請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97988完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖振鐸 | zh_TW |
| dc.contributor.advisor | Chen-Tuo Liao | en |
| dc.contributor.author | 王崇安 | zh_TW |
| dc.contributor.author | Chong-An Wang | en |
| dc.date.accessioned | 2025-07-23T16:21:53Z | - |
| dc.date.available | 2025-07-24 | - |
| dc.date.copyright | 2025-07-23 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-03 | - |
| dc.identifier.citation | Acosta-Pech, R., Crossa, J., de Los Campos, G., Teyssèdre, S., Claustres, B., Pérez-Elizalde, S., & Pérez-Rodríguez, P. (2017). Genomic models with genotype× environment interaction for predicting hybrid performance: an application in maize hybrids. Theoretical and Applied Genetics, 130, 1431-1440.
Alves, F. C., Galli, G., Matias, F. I., Vidotti, M. S., Morosini, J. S., & Fritsche-Neto, R. (2021). Impact of the complexity of genotype by environment and dominance modeling on the predictive accuracy of maize hybrids in multi-environment prediction models. Euphytica, 217, 1-17. Bandeira e Sousa, M., Cuevas, J., de Oliveira Couto, E. G., Pérez-Rodríguez, P., Jarquín, D., Fritsche-Neto, R., Burgueño, J., & Crossa, J. (2017). Genomic-enabled prediction in maize using kernel models with genotype× environment interaction. G3: Genes, Genomes, Genetics, 7(6), 1995-2014. Burgueño, J., de los Campos, G., Weigel, K., & Crossa, J. (2012). Genomic prediction of breeding values when modeling genotype× environment interaction using pedigree and dense molecular markers. Crop science, 52(2), 707-719. Covarrubias-Pazaran, G. (2016). Genome-assisted prediction of quantitative traits using the R package sommer. PloS one, 11(6), e0156744. Covarrubias-Pazaran, G. (2024). Fitting genotype by environment models in sommer. Crossa, J., de los Campos, G., Maccaferri, M., Tuberosa, R., Burgueño, J., & Pérez‐Rodríguez, P. (2016). Extending the marker× environment interaction model for genomic‐enabled prediction and genome‐wide association analysis in durum wheat. Crop science, 56(5), 2193-2209. Crossa, J., Pérez, P., de los Campos, G., Mahuku, G., Dreisigacker, S., & Magorokosho, C. (2011). Genomic selection and prediction in plant breeding. Journal of Crop Improvement, 25(3), 239-261. Cuevas, J., Crossa, J., Soberanis, V., Pérez‐Elizalde, S., Pérez‐Rodríguez, P., Campos, G. d. l., Montesinos‐López, O., & Burgueño, J. (2016). Genomic prediction of genotype× environment interaction kernel regression models. The plant genome, 9(3), plantgenome2016.2003.0024. De Los Campos, G., Naya, H., Gianola, D., Crossa, J., Legarra, A., Manfredi, E., Weigel, K., & Cotes, J. M. (2009). Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics, 182(1), 375-385. Des Marais, D. L., Hernandez, K. M., & Juenger, T. E. (2013). Genotype-by-environment interaction and plasticity: exploring genomic responses of plants to the abiotic environment. Annual Review of Ecology, Evolution, and Systematics, 44(1), 5-29. Gauch Jr, H. G. (2006). Statistical analysis of yield trials by AMMI and GGE. Crop science, 46(4), 1488-1500. Henderson, C. (1977). Best linear unbiased prediction of breeding values not in the model for records. Journal of Dairy Science, 60(5), 783-787. Henderson, C. R. (1975). Best linear unbiased estimation and prediction under a selection model. Biometrics, 423-447. Jarquín, D., Crossa, J., Lacaze, X., Du Cheyron, P., Daucourt, J., Lorgeou, J., Piraux, F., Guerreiro, L., Pérez, P., & Calus, M. (2014). A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theoretical and Applied Genetics, 127, 595-607. Jarquin, D., Howard, R., Crossa, J., Beyene, Y., Gowda, M., Martini, J. W., Covarrubias Pazaran, G., Burgueño, J., Pacheco, A., & Grondona, M. (2020). Genomic prediction enhanced sparse testing for multi-environment trials. G3: Genes, Genomes, Genetics, 10(8), 2725-2739. Lopez-Cruz, M., Crossa, J., Bonnett, D., Dreisigacker, S., Poland, J., Jannink, J.-L., Singh, R. P., Autrique, E., & de los Campos, G. (2015). Increased prediction accuracy in wheat breeding trials using a marker× environment interaction genomic selection model. G3: Genes, Genomes, Genetics, 5(4), 569-582. Meuwissen, T. H., Hayes, B. J., & Goddard, M. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), 1819-1829. Oakey, H., Cullis, B., Thompson, R., Comadran, J., Halpin, C., & Waugh, R. (2016). Genomic selection in multi-environment crop trials. G3: Genes, Genomes, Genetics, 6(5), 1313-1326. Rio, S., Akdemir, D., Carvalho, T., & Sanchez, J. I. Y. (2022). Assessment of genomic prediction reliability and optimization of experimental designs in multi-environment trials. Theoretical and Applied Genetics, 135(2), 405-419. Saint Pierre, C., Burgueño, J., Crossa, J., Fuentes Dávila, G., Figueroa López, P., Solís Moya, E., Ireta Moreno, J., Hernández Muela, V., Zamora Villa, V., & Vikram, P. (2016). Genomic prediction models for grain yield of spring bread wheat in diverse agro-ecological zones. Scientific reports, 6(1), 27312. Van Eeuwijk, F. A., Bustos‐Korts, D. V., & Malosetti, M. (2016). What should students in plant breeding know about the statistical aspects of genotype× environment interactions? Crop science, 56(5), 2119-2140. Vitezica, Z. G., Varona, L., & Legarra, A. (2013). On the additive and dominant variance and covariance of individuals within the genomic selection scope. Genetics, 195(4), 1223-1230. Yan, W. (2001). GGEbiplot—A Windows application for graphical analysis of multienvironment trial data and other types of two‐way data. Agronomy journal, 93(5), 1111-1118. Zeng, Z.-B., Wang, T., & Zou, W. (2005). Modeling quantitative trait loci and interpretation of models. Genetics, 169(3), 1711-1725. Zhang, X., Pérez-Rodríguez, P., Semagn, K., Beyene, Y., Babu, R., López-Cruz, M., San Vicente, F., Olsen, M., Buckler, E., & Jannink, J. (2015). Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using low-density and GBS SNPs. Heredity, 114(3), 291-299. Zhao, K., Tung, C.-W., Eizenga, G. C., Wright, M. H., Ali, M. L., Price, A. H., Norton, G. J., Islam, M. R., Reynolds, A., & Mezey, J. (2011). Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature communications, 2(1), 467. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97988 | - |
| dc.description.abstract | 基因體選拔 (genomic selection, GS) 可以透過全基因體遺傳資訊預測未觀察的基因型表現。在多環境條件下,基因型與環境 (genotype-by-environment, G×E) 交互作用被視為影響模型預測能力的重要因子。已有多名研究者將 G×E 交互作用納入模型結構中,並提出多種基因體最佳線性無偏預測 (genomic best linear unbiased prediction, GBLUP) 之模型。然而,目前對這些模型在多環境下的預測表現仍缺乏全面性的比較。本研究目的為評估不同 GBLUP 模型在多環境下的預測能力,並探討模型結構對預測性能之影響。我們使用水稻、玉米和大麥資料集基於真實基因體數據生成的模擬表型數據與其真實的表型數據,設計多種情境及交叉驗證方法來評估各模型的性能。結果顯示,MGE 模型的預測能力跟環境間遺傳相關性呈正相關。G×E 交互作用較弱時,MGE 模型顯示出更高且穩定的預測能力。G×E 交互作用較強時,雖然 MGE 模型整體性能有所下降,但相較於其他模型,仍具有良好的競爭力。至於 MGBLUP 模型,則因其模型結構複雜且待估計參數較多,所以在多數場景下測試時,性能仍有侷限。此外,跨環境中使用不同的訓練資料,可能有助於提升考量不同環境間遺傳共變異數的模型之預測能力。 | zh_TW |
| dc.description.abstract | Genomic selection (GS) can predict the performance of unobserved genotypes by utilizing whole-genome genetic information. Under multi-environmental conditions, genotype-by-environment (G×E) interaction is considered an important factor influencing prediction ability. Many researchers have incorporated G×E interactions into model structures and proposed various genomic best linear unbiased prediction (GBLUP) models. However, a comprehensive comparison of these models across multiple environments is still insufficient. This study aims to evaluate the prediction ability of different GBLUP models across multiple environments and to investigate the impact of model structure on prediction performance. Based on real genomic data from rice, DST2 maize, and barley, we generated simulated phenotypic data and also utilized their real phenotypic data. We then designed multiple scenarios and cross-validation methods to assess model performance. The results showed that the prediction ability of the MGE model was positively associated with the genetic correlation between environments. When G×E interactions were weak, the MGE model demonstrated higher and more stable prediction performance. When G×E interactions were strong, the overall performance of the MGE model declined, but it remained competitively comparable to other models. In contrast, the MGBLUP model exhibited limited performance in most scenarios, likely due to its complex structure and the large number of parameters to be estimated. Moreover, using different training data across environments may enhance the prediction ability of models that account for genetic covariance between environments. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-23T16:21:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-23T16:21:53Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 ii ABSTRACT iii CONTENTS iv List of Figures vi List of Tables ix Chapter 1 Introduction 1 1.1 Introduction 1 Chapter 2 Materials 4 2.1 Rice Dataset 4 2.2 DST2 maize Dataset 4 2.3 Barley Dataset 5 Chapter 3 Methods 6 3.1 Genomic Additive Effects Model 6 3.2 Simulation Method 10 3.3 Validation Systems 11 3.4 Software 14 Chapter 4 Results 15 4.1 Simulated Data Analysis 15 4.1.1 Rice Dataset 15 4.1.2 DST2 maize Dataset 17 4.1.3 Barley Dataset 17 4.2 Real Data Analysis 18 4.2.1 Rice Dataset 18 4.2.2 DST2 maize Dataset 18 4.2.3 Barley Dataset 19 Chapter 5 Discussion 33 5.1 Association Between Genetic Correlation and G×E Interaction Level 33 5.2 Prediction Ability under Different G×E Interaction Levels and CV Problems 34 5.3 Limitations of the MGBLUP model 36 References 43 Appendix A 47 | - |
| dc.language.iso | en | - |
| dc.subject | 多環境 | zh_TW |
| dc.subject | 基因體選拔 | zh_TW |
| dc.subject | 基因型與環境交互作用 | zh_TW |
| dc.subject | 基因體最佳線性無偏預測 | zh_TW |
| dc.subject | 交叉驗證方法 | zh_TW |
| dc.subject | cross-validation methods | en |
| dc.subject | genomic selection (GS) | en |
| dc.subject | genotype-by-environment (G×E) interaction | en |
| dc.subject | genomic best linear unbiased prediction (GBLUP) | en |
| dc.subject | multiple environments | en |
| dc.title | 多環境實驗中 GBLUP 模型之比較 | zh_TW |
| dc.title | A Comparison of GBLUP Models in Multi-environment Trials | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡欣甫;高振宏 | zh_TW |
| dc.contributor.oralexamcommittee | Shin-Fu Tsai;Chen-Hung Kao | en |
| dc.subject.keyword | 基因體選拔,基因型與環境交互作用,基因體最佳線性無偏預測,多環境,交叉驗證方法, | zh_TW |
| dc.subject.keyword | genomic selection (GS),genotype-by-environment (G×E) interaction,genomic best linear unbiased prediction (GBLUP),multiple environments,cross-validation methods, | en |
| dc.relation.page | 47 | - |
| dc.identifier.doi | 10.6342/NTU202501392 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-04 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 農藝學系 | - |
| dc.date.embargo-lift | 2030-06-29 | - |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.45 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
