請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98016完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳林祈 | zh_TW |
| dc.contributor.advisor | Lin-Chi Chen | en |
| dc.contributor.author | 邱舒郁 | zh_TW |
| dc.contributor.author | Shu-Yu Chiu | en |
| dc.date.accessioned | 2025-07-23T16:28:09Z | - |
| dc.date.available | 2025-07-24 | - |
| dc.date.copyright | 2025-07-23 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-16 | - |
| dc.identifier.citation | Antovic, J. P., Höög Hammarström, K., Forslund, G., Eintrei, J., & Sten-Linder, M. (2012). Comparison of five point-of-care D-dimer assays with the standard laboratory method. International Journal of Laboratory Hematology, 34(5), 495–501. https://doi.org/10.1111/j.1751-553X.2012.01421.x
AYASS, M. A., Griko, N., LUBAG, A., & ABI MOSLEH, L. (2019, May 16). D-dimer-specific aptamers and methods of use in diagnostics, therapeutic and theranostic purposes - Google Patents. https://patents.google.com/patent/WO2019094315A1/en Bhattarai, J. K., Neupane, D., Nepal, B., Mikhaylov, V., Demchenko, A. V., & Stine, K. J. (2018). Preparation, modification, characterization, and biosensing application of nanoporous gold using electrochemical techniques. Nanomaterials (Basel, Switzerland), 8(3). https://doi.org/10.3390/nano8030171 Boeer, K., Siegmund, R., Schmidt, D., Deufel, T., & Kiehntopf, M. (2009). Comparison of six D-dimer assays for the detection of clinically suspected deep venous thrombosis of the lower extremities. Blood Coagulation & Fibrinolysis, 20(2), 141–145. https://doi.org/10.1097/MBC.0b013e3283255381 Çimen, D., Bereli, N., Günaydın, S., & Denizli, A. (2020). Detection of cardiac troponin-I by optic biosensors with immobilized anti-cardiac troponin-I monoclonal antibody. Talanta, 219, 121259. https://doi.org/10.1016/j.talanta.2020.121259 Di Nisio, M., van Es, N., & Büller, H. R. (2016). Deep vein thrombosis and pulmonary embolism. The Lancet, 388(10063), 3060–3073. https://doi.org/10.1016/S0140-6736(16)30514-1 Ellington, A. D., & Szostak, J. W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature, 346(6287), 818–822. https://doi.org/10.1038/346818a0 Falahati, A., Sharkey, S. W., Christensen, D., McCoy, M., Miller, E. A., Murakami, M. A., & Apple, F. S. (1999). Implementation of serum cardiac troponin I as marker for detection of acute myocardial infarction. American Heart Journal, 137(2), 332–337. https://doi.org/10.1053/hj.1999.v137.92412 Fathil, M. F. M., Md Arshad, M. K., Gopinath, S. C. B., Hashim, U., Adzhri, R., Ayub, R. M., Ruslinda, A. R., Nuzaihan M N, M., Azman, A. H., Zaki, M., & Tang, T.-H. (2015). Diagnostics on acute myocardial infarction: Cardiac troponin biomarkers. Biosensors & Bioelectronics, 70, 209–220. https://doi.org/10.1016/j.bios.2015.03.037 Ge, C., Feng, J., Zhang, J., Hu, K., Wang, D., Zha, L., Hu, X., & Li, R. (2022). Aptamer/antibody sandwich method for digital detection of SARS-CoV2 nucleocapsid protein. Talanta, 236, 122847. https://doi.org/10.1016/j.talanta.2021.122847 Goldhaber, S. Z., & Bounameaux, H. (2012). Pulmonary embolism and deep vein thrombosis. The Lancet, 379(9828), 1835–1846. https://doi.org/10.1016/S0140-6736(11)61904-1 Hamer, H. M., Stroobants, A. K., Bavalia, R., Ponjee, G. A. E., Klok, F. A., van der Hulle, T., Huisman, M. V., Hendriks, H. A., & Middeldorp, S. (2021). Diagnostic accuracy of four different D-dimer assays: A post-hoc analysis of the YEARS study. Thrombosis Research, 201, 18–22. https://doi.org/10.1016/j.thromres.2021.02.003 Huang, Z., Chen, H., Ye, H., Chen, Z., Jaffrezic-Renault, N., & Guo, Z. (2021). An ultrasensitive aptamer-antibody sandwich cortisol sensor for the noninvasive monitoring of stress state. Biosensors & Bioelectronics, 190, 113451. https://doi.org/10.1016/j.bios.2021.113451 Ibupoto, Z. H., Mitrou, N., Nikoleli, G.-P., Nikolelis, D. P., Willander, M., & Psaroudakis, N. (2014). The Development of Highly Sensitive and Selective Immunosensor Based on Antibody Immobilized ZnO Nanorods for the Detection of D-Dimer. Electroanalysis, 26(2), 292–298. https://doi.org/10.1002/elan.201300580 Jo, H., Gu, H., Jeon, W., Youn, H., Her, J., Kim, S.-K., Lee, J., Shin, J. H., & Ban, C. (2015). Electrochemical aptasensor of cardiac troponin I for the early diagnosis of acute myocardial infarction. Analytical Chemistry, 87(19), 9869–9875. https://doi.org/10.1021/acs.analchem.5b02312 John, M. A., Elms, M. J., O’Reilly, E. J., Rylatt, D. B., Bundesen, P. G., & Hillyard, C. J. (1990). The simpliRED D dimer test: a novel assay for the detection of crosslinked fibrin degradation products in whole blood. Thrombosis Research, 58(3), 273–281. https://doi.org/10.1016/0049-3848(90)90097-v Khan, F., Tritschler, T., Kahn, S. R., & Rodger, M. A. (2021). Venous thromboembolism. The Lancet, 398(10294), 64–77. https://doi.org/10.1016/S0140-6736(20)32658-1 Liu, J., Zhang, L., Wang, Y., Zheng, Y., & Sun, S. (2014). An improved portable biosensing system based on enzymatic chemiluminescence and magnetic immunoassay for biological compound detection. Measurement, 47, 200–206. https://doi.org/10.1016/j.measurement.2013.08.057 Mi, X., Li, H., Tan, R., & Tu, Y. (2020). Dual-Modular Aptasensor for Detection of Cardiac Troponin I Based on Mesoporous Silica Films by Electrochemiluminescence/Electrochemical Impedance Spectroscopy. Analytical Chemistry, 92(21), 14640–14647. https://doi.org/10.1021/acs.analchem.0c03130 Pabinger, I., & Ay, C. (2009). Biomarkers and venous thromboembolism. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(3), 332–336. https://doi.org/10.1161/ATVBAHA.108.182188 Periyakaruppan, A., Gandhiraman, R. P., Meyyappan, M., & Koehne, J. E. (2013). Label-free detection of cardiac troponin-I using carbon nanofiber based nanoelectrode arrays. Analytical Chemistry, 85(8), 3858–3863. https://doi.org/10.1021/ac302801z Pittet, J. L., de Moerloose, P., Reber, G., Durand, C., Villard, C., Piga, N., Rolland, D., Comby, S., & Dupuy, G. (1996). VIDAS D-dimer: fast quantitative ELISA for measuring D-dimer in plasma. Clinical Chemistry, 42(3), 410–415. https://doi.org/10.1093/clinchem/42.3.410 Pourali, A., Rashidi, M. R., Barar, J., Pavon-Djavid, G., & Omidi, Y. (2021). Voltammetric biosensors for analytical detection of cardiac troponin biomarkers in acute myocardial infarction. TrAC Trends in Analytical Chemistry, 134, 116123. https://doi.org/10.1016/j.trac.2020.116123 Qiao, X., Li, K., Xu, J., Cheng, N., Sheng, Q., Cao, W., Yue, T., & Zheng, J. (2018). Novel electrochemical sensing platform for ultrasensitive detection of cardiac troponin I based on aptamer-MoS2 nanoconjugates. Biosensors & Bioelectronics, 113, 142–147. https://doi.org/10.1016/j.bios.2018.05.003 Reed, G. W., Rossi, J. E., & Cannon, C. P. (2017). Acute myocardial infarction. The Lancet, 389(10065), 197–210. https://doi.org/10.1016/S0140-6736(16)30677-8 Righini, M., Perrier, A., De Moerloose, P., & Bounameaux, H. (2008). D-Dimer for venous thromboembolism diagnosis: 20 years later. Journal of Thrombosis and Haemostasis, 6(7), 1059–1071. https://doi.org/10.1111/j.1538-7836.2008.02981.x Riley, R. S., Gilbert, A. R., Dalton, J. B., Pai, S., & McPherson, R. A. (2016). Widely Used Types and Clinical Applications of D-Dimer Assay. Laboratory Medicine, 47(2), 90–102. https://doi.org/10.1093/labmed/lmw001 Ruivo, S., Azevedo, A. M., & Prazeres, D. M. F. (2017). Colorimetric detection of D-dimer in a paper-based immunodetection device. Analytical Biochemistry, 538, 5–12. https://doi.org/10.1016/j.ab.2017.09.009 Song, S., Wang, L., Li, J., Fan, C., & Zhao, J. (2008). Aptamer-based biosensors. TrAC Trends in Analytical Chemistry, 27(2), 108–117. https://doi.org/10.1016/j.trac.2007.12.004 Stone, J., Hangge, P., Albadawi, H., Wallace, A., Shamoun, F., Knuttien, M. G., Naidu, S., & Oklu, R. (2017). Deep vein thrombosis: pathogenesis, diagnosis, and medical management. Cardiovascular Diagnosis and Therapy, 7(Suppl 3), S276–S284. https://doi.org/10.21037/cdt.2017.09.01 Sundaresan, S. M., Fothergill, S. M., Tabish, T. A., Ryan, M., & Xie, F. (2021). Aptamer biosensing based on metal enhanced fluorescence platform: A promising diagnostic tool. Applied Physics Reviews, 8(4), 041311. https://doi.org/10.1063/5.0065833 Tasić, N., Cavalcante, L., Deffune, E., Góes, M. S., Paixão, T. R. L. C., & Gonçalves, L. M. (2021). Probeless and label-free impedimetric biosensing of D-dimer using gold nanoparticles conjugated with dihexadecylphosphate on screen-printed carbon electrodes. Electrochimica Acta, 397, 139244. https://doi.org/10.1016/j.electacta.2021.139244 Tasić, N., Paixão, T. R. L. C., & Gonçalves, L. M. (2020). Biosensing of D-dimer, making the transition from the central hospital laboratory to bedside determination. Talanta, 207, 120270. https://doi.org/10.1016/j.talanta.2019.120270 van der Valk, J., Brunner, D., De Smet, K., Fex Svenningsen, A., Honegger, P., Knudsen, L. E., Lindl, T., Noraberg, J., Price, A., Scarino, M. L., & Gstraunthaler, G. (2010). Optimization of chemically defined cell culture media--replacing fetal bovine serum in mammalian in vitro methods. Toxicology in Vitro, 24(4), 1053–1063. https://doi.org/10.1016/j.tiv.2010.03.016 von Lode, P., Rainaho, J., Laiho, M. K., Punnonen, K., Peltola, O., Harjola, V.-P., & Pettersson, K. (2006). Sensitive and quantitative, 10-min immunofluorometric assay for D-Dimer in whole blood. Thrombosis Research, 118(5), 573–585. https://doi.org/10.1016/j.thromres.2005.06.013 Wu, W.-Y., Bian, Z.-P., Wang, W., Wang, W., & Zhu, J.-J. (2010). PDMS gold nanoparticle composite film-based silver enhanced colorimetric detection of cardiac troponin I. Sensors and Actuators B: Chemical, 147(1), 298–303. https://doi.org/10.1016/j.snb.2010.03.027 Yang, D.-K., Chen, L.-C., Lee, M.-Y., Hsu, C.-H., & Chen, C.-S. (2014). Selection of aptamers for fluorescent detection of alpha-methylacyl-CoA racemase by single-bead SELEX. Biosensors & Bioelectronics, 62, 106–112. https://doi.org/10.1016/j.bios.2014.06.027 Yao, J., Li, S., Zhang, L., Yang, Y., Gopinath, S. C. B., Lakshmipriya, T., & Zhou, Y. (2020). Aptamer-antibody dual probes on single-walled carbon nanotube bridged dielectrode: Comparative analysis on human blood clotting factor. International Journal of Biological Macromolecules, 151, 1133–1138. https://doi.org/10.1016/j.ijbiomac.2019.10.156 Zhang, Y., Gao, X., Gao, A., & Fan, M. (2012). A Biotin–Streptavidin Amplified Enzyme-Linked Immunosorbent Assay with Improved Sensitivity for Rapid Detection of Ractopamine in muscular tissue: Development and Nonspecific Adsorption Reduction. Food Analytical Methods, 5, 1214-1220. Zhao, R., Li, M., Xiao, P., Song, D., & Li, H. (2024). Advances in D-dimer testing: progress in harmonization of clinical assays and innovative detection methods. Analytical and Bioanalytical Chemistry. https://doi.org/10.1007/s00216-024-05207-x Zhou, Y., Zhang, H., Liu, L., Li, C., Chang, Z., Zhu, X., Ye, B., & Xu, M. (2016). Fabrication of an antibody-aptamer sandwich assay for electrochemical evaluation of levels of β-amyloid oligomers. Scientific Reports, 6, 35186. https://doi.org/10.1038/srep35186 Zubiate, P., Urrutia, A., Zamarreño, C. R., Egea-Urra, J., Fernández-Irigoyen, J., Giannetti, A., Baldini, F., Díaz, S., Matias, I. R., Arregui, F. J., Santamaría, E., Chiavaioli, F., & Del Villar, I. (2019). Fiber-based early diagnosis of venous thromboembolic disease by label-free D-dimer detection. Biosensors and Bioelectronics: X, 2, 100026. https://doi.org/10.1016/j.biosx.2019.100026 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98016 | - |
| dc.description.abstract | 研究探討了心肌梗塞和血栓形成的兩個關鍵生物標誌物:心肌肌鈣蛋白 I (cTnI) 和D-二聚體的診斷能力。研究重點在於使用胎牛血清模擬真實樣本中cTnI的檢測效能,以及對D-二聚體進行基於適配體的感測開發,後者尚未被充分探索。首先,表面電漿共振(SPR)評估了cTnI單株抗體與Tro4適體之間的結合位點重疊情況,確認了非干擾的結合位點,支持了使用抗體-適體三明治法的可行性。開發的抗體-適體三明治示出了對cTnI的劑量依賴效應,並在SPR中略微提高了3.27%的靈敏度,儘管檢測限度(LOD)也有所提高。為了評估真實樣本的影響,使用了間接酶聯免疫吸附試驗(ELISA)和間接酶聯寡核苷酸吸附試驗(ELONA)進行檢測,儘管存在20% 的胎牛血清干擾,抗體-適體三明治ELISA顯示出強大的靈敏度和14.2 nM的檢測限度。在間接ELONA中使用的通用polyA-生物素手柄達到了與傳統方法可比的結果,靈敏度為0.0254,LOD為20.0 nM。
對於D-二聚體,研究採用了基於單珠玻璃珠的系統性配位子指數增益演繹技術(single-bead SELEX),並使用人血清白蛋白(HSA)進行反向篩選以增強選擇性。選定的SB3R3和HB3R4 DNA序列池進行了進一步分析。SPR序列和親和力測試顯示,SB3R3-9和HB3R4-5具有劑量依賴的結合,其解離常數(KD)分別為78 nM和408 nM,但其結合反應弱且低於理論水平,使它們不適合用於開發有效的D-二聚體適體傳感器。而通過ELONA進行的SB3R3-9和HB3R4-5的親和力評估顯示,HB3R4-5對D-二聚體顯示出更好的劑量反應性和選擇性,並有效區分了包括空白組、HSA和凝血酶在內的對照組。相反,SB3R3-9既無劑量依賴性也無選擇性。此外,HB3R4-5的結合信號是SB3R3-9的兩倍,這與之前基於SPR的親和力結果相矛盾,這種差異突顯了需要進一步研究以闡明潛在原因的必要性。 | zh_TW |
| dc.description.abstract | This study explores the diagnostic capabilities of cardiac troponin I (cTnI) and D-dimer, essential biomarkers for myocardial infarction and thrombosis, respectively. The research focuses on the efficacy of cTnI detection in simulated real samples using fetal bovine serum and the development of aptamer-based sensing for D-dimer, which remains underexplored. Initially, surface plasmon resonance (SPR) assessed the overlap of binding sites between cTnI monoclonal antibody and Tro4 aptamer, confirming non-interfering binding sites and supporting the feasibility of a sandwich detection method. The developed antibody-aptamer sandwich demonstrated a dose-dependent effect on cTnI with a slight sensitivity increase of 3.27% in SPR, although the limit of detection (LOD) also increased. To evaluate the impact of real samples, indirect enzyme-linked immunosorbent assay (ELISA) and indirect enzyme-linked oligonucleotide adsorption assay (ELONA) were used, with the antibody-aptamer sandwich ELISA showing robust sensitivity and a detection limit of 14.2 nM, despite 20% fetal bovine serum interference. A universal polyA-biotin handle in indirect ELONA achieved comparable results to conventional methods, with a sensitivity of 0.0254 and LOD of 20.0 nM.
For D-dimer, the study applied single-bead SELEX with reverse screening using human serum albumin (HSA) to enhance selectivity. The selected SB3R3 and HB3R4 DNA sequence pools underwent further analysis. SPR sequencing and affinity tests revealed that SB3R3-9 and HB3R4-5 had dose-dependent binding with KDs of 78 nM and 408 nM, respectively, but their binding responses were weak and below theoretical levels, making them unsuitable for effective D-dimer aptamer sensors. Furthermore, affinity assessments of SB3R3-9 and HB3R4-5 through ELONA reveal that HB3R4-5 displays superior dose responsiveness and selectivity towards D-dimer, and differentiates effectively from controls including blank, HSA, and thrombin. Conversely, SB3R3-9 shows neither dose dependency nor selectivity. Moreover, HB3R4-5's binding signals are notably double those of SB3R3-9, presenting a conflict with previous SPR-based affinity results. This discrepancy highlights the need for additional research to elucidate the underlying causes. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-23T16:28:09Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-23T16:28:09Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iv Table of Contents vi List of Figures ix List of Tables xiii Frequent Abbreviations xiv Major Symbols xv Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Research Motivation 3 1.3 Research Aims 4 1.4 Research Design 5 Chapter 2 Literature Review 6 2.1 Significance of cTnI in Myocardial Infarction Diagnosis 6 2.2 The Correlation of D-Dimer and Thrombosis 12 2.3 Introduction of Aptamer and Aptasensing 19 2.3.1 Aptamer-based Sensing Technologies for cTnI 20 2.3.2 Aptamer-based Sensing Technologies for D-dimer 23 2.4 Sandwich-based Immunodetection for Sensing Performance Enhancement 26 Chapter 3 Materials and Methods 29 3.1 Instruments and Materials 29 3.1.1 Reagents and materials 29 3.1.2 Instruments and Equipment 35 3.2 Immunosensing Method for cTnI 37 3.2.1 Specificity Test of cTnI mAb by SPR 37 3.2.2 Binding Epitopes Characterization 40 3.2.3 Indirect Enzyme-linked immunosorbent assay (Indirect ELISA) 43 3.2.4 Indirect Enzyme-linked Oligonucleotide Assay (Indirect ELONA) 45 3.2.5 Antibody-aptamer Sandwich ELISA 47 3.2.6 Indirect ELONA with the Universal PolyA-biotin Handle 49 3.2.7 Immunosensing in the Real Sample 51 3.3 D-dimer Aptamer Selection 52 3.3.1 Surface Modification of Glass Beads 52 3.3.2 Bead ELISA 54 3.3.3 SELEX of D-dimer aptamer 55 3.3.4 SELEX Evolution Family Tree 57 3.3.5 Quantitative Polymerase Chain Reaction (qPCR) 59 3.3.6 DNA Quantification Curve 61 3.3.7 DNA Electrophoresis 62 3.4 DNA Pool Sequencing 64 3.4.1 Isolation of Single-Strand DNA 64 3.4.2 TA cloning 66 3.4.3 Vector Transformation and Examine 70 3.5 DNA Sequence Analysis by The MEME Suite 73 3.6 Sequences Affinity Evaluation by SPR 74 Chapter 4 Results and Discussion 76 4.1 Analysis of Binding Epitopes in cTnI Ligands 77 4.1.1 Specificity Testing of cTnI mAb 77 4.1.2 Differences in Binding Epitopes of cTnI Ligands 79 4.2 Sensing Performance Evaluation of cTnI mAb Alone and cTnI mAb-Tro4 Sandwich Pair 82 4.3 Conventional Indirect ELISA/ELONA Sensing for cTnI 85 4.4 Immunosensing of cTnI in the Real Sample 88 4.4.1 Sensing Efficacy of Indirect ELISA for cTnI in the Presence of FBS 88 4.4.2 Sensing Performance of Indirect ELONA under FBS Interference 95 4.5 Assessing the Sensing Performance of Aptamer-assisted Sandwich ELISA 99 4.6 Developing a Universal Handle for ELONA-Based Sensing 102 4.7 Selection Process of D-dimer aptamer 105 4.7.1 Establishing a DNA Quantification Curve from qPCR Results 105 4.7.2 Surface Modification of Glass Beads 107 4.7.3 Sequence Pools Evolution and Analysis 109 4.7.4 TA Cloning and Vector Transformation 115 4.8 Sequence Motifs Assessment of D-dimer Aptamer Candidates 119 4.9 D-dimer Aptamer Candidates Binding Performance Evaluation 122 4.9.1 Affinity Analysis of Aptamer Candidates in SB3R3 125 4.9.2 Affinity Analysis of Aptamer Candidates in HB3R4 128 4.10 Affinity Evaluation of SB3R3-9 and HB3R4-5 through ELONA 131 Chapter 5 Conclusions 134 5.1 Conclusions 134 5.2 Future Work 137 References 138 Appendix 148 A.1 Signal amplification of cTnI ELISA by aptamer-assisted strategy …... 148 A.2 Sensitivity Decrease Trend Under FBS interference in indirect ELONA 149 A.3 The sequencing result of SB3R3 ………………………………………..150 A.4 The sequencing result of HB3R4 ………………………………………..151 A.5 Scouting optimal immobilization pH value for D-dimer ………………..152 A.6 The result of MEME suite analyzing ……………………………………153 A.7 Patent-published D-dimer Aptamer Sensing performance Assessment ...154 A.8 Binding Analysis of Tro4-polyT to D-dimer …………………………....157 A.9 The Kinetic Analysis of Other Aptamer Candidates of SB3R3 ………...158 A.10 Kinetic Analysis of Additional HB3R4 Aptamer Candidates …………162 A.11 Co-immobilized sensing for cTnI and D-dimer …………………….....167 | - |
| dc.language.iso | en | - |
| dc.subject | 單珠玻璃珠的系統性配位子指數增益演繹技術 | zh_TW |
| dc.subject | 抗體-適體之三明治對 | zh_TW |
| dc.subject | D-二聚體 | zh_TW |
| dc.subject | 免疫檢測 | zh_TW |
| dc.subject | 心肌鈣蛋白I | zh_TW |
| dc.subject | Systematic evolution of ligands by exponential enrichment (single-bead SELEX) | en |
| dc.subject | Cardiac troponin I (cTnI) | en |
| dc.subject | D-dimer | en |
| dc.subject | Immunodetection | en |
| dc.subject | Antibody-aptamer sandwich pair | en |
| dc.title | 基於核酸適體探針之心肌鈣蛋白與D-二聚體免疫檢測探究 | zh_TW |
| dc.title | On the Aptamer Probe-based Immuodetection of Cardiac Troponin I and D-Dimer | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 廖泰慶;許如君;周呈霙;吳筱梅 | zh_TW |
| dc.contributor.oralexamcommittee | Tai-Ching Liao;Ju-Chun Hsu;Cheng-Ying Chou;Hsiao-Mei Wu | en |
| dc.subject.keyword | 心肌鈣蛋白I,D-二聚體,免疫檢測,抗體-適體之三明治對,單珠玻璃珠的系統性配位子指數增益演繹技術, | zh_TW |
| dc.subject.keyword | Cardiac troponin I (cTnI),D-dimer,Immunodetection,Antibody-aptamer sandwich pair,Systematic evolution of ligands by exponential enrichment (single-bead SELEX), | en |
| dc.relation.page | 171 | - |
| dc.identifier.doi | 10.6342/NTU202501149 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-06-16 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物機電工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 11.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
