請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97987完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡政安 | zh_TW |
| dc.contributor.advisor | Chen-An Tsai | en |
| dc.contributor.author | 洪郁婷 | zh_TW |
| dc.contributor.author | Yu-Ting Hung | en |
| dc.date.accessioned | 2025-07-23T16:21:38Z | - |
| dc.date.available | 2025-07-24 | - |
| dc.date.copyright | 2025-07-23 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-06 | - |
| dc.identifier.citation | Dlugokencky, E. and P. Tans, Trends in atmospheric carbon dioxide, National Oceanic & Atmospheric Administration, Earth System Research Laboratory (NOAA/ESRL). 2018.
Masson-Delmotte, V., et al., Summary for policymakers. 2021. Dorrepaal, E., et al., Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature, 2009. 460(7255): p. 616-619. Lal, R., et al., The role of soil in regulation of climate. Philosophical Transactions of the Royal Society B, 2021. 376(1834): p. 20210084. Change, I.C., Land: an IPCC special report on climate change. Desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, 2019. 41. Wollenberg, E., M.-L. Tapio-Bistroem, and M. Grieg-Gran, Climate change mitigation and agriculture: designing projects and policies for smallholder farmers, in Climate change mitigation and agriculture. 2013, Routledge. p. 3-27. Sanderman, J., T. Hengl, and G.J. Fiske, Soil carbon debt of 12,000 years of human land use. Proc Natl Acad Sci U S A, 2017. 114(36): p. 9575-9580. Rockstrom, J., et al., Safe and just Earth system boundaries. Nature, 2023. 619(7968): p. 102-111. Lobus, N.V., et al., Carbon footprint reduction and climate change mitigation: A review of the approaches, technologies, and implementation challenges. C, 2023. 9(4): p. 120. Sanaullah, M., et al., Carbon sequestration for sustainable agriculture. Innovations in sustainable agriculture, 2019: p. 469-500. Faurès, J., et al., Climate smart agriculture sourcebook. FAO, Rome, 2013. 557. Chenu, C., et al., The «4 per 1000» initiative. Soils for food security and climate. 2018. Griscom, B.W., et al., Natural climate solutions. Proc Natl Acad Sci U S A, 2017. 114(44): p. 11645-11650. Singh, S., B.R. Kiran, and S.V. Mohan, Carbon farming: a circular framework to augment CO 2 sinks and to combat climate change. Environmental Science: Advances, 2024. 3(4): p. 522-542. Colglazier, W., Sustainable development agenda: 2030. Science, 2015. 349(6252): p. 1048-1050. Hallam, A., I.C. Anderson, and D.R. Buxton, Comparative economic analysis of perennial, annual, and intercrops for biomass production. Biomass and Bioenergy, 2001. 21(6): p. 407-424. Siddique, I.A., et al., Soil organic carbon stock change following perennialization: A meta-analysis. Agronomy for Sustainable Development, 2023. 43(5): p. 58. Badgery, W.B., et al., The influence of land use and management on soil carbon levels for crop-pasture systems in Central New South Wales, Australia. Agriculture, Ecosystems & Environment, 2014. 196: p. 147-157. Knops, J.M. and K.L. Bradley, Soil carbon and nitrogen accumulation and vertical distribution across a 74‐year chronosequence. Soil Science Society of America Journal, 2009. 73(6): p. 2096-2104. Orgill, S.E., et al., Sensitivity of soil carbon to management and environmental factors within Australian perennial pasture systems. Geoderma, 2014. 214: p. 70-79. Soussana, J.-F. and G. Lemaire, Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agriculture, Ecosystems & Environment, 2014. 190: p. 9-17. Stahl, C., et al., Soil carbon stocks after conversion of Amazonian tropical forest to grazed pasture: importance of deep soil layers. Regional environmental change, 2016. 16(7): p. 2059-2069. 環境部. 氣候變遷因應法. 2023; Available from: https://oaout.moenv.gov.tw/law/LawContent.aspx?id=GL005511. 行政院. 臺灣2050淨零排放. 2022; Available from: https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/7a65a06e-3f71-4c68-b368-85549fbca5d1. 農業部. 自然碳匯新里程碑 改進農業土壤管理方法學上線. 2025; Available from: https://www.moa.gov.tw/theme_data.php?id=9706&sub_theme=agri&theme=news. Ledo, A., et al., A global, empirical, harmonised dataset of soil organic carbon changes under perennial crops. Scientific Data, 2019. 6(1): p. 57. Pribyl, D.W., A critical review of the conventional SOC to SOM conversion factor. Geoderma, 2010. 156(3-4): p. 75-83. Koegel-Knabner, I. and C. Rumpel, Advances in molecular approaches for understanding soil organic matter composition, origin, and turnover: a historical overview. Advances in agronomy, 2018. 149: p. 1-48. Lehmann, J. and M. Kleber, The contentious nature of soil organic matter. Nature, 2015. 528(7580): p. 60-68. Liang, C., J.P. Schimel, and J.D. Jastrow, The importance of anabolism in microbial control over soil carbon storage. Nature microbiology, 2017. 2(8): p. 1-6. Lal, R., Soil health and carbon management. Food and energy security, 2016. 5(4): p. 212-222. Ball, D., Loss‐on‐ignition as an estimate of organic matter and organic carbon in non‐calcareous soils. Journal of soil science, 1964. 15(1): p. 84-92. Heiri, O., A.F. Lotter, and G. Lemcke, Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of paleolimnology, 2001. 25: p. 101-110. Nelson, D.W. and L.E. Sommers, Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 3 Chemical methods, 1996. 5: p. 961-1010. Walkley, A. and I.A. Black, An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 1934. 37(1): p. 29-38. Schumacher, B.A., Methods for the determination of total organic carbon (TOC) in soils and sediments. 2002: US Environmental Protection Agency, Office of Research and Development …. FAO., Measuring and modelling soil carbon stocks and stock changes in livestock production systems: Guidelines for assessment (Version 1). Livestock Environmental Assessment and Performance (LEAP) Partnership. 2019. Ellert, B.H. and J. Bettany, Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Canadian Journal of Soil Science, 1995. 75(4): p. 529-538. Standard, G. Soil Organic Carbon Framework Methodology (Version 1.0). 2020; Available from: https://globalgoals.goldstandard.org/402-luf-agr-fm-soil-organic-carbon-framework-methodolgy/. Verra. VM0042 Improved Agricultural Land Management, v2.1. 2024; Available from: https://verra.org/methodologies/vm0042-improved-agricultural-land-management-v2-1/?utm_source=chatgpt.com. Ledo, A., et al., Changes in soil organic carbon under perennial crops. Glob Chang Biol, 2020. 26(7): p. 4158-4168. Siddique, I.A., et al., Soil organic carbon stock change following perennialization: a meta-analysis. Agronomy for Sustainable Development, 2023. 43(5). Wu, Y., et al., Soil organic carbon sequestration rate and spatiotemporal dynamics under perennial energy crops cultivation: A global meta-analysis. Soil and Tillage Research, 2024. 240. Stel, V., et al., The randomized clinical trial: an unbeatable standard in clinical research? Kidney international, 2007. 72(5): p. 539-542. Jager, K., et al., Confounding: what it is and how to deal with it. Kidney international, 2008. 73(3): p. 256-260. Rubin, D.B., Causal Inference Using Potential Outcomes. Journal of the American Statistical Association, 2005. 100(469): p. 322-331. Rubin, D.B., Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of educational Psychology, 1974. 66(5): p. 688. Imbens, G.W. and D.B. Rubin, Causal inference in statistics, social, and biomedical sciences. 2015: Cambridge university press. Rosenbaum, P.R. and D.B. Rubin, The central role of the propensity score in observational studies for causal effects. Biometrika, 1983. 70(1): p. 41-55. Rubin, D.B., Comment: Which ifs have causal answers. Journal of the American statistical association, 1986. 81(396): p. 961-962. Desai, R.J. and J.M. Franklin, Alternative approaches for confounding adjustment in observational studies using weighting based on the propensity score: a primer for practitioners. bmj, 2019. 367. Kang, J.D. and J.L. Schafer, Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data. 2007. Zubizarreta, J.R., Stable weights that balance covariates for estimation with incomplete outcome data. Journal of the American Statistical Association, 2015. 110(511): p. 910-922. Imai, K. and M. Ratkovic, Covariate Balancing Propensity Score. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2013. 76(1): p. 243-263. Huling, J.D. and S. Mak, Energy balancing of covariate distributions. Journal of Causal Inference, 2024. 12(1). Chatterjee, S. and A.S. Hadi, Regression analysis by example. 2015: John Wiley & Sons. Harrell, F.E., Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. Vol. 608. 2001: Springer. Tibshirani, R., Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology, 1996. 58(1): p. 267-288. Friedman, J.H., Greedy function approximation: a gradient boosting machine. Annals of statistics, 2001: p. 1189-1232. Breiman, L., Random forests. Machine learning, 2001. 45: p. 5-32. Breiman, L., et al., Classification and regression trees. 2017: Routledge. Kuhn, M. and K. Johnson, Applied predictive modeling. Vol. 26. 2013: Springer. Lundberg, S.M. and S.-I. Lee, A unified approach to interpreting model predictions. Advances in neural information processing systems, 2017. 30. Zhang, F. and Q. Li, Robust bent line regression. J Stat Plan Inference, 2017. 185: p. 41-55. Flachaire, E., Bootstrapping heteroskedastic regression models: wild bootstrap vs. pairs bootstrap. Computational Statistics & Data Analysis, 2005. 49(2): p. 361-376. Ali, M.S., et al., Reporting of covariate selection and balance assessment in propensity score analysis is suboptimal: a systematic review. Journal of clinical epidemiology, 2015. 68(2): p. 122-131. Alster, C.J., et al., Microbial enzymatic responses to drought and to nitrogen addition in a southern California grassland. Soil Biology and Biochemistry, 2013. 64: p. 68-79. Canarini, A., L.P. Kiær, and F.A. Dijkstra, Soil carbon loss regulated by drought intensity and available substrate: A meta-analysis. Soil Biology and Biochemistry, 2017. 112: p. 90-99. Hoeppner, S.S. and J.S. Dukes, Interactive responses of old‐field plant growth and composition to warming and precipitation. Global Change Biology, 2012. 18(5): p. 1754-1768. Zhou, Z., C. Wang, and Y. Luo, Response of soil microbial communities to altered precipitation: A global synthesis. Global Ecology and Biogeography, 2018. 27(9): p. 1121-1136. Bai, Y. and M.F. Cotrufo, Grassland soil carbon sequestration: Current understanding, challenges, and solutions. Science, 2022. 377(6606): p. 603-608. Doetterl, S., et al., Soil carbon storage controlled by interactions between geochemistry and climate. Nature Geoscience, 2015. 8(10): p. 780-783. Meier, I.C. and C. Leuschner, Variation of soil and biomass carbon pools in beech forests across a precipitation gradient. Global Change Biology, 2010. 16(3): p. 1035-1045. Fröberg, M., et al., Evaluation of effects of sustained decadal precipitation manipulations on soil carbon stocks. Biogeochemistry, 2008. 89: p. 151-161. Fröberg, M., et al., Evaluation of effects of sustained decadal precipitation manipulations on soil carbon stocks. Biogeochemistry, 2008. 89(2): p. 151-161. Zhao, Y., et al., Economics-and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proceedings of the National Academy of Sciences, 2018. 115(16): p. 4045-4050. Poulton, P., et al., Major limitations to achieving “4 per 1000” increases in soil organic carbon stock in temperate regions: Evidence from long‐term experiments at Rothamsted Research, United Kingdom. Global change biology, 2018. 24(6): p. 2563-2584. Six, J., et al., Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and soil, 2002. 241: p. 155-176. Pan, J., et al., Microaggregates regulated by edaphic properties determine the soil carbon stock in Tibetan alpine grasslands. Catena, 2021. 206: p. 105570. Clarholm, M., U. Skyllberg, and A. Rosling, Organic acid induced release of nutrients from metal-stabilized soil organic matter–the unbutton model. Soil Biology and Biochemistry, 2015. 84: p. 168-176. Huang, X.-F., et al., Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany, 2014. 92(4): p. 267-275. Kutsch, W.L., M. Bahn, and A. Heinemeyer, Soil carbon dynamics: an integrated methodology. 2009: Cambridge University Press. Stockmann, U., et al., The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment, 2013. 164: p. 80-99. Amado, T.J.C., et al., Potencial de culturas de cobertura em acumular carbono e nitrogênio no solo no plantio direto e a melhoria da qualidade ambiental. Revista brasileira de ciência do solo, 2001. 25: p. 189-197. Martani, E., et al., Belowground biomass C outweighs soil organic C of perennial energy crops: Insights from a long‐term multispecies trial. GCB Bioenergy, 2021. 13(3): p. 459-472. Dheri, G., R. Lal, and N.I. Moonilall, Soil carbon stocks and water stable aggregates under annual and perennial biofuel crops in central Ohio. Agriculture, Ecosystems & Environment, 2022. 324: p. 107715. Stewart, C.E., et al., Soil carbon saturation: Implications for measurable carbon pool dynamics in long-term incubations. Soil Biology and Biochemistry, 2009. 41(2): p. 357-366. Cotrufo, M.F., et al., The M icrobial E fficiency‐M atrix S tabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global change biology, 2013. 19(4): p. 988-995. Guillaume, T., et al., Soil organic carbon saturation in cropland-grassland systems: Storage potential and soil quality. Geoderma, 2022. 406. Wang, B., et al., Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biology and Biochemistry, 2021. 162. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97987 | - |
| dc.description.abstract | 氣候變遷加劇下,土壤作為重要碳匯,其儲存有機碳的潛力備受重視。多年生作物系統因具備持續輸入碳與低土壤擾動的特性,被視為有效的碳農業策略之一。本研究以全球多年生作物系統資料集為基礎,分析不同變化情境與土地利用轉變下對土壤有機碳儲量變化的影響,並結合機器學習與因果推論方法進行評估,作為自然碳匯策略之量化依據。
運用逐步迴歸、LASSO、隨機森林與梯度提升樹等模型進行重要變數篩選,以SHAP值解釋關鍵因子對土壤有機碳變化預測之貢獻;接續以變異數分析與穩健彎曲線迴歸辨識土壤採樣深度與作物種植年數對土壤有機碳變化的影響趨勢與轉折點;最終結合四種加權方法—逆機率加權、協變數平衡傾向分數、穩定平衡權重與能量平衡權重—建構因果模型以估計不同變化情境與土地利用對土壤有機碳的平均處理效應。 結果顯示,最濕季節降雨量、初始土壤有機碳含量為影響土壤有機碳變化之重要因子,持續種植多年生作物於第13.4年出現高峰,低土壤擾動下平均處理效應為6.7%;農田轉作的情境下,土壤有機碳變化率平均提升約4.3%,顯著提升土壤有機碳儲量,顯示其潛在增碳效益。 綜上所述,氣候與初始土壤條件為影響多年生作物系統下土壤有機碳累積的重要因子。透過機器學習與因果推論方法整合之分析框架,不僅驗證多年生作物持續種植具備顯著增碳潛力,亦指出土地利用轉作情境下,農田轉作多年生作物能有效提升土壤有機碳變化率,為自然碳匯策略與碳農業政策的推動提供實證依據。 | zh_TW |
| dc.description.abstract | Soils represent a major leverage point for climate mitigation, functioning as significant reservoirs of organic carbon. Perennial cropping systems, characterized by continuous carbon inputs and low disturbance, are considered promising nature-based solutions. This study uses a global dataset of perennial systems to evaluate soil organic carbon (SOC) responses under different transition conditions and land-use types. The objectives of this study are to combine machine learning algorithms and causal inference to identify key drivers and estimate treatment effects.
Utilizing stepwise regression, LASSO, random forest, and gradient boosting, we identified key predictors of SOC change. SHAP (Shapley Additive Explanations) values were used to interpret variable contributions. Temporal and depth-related trends were examined via ANOVA and robust bent line regression to identify structural inflection points. A causal inference framework incorporating four weighting methods—inverse probability weighting (IPW), covariate balancing propensity scores (CBPS), stable balancing weights (SBW), and energy balancing weights (EBW)—was used to estimate average treatment effects on the relative change in SOC. Results show that wettest-quarter precipitation and initial SOC stock are dominant drivers. SOC accumulation peaked at 13.4 years under continuous perennial cropping, with an average treatment effect of 6.7% in low-disturbance systems. Cropland-to-perennial transitions increased SOC by 4.3% on average. These findings highlight the importance of climate and baseline soil conditions for SOC accumulation. The integrated analytical framework demonstrates the value of combining machine learning and causal inference to evaluate carbon farming strategies. This study offers empirical evidence supporting perennial cropping as an effective approach to enhance terrestrial carbon sequestration. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-23T16:21:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-23T16:21:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv 目 次 v 圖 次 vii 表 次 ix 第一章 前言 1 1.1 研究動機 1 1.2 研究目的 3 第二章 文獻回顧 4 2.1 土壤有機碳簡介 4 2.2 多年生作物系統與土壤有機碳 5 2.3 因果推論 7 2.3.1 干擾因子 7 2.3.2 魯賓因果模型 (Rubin causal model) 8 2.2.3 因果辨識 8 2.2.4 加權方法 10 第三章 材料與方法 12 3.1 資料集介紹 13 3.2 重要變數挑選 16 3.2.1 逐步迴歸 (stepwise regression) 16 3.2.2 LASSO (least absolute shrinkage and selection operator) 17 3.2.3 梯度提升決策樹 (gradient boosting decision tree) 18 3.2.4 隨機森林 (random forest) 19 3.2.5 模型表現 21 3.2.6 特徵重要性:SHAP (Shapley Additive exPlanations) value 22 3.3 穩健彎曲線迴歸 (robust bent line regression) 22 3.4 ANOVA 25 3.5 因果推論 26 3.5.1 加權方法 26 3.5.2 權重表現:協變數平衡性評估指標 29 3.5.3 加權線性迴歸 (weighted linear regression) 30 第四章 結果 31 4.1 不同變化情境類型對SOC變化的影響 31 4.2 不同土地利用變化對SOC變化的影響 34 第五章 討論 38 第六章 結論 42 參考文獻 43 附錄 50 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 因果推論 | zh_TW |
| dc.subject | 穩健彎曲線迴歸 | zh_TW |
| dc.subject | 變異數分析 | zh_TW |
| dc.subject | 土壤有機碳 | zh_TW |
| dc.subject | 多年生作物系統 | zh_TW |
| dc.subject | 碳農業 | zh_TW |
| dc.subject | machine learning | en |
| dc.subject | carbon farming | en |
| dc.subject | perennial cropping systems | en |
| dc.subject | soil organic carbon | en |
| dc.subject | causal inference | en |
| dc.subject | robust bent line regression | en |
| dc.subject | ANOVA | en |
| dc.title | 土壤有機碳變化之整合統計分析 | zh_TW |
| dc.title | Integrated Statistical Analysis of Changes in Soil Organic Carbon | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 薛慧敏;陳琬萍 | zh_TW |
| dc.contributor.oralexamcommittee | Huey-Miin Hsueh;Wan-Ping Chen | en |
| dc.subject.keyword | 土壤有機碳,多年生作物系統,碳農業,機器學習,變異數分析,穩健彎曲線迴歸,因果推論, | zh_TW |
| dc.subject.keyword | soil organic carbon,perennial cropping systems,carbon farming,machine learning,ANOVA,robust bent line regression,causal inference, | en |
| dc.relation.page | 93 | - |
| dc.identifier.doi | 10.6342/NTU202501521 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-08 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 農藝學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 5.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
