Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97984Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 廖振鐸 | zh_TW |
| dc.contributor.advisor | Chen-Tuo Liao | en |
| dc.contributor.author | 劉子捷 | zh_TW |
| dc.contributor.author | Zi-Jie Liu | en |
| dc.date.accessioned | 2025-07-23T16:20:52Z | - |
| dc.date.available | 2025-07-24 | - |
| dc.date.copyright | 2025-07-23 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-03 | - |
| dc.identifier.citation | Akdemir, D., Sanchez, J. I., & Jannink, J.-L. (2015). Optimization of genomic selection training populations with a genetic algorithm. Genetics Selection Evolution, 47, 1-10.
Alves, F. C., Galli, G., Matias, F. I., Vidotti, M. S., Morosini, J. S., & Fritsche-Neto, R. (2021). Impact of the complexity of genotype by environment and dominance modeling on the predictive accuracy of maize hybrids in multi-environment prediction models. Euphytica, 217(3). Blondel, M., Onogi, A., Iwata, H., & Ueda, N. (2015). A Ranking Approach to Genomic Selection. PLoS One, 10(6), e0128570. Burgueño, J., Crossa, J., Cornelius, P. L., & Yang, R. C. (2008). Using factor analytic models for joining environments and genotypes without crossover genotype× environment interaction. Crop Science, 48(4), 1291-1305. Chen, S. P., Sung, W. H., & Liao, C. T. (2024). Constructing training sets for genomic selection to identify superior genotypes in candidate populations. Theor Appl Genet, 137(12), 270. Cockram, J., White, J., Zuluaga, D. L., Smith, D., Comadran, J., Macaulay, M., Luo, Z., Kearsey, M. J., Werner, P., Harrap, D., Tapsell, C., Liu, H., Hedley, P. E., Stein, N., Schulte, D., Steuernagel, B., Marshall, D. F., Thomas, W. T., Ramsay, L., . . . O'Sullivan, D. M. (2010). Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Proc Natl Acad Sci U S A, 107(50), 21611-21616. Covarrubias-Pazaran, G. (2016). Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer. PLoS One, 11(6), e0156744. Crossa, J., de los Campos, G., Maccaferri, M., Tuberosa, R., Burgueño, J., & Pérez‐Rodríguez, P. (2016). Extending the marker× environment interaction model for genomic‐enabled prediction and genome‐wide association analysis in durum wheat. Crop Science, 56(5), 2193-2209. Cullis, B. R., Smith, A. B., Cocks, N. A., & Butler, D. G. (2020). The design of early-stage plant breeding trials using genetic relatedness. Journal of Agricultural, Biological and Environmental Statistics, 25, 553-578. Fernández-González, J., Akdemir, D., & Isidro y Sánchez, J. (2023). A comparison of methods for training population optimization in genomic selection. Theoretical and Applied Genetics, 136(3), 30. Finlay, K., & Wilkinson, G. (1963). The analysis of adaptation in a plant-breeding programme. Australian journal of agricultural research, 14(6), 742-754. Gauch Jr, H. G. (1988). Model selection and validation for yield trials with interaction. Biometrics, 705-715. Heffner, E. L., Lorenz, A. J., Jannink, J. L., & Sorrells, M. E. (2010). Plant breeding with genomic selection: gain per unit time and cost. Crop Science, 50(5), 1681-1690. Henderson, C. (1975). Best linear unbiased estimation and prediction under a selection model. Biometrics, 423-447. Henderson, C. (1977). Best linear unbiased prediction of breeding values not in the model for records. Journal of Dairy Science, 60(5), 783-787. Heslot, N., Akdemir, D., Sorrells, M. E., & Jannink, J.-L. (2014). Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions. Theoretical and Applied Genetics, 127, 463-480. Holland, J. H. (1992). Genetic Algorithms. Scientific American, 267, 66-73. Isidro, J., Jannink, J. L., Akdemir, D., Poland, J., Heslot, N., & Sorrells, M. E. (2015). Training set optimization under population structure in genomic selection. Theor Appl Genet, 128(1), 145-158. Jarquín, D., Howard, R., Crossa, J., Beyene, Y., Gowda, M., Martini, J. W. R., Covarrubias Pazaran, G., Burgueno, J., Pacheco, A., Grondona, M., Wimmer, V., & Prasanna, B. M. (2020). Genomic Prediction Enhanced Sparse Testing for Multi-environment Trials. G3 (Bethesda), 10(8), 2725-2739. Laloë, D. (1993). Precision and information in linear models of genetic evaluation. Genetics Selection Evolution, 25(6), 557-576. Lopez-Cruz, M., Crossa, J., Bonnett, D., Dreisigacker, S., Poland, J., Jannink, J. L., Singh, R. P., Autrique, E., & de los Campos, G. (2015). Increased prediction accuracy in wheat breeding trials using a marker x environment interaction genomic selection model. G3 (Bethesda), 5(4), 569-582. Malosetti, M., Bustos‐Korts, D., Boer, M. P., & van Eeuwijk, F. A. (2016). Predicting responses in multiple environments: issues in relation to genotype× environment interactions. Crop Science, 56(5), 2210-2222. Meuwissen, T. H., Hayes, B. J., & Goddard, M. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), 1819-1829. Oakey, H., Cullis, B., Thompson, R., Comadran, J., Halpin, C., & Waugh, R. (2016). Genomic Selection in Multi-environment Crop Trials. G3 (Bethesda), 6(5), 1313-1326. Ou, J. H., & Liao, C. T. (2019). Training set determination for genomic selection. Theor Appl Genet, 132(10), 2781-2792. Rincent, R., Kuhn, E., Monod, H., Oury, F. X., Rousset, M., Allard, V., & Le Gouis, J. (2017). Optimization of multi-environment trials for genomic selection based on crop models. Theor Appl Genet, 130(8), 1735-1752. Rincent, R., Laloe, D., Nicolas, S., Altmann, T., Brunel, D., Revilla, P., Rodriguez, V. M., Moreno-Gonzalez, J., Melchinger, A., Bauer, E., Schoen, C. C., Meyer, N., Giauffret, C., Bauland, C., Jamin, P., Laborde, J., Monod, H., Flament, P., Charcosset, A., & Moreau, L. (2012). Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: comparison of methods in two diverse groups of maize inbreds (Zea mays L.). Genetics, 192(2), 715-728. Rio, S., Akdemir, D., Carvalho, T., & Sanchez, J. I. Y. (2022). Assessment of genomic prediction reliability and optimization of experimental designs in multi-environment trials. Theor Appl Genet, 135(2), 405-419. Spearman, C. (1904). The Proof and Measurement of Association between Two Things. The American Journal of Psychology, 15(1), 72-101. Spindel, J., Begum, H., Akdemir, D., Virk, P., Collard, B., Redona, E., Atlin, G., Jannink, J. L., & McCouch, S. R. (2015). Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet, 11(2), e1004982. van Eeuwijk, F. A., Bustos‐Korts, D. V., & Malosetti, M. (2016). What Should Students in Plant Breeding Know About the Statistical Aspects of Genotype × Environment Interactions? Crop Science, 56(5), 2119-2140. Venables, B., & Ripley, B. (2002). Modern Applied Statistics With S. In (4 ed.). Wu, P.-Y., Ou, J.-H., & Liao, C.-T. (2023). Sample size determination for training set optimization in genomic prediction. Theoretical and Applied Genetics, 136(3), 57. Wu, P. Y., Tung, C. W., Lee, C. Y., & Liao, C. T. (2019). Genomic Prediction of Pumpkin Hybrid Performance. Plant Genome, 12(2). Yan, W. (2001). GGEbiplot—A Windows application for graphical analysis of multienvironment trial data and other types of two‐way data. Agronomy journal, 93(5), 1111-1118. Yan, W., Kang, M. S., Ma, B., Woods, S., & Cornelius, P. L. (2007). GGE biplot vs. AMMI analysis of genotype‐by‐environment data. Crop Science, 47(2), 643-653. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97984 | - |
| dc.description.abstract | 基因型與環境交互作用 (Genotype-by-environment Interaction, G×E) 是植物育種中的常見現象,此因子會影響多環境試驗 (Multi-environment Trials, METs) 中的選拔準確性。將基因體最佳線性無偏預測模型 (Genomic Best Linear Unbiased Prediction Model, GBLUP Model) 納入G×E效應並進行基因體選種 (Genomic Selection, GS) ,能在多環境試驗之中提升預測準確性。本研究使用兩種決定係數 (Coefficient of Determination, CD) 指標應用於訓練集最佳化中的方法,並針對識別優良品種的能力,將其與隨機抽取訓練集之方法進行比較。本研究使用基因演算法 (Genetic Algorithm, GA) ,從三個作物資料集: 水稻 (Oryza sativa L.)、大麥 (Hordeum vulgare L.) 和玉米 (Zea mays L.) 中選出最佳訓練集。以三項評估指標: 標準化折扣累積增益 (Normalized Discounted Cumulative Gain, NDCG) 、Spearman等級相關係數 (Spearman’s Rank Correlation, SRC)、以及名次總和比率 (Rank Sum Ratio, RSratio) 評估上述三種方法的表現。結果顯示,基於 CD 指標選出的訓練集在三項評估指標上都表現得較好。將兩個CD指標的表現進行比較,結果顯示 CDmean(v2) 於SRC與RSratio兩項指標皆優於CDmean.MET,尤其是在使用較大的訓練集規模時。因此,本研究建議使用 CDmean(v2) 在多環境試驗中將訓練集最佳化。 | zh_TW |
| dc.description.abstract | Genotype-by-environment interaction (G×E) is a key factor in plant breeding, impacting multi-environment trials (METs) for accurate selection. Genomic selection (GS) can improve prediction accuracy across environments, especially with Genomic best linear unbiased prediction (GBLUP) models that account for G×E effects. This study evaluates training set optimization using two coefficient of determination (CD) criteria and compares them to random selection based on the ability to identify elite varieties. A genetic algorithm identified optimal training sets from three datasets of rice (Oryza sativa L.), barley (Hordeum vulgare L.), and maize (Zea mays L.), and their performance was assessed using normalized discounted cumulative gain (NDCG), Spearman’s rank correlation (SRC), and rank sum ratio (RSratio). CD-based training sets showed better performance among these evaluation metrics. The performance of the two CD criteria were compared. CDmean(v2) outperformed CDmean.MET in SRC and RSratio especially in larger training set sizes. Therefore, CDmean(v2) was highly recommended to select training sets in multi-environment trials. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-23T16:20:52Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-23T16:20:52Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書
Acknowledgement i 摘要 ii Abstract iii Contents iv List of Figures vi List of Tables vii Chapter 1 Introduction 1 Chapter 2 Materials 5 2.1 Tropical rice dataset 5 2.2 Barley dataset 5 2.3 DST2 maize dataset 6 Chapter 3 Methods 7 3.1 A multi-environment GS model 7 3.2 Coefficient of determination 11 3.3 Genetic algorithm 13 3.4 Evaluation metrics 14 3.4.1 Normalized discounted cumulative gain 15 3.4.2 Spearman’s rank correlation 16 3.4.3 Rank sum ratio 16 3.5 Simulation studies 17 3.6 Real data analyses 19 Chapter 4 Results 21 4.1 Simulation studies 21 4.1.1 Normalized discounted cumulative gain 22 4.1.2 Spearman’s rank correlation 23 4.1.3 Rank sum ratio 24 4.2 Real data analyses 26 4.2.1 Normalized discounted cumulative gain 26 4.2.2 Spearman’s rank correlation 27 4.2.3 Rank sum ratio 27 Chapter 5 Discussion 39 5.1 The performance of the three evaluation metrics 39 5.2 Training sets determined by CD criteria have high r2 40 5.3 Robustness of CD criteria against parameters 40 5.4 Correlation of genetic effects between environments 41 References 49 Appendix A – Var(g ̂_c) and Cov(g_c,g ̂_c) are equivalent mathematically 52 Appendix B – Supplementary Materials 54 | - |
| dc.language.iso | en | - |
| dc.subject | 決定係數 | zh_TW |
| dc.subject | 訓練集最佳化 | zh_TW |
| dc.subject | 基因體選種 | zh_TW |
| dc.subject | 基因型與環境交互作用 | zh_TW |
| dc.subject | 多環境試驗 | zh_TW |
| dc.subject | 基因體最佳線性無偏預測模型 | zh_TW |
| dc.subject | Genomic Best Linear Unbiased Prediction Models | en |
| dc.subject | Coefficient of Determination | en |
| dc.subject | Training Set Optimization | en |
| dc.subject | Genomic Selection | en |
| dc.subject | G×E Interaction | en |
| dc.subject | Multi-environment Trials | en |
| dc.title | 於多環境試驗中進行基因體選種之訓練集最佳化 | zh_TW |
| dc.title | Training Set Optimization in Genomic Selection for Multi-environment Trials | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡欣甫;高振宏 | zh_TW |
| dc.contributor.oralexamcommittee | Shin-Fu Tsai;Chen-Hung Kao | en |
| dc.subject.keyword | 訓練集最佳化,基因體選種,基因型與環境交互作用,多環境試驗,基因體最佳線性無偏預測模型,決定係數, | zh_TW |
| dc.subject.keyword | Training Set Optimization,Genomic Selection,G×E Interaction,Multi-environment Trials,Genomic Best Linear Unbiased Prediction Models,Coefficient of Determination, | en |
| dc.relation.page | 54 | - |
| dc.identifier.doi | 10.6342/NTU202501399 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-03 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 農藝學系 | - |
| dc.date.embargo-lift | 2030-06-30 | - |
| Appears in Collections: | 農藝學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 3.74 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
