.818349
3.Maltoni, D., Maio, D., Jain, A. K., & Prabhakar, S. (2009). Handbook of fingerprint recognition (2nd ed.). Springer. https://doi.org/10.1007/978-1-84882-254-2
4.McNair, C. J. (1998). Implementing activity-based management: Avoiding the pitfalls [Statement on Management Accounting]. Institute of Management Accountants. Retrieved from https://www.imanet.org
5.Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1985). A conceptual model of service quality and its implications for future research. Journal of Marketing, 49(4), 41–50. https://doi.org/10.2307/1251430
6.Rubin, H. (1991, April 15). Measure for measure. Computerworld, 77–79.
7.Turner, J. R., & Cochrane, R. A. (1993). Goals-and-methods matrix: Coping with projects with ill-defined goals and/or methods of achieving them. International Journal of Project Management, 11(2), 93–102. https://doi.org/10.1016/0263-7863(93)90017-H
8.Wayman, J. L. (2008). Biometrics in identity management systems. IEEE Security & Privacy, 6(2), 30–37. https://doi.org/10.1109/MSP.2008.39
9.Kumar, A., & Zhang, D. (2006). Personal authentication using multiple palmprint representation. Pattern Recognition, 38(10), 1695–1704. https://doi.org/10.1016/j.patcog.2005.03.012
10.Tistarelli, M., & Nixon, M. S. (2009). Advances in biometrics: Third international conference, ICB 2009, Alghero, Italy. In M. Tistarelli & M. S. Nixon (Eds.), Lecture Notes in Computer Science (Vol. 5558). Springer.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98027-
dc.description.abstract數位治理與智慧組織管理為當代重要趨勢,國家級研究機構亦面臨提升資訊安全與營運效率之挑戰。傳統管理機制於應對專案導向運作(Project-Based Organization, PBO)之複雜性、高人員流動性及資料機敏性時,日益凸顯其侷限性。本研究旨在探討整合「生物辨識技術」與「作業基礎管理(Activity-Based Management, ABM)」理論,應用於特定個案「某政府智庫」,以建構數位治理新模式之可行性與潛在效益。
本研究採個案研究法,首先剖析該智庫之組織特性、標準化專案生命週期(涵蓋啟動、定義、執行、變更、完成五階段)與現存管理瓶頸。繼而,深入闡述生物辨識技術(如人臉、靜脈辨識)除可強化基礎設施安全(含觀察名單預警機制)外,更能系統性嵌入專案流程各節點,提供客觀、即時之活動數據(如工時、參與頻次、系統操作記錄)。
研究發現,藉由 ABM 管理框架(含部署與衡量模式、QTCPS+Sec 績效指標),可有效轉譯生物辨識數據,從而支持活動成本分析、資源耗用追蹤與專案績效評估。考量該智庫四大核心業務組(政策研究、科研資料、科技產業、創新創業推動)之顯著異質性,本研究進一步提出差異化之部署策略(例如:整合 AI 輔助決策、嵌入 DevOps 流程、支援行動化應用、促進虛實整合)與相應之衡量焦點。
此外,本研究亦建構了成本效益分析框架,評估導入此整合系統之潛在成本、風險以及預期效益(包含有形與無形、短期與長期)。研究結論指出,此整合框架展現其應用潛力,預期能顯著提升該政府智庫之資訊安全韌性、作業流程透明度、資源配置效率及管理決策品質;惟其成功實施,需輔以周延之數據治理、隱私保護、系統整合與組織變革管理等配套措施。本研究成果可為該智庫及其他知識密集型 PBO,提供數位轉型與智慧治理之參考框架與策略建議。
zh_TW
dc.description.abstractIn the era of digital governance and intelligent organizational management, government-affiliated research institutions are confronted with the dual imperative of enhancing information security and improving operational efficiency. Traditional management mechanisms often fall short when addressing the inherent complexities, high personnel turnover, and data sensitivity typical of Project-Based Organizations (PBOs). This study investigates the feasibility and potential advantages of integrating biometric recognition technologies with Activity-Based Management (ABM) theory, using a government-affiliated think tank as a case study, to develop a forward-looking model for digital governance.

Adopting a case study approach, this research first examines the organizational characteristics, standardized project lifecycle (comprising initiation, definition, execution, change, and closure phases), and current management bottlenecks of the selected think tank. It then explores how biometric technologies—such as facial and vein recognition—can enhance infrastructure security (e.g., through watchlist-based alert mechanisms) and be systematically embedded in each project phase to generate objective, real-time activity data (e.g., working hours, participation frequency, and system usage logs).

Findings demonstrate that the ABM framework, which includes deployment and measurement models and leverages QTCPS+Sec performance indicators, can effectively transform biometric data into actionable managerial insights. These insights support activity-based cost analysis, resource consumption tracking, and project performance evaluation. Acknowledging the functional heterogeneity among the think tank’s four core divisions (policy research, scientific data, industrial technology, and innovation promotion), this study proposes differentiated deployment strategies—such as AI-assisted decision support, DevOps integration, mobile enablement, and cyber-physical coordination—paired with tailored performance measurement approaches.

Additionally, a cost-benefit analysis framework is constructed to evaluate the anticipated costs, risks, and benefits (both tangible and intangible, short- and long-term) of implementing such an integrated system. The study concludes that this framework has strong potential to enhance organizational resilience in information security, improve workflow transparency, optimize resource allocation, and elevate decision-making quality. Nonetheless, successful implementation requires supporting mechanisms, including comprehensive data governance, robust privacy protection, technical system integration, and proactive change management. The results offer a practical reference model and strategic roadmap for digital transformation and intelligent governance within knowledge-intensive PBOs.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-23T16:30:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-23T16:30:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
目次 vi
圖次 viii
表次 ix
第一章:緒論 1
1.1研究背景:STPI之角色與管理挑戰 1
1.2 研究動機:生物辨識技術於管理優化之潛力 2
1.3 研究目的與問題 2
1.4 論文架構 3
第二章:文獻回顧 5
2.1 生物辨識技術的發展與應用 5
2.2 作業基礎管理(Activity-Based Management, ABM)理論 13
2.3 專案型組織(Project-Based Organization, PBO) 16
2.4整合性觀點 17
第三章:個案研究背景 19
3.1 STPI 組織簡介與功能定位 19
3.2 STPI 專案導向管理模式與標準化流程 20
3.3 STPI 四大業務組專案類型分析 22
3.4 資料敏感度分級與門禁對應 31
3.5 各業務組專案特性彙整與管理意涵 34
3.6 現行管理模式面臨之挑戰 34
3.7 生物辨識技術於 STPI 之應用現況與潛力 35
3.8 本章小結 36
第四章 個案分析:生物辨識技術於 STPI 作業基礎管理之應用 37
4.1 分析框架:整合 ABM 與生物辨識於 STPI 之 PBO 情境 37
4.2 個案中心之專案作業流程分析 39
4.3差異化的生物辨識系統部署與衡量策略分析 45
4.4 生物辨識系統導入之成本效益分析 50
4.5 綜合分析與策略建議 53
第五章 結論與建議 56
5.1 前言 56
5.2 主要研究發現 56
5.3 研究貢獻 57
5.4 研究限制 58
5.5 研究建議 58
5.6 總結 60
參考文獻 (References) 61
-
dc.language.isozh_TW-
dc.subject作業基礎管理zh_TW
dc.subject專案型組織zh_TW
dc.subject數位治理zh_TW
dc.subject專案管理zh_TW
dc.subject成本效益分析zh_TW
dc.subject科技政策zh_TW
dc.subject生物辨識技術zh_TW
dc.subjectScience and Technology Policyen
dc.subjectBiometricsen
dc.subjectActivity-Based Managementen
dc.subjectProject-Based Organizationen
dc.subjectDigital Governanceen
dc.subjectProject Managementen
dc.subjectCost-Benefit Analysisen
dc.title生物辨識技術在作業基礎管理中的應用 :基於活動成本分析的個案研究zh_TW
dc.titleThe Application of Biometric Recognition Technology in Activity-Based Management: A Case Study Based on Activity-Based Costing Analysisen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee余峻瑜;胡凱焜zh_TW
dc.contributor.oralexamcommitteeJiun-Yu Yu;Kae-Kuen Huen
dc.subject.keyword生物辨識技術,作業基礎管理,專案型組織,數位治理,專案管理,成本效益分析,科技政策,zh_TW
dc.subject.keywordBiometrics,Activity-Based Management,Project-Based Organization,Digital Governance,Project Management,Cost-Benefit Analysis,Science and Technology Policy,en
dc.relation.page63-
dc.identifier.doi10.6342/NTU202501964-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-22-
dc.contributor.author-college進修推廣學院-
dc.contributor.author-dept事業經營碩士在職學位學程-
dc.date.embargo-lift2025-07-24-
顯示於系所單位:事業經營碩士在職學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
1.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved