Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97980
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor管希聖zh_TW
dc.contributor.advisorHsi-Sheng Goanen
dc.contributor.author吳奕賢zh_TW
dc.contributor.authorYi-Hsien Wuen
dc.date.accessioned2025-07-23T16:19:54Z-
dc.date.available2025-07-24-
dc.date.copyright2025-07-23-
dc.date.issued2025-
dc.date.submitted2025-07-07-
dc.identifier.citation[1] R. P. Feynman, “Simulating physics with computers,” International Journal of Theoretical Physics, vol. 21, p. 467–488, June 1982.
[2] P. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Proceedings 35th Annual Symposium on Foundations of Computer Science, SFCS-94, p. 124–134, IEEE Comput. Soc. Press, 1994.
[3] N. Moll, P. Barkoutsos, L. S. Bishop, J. M. Chow, A. Cross, D. J. Egger, S. Filipp, A. Fuhrer, J. M. Gambetta, M. Ganzhorn, A. Kandala, A. Mezzacapo, P. M¨uller, W. Riess, G. Salis, J. Smolin, I. Tavernelli, and K. Temme, “Quantum optimization using variational algorithms on near-term quantum devices,” Quantum Science and Technology, vol. 3, p. 030503, June 2018.
[4] I. Georgescu, S. Ashhab, and F. Nori, “Quantum simulation,” Reviews of Modern Physics, vol. 86, p. 153–185, Mar. 2014.
[5] D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, vol. 439, p. 553–558, Dec. 1992.
[6] L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proceedings of the twenty-eighth annual ACM symposium on Theory of computing - STOC ’96, STOC ’96, p. 212–219, ACM Press, 1996.
[7] I. Georgescu, S. Ashhab, and F. Nori, “Quantum simulation,” Reviews of Modern Physics, vol. 86, p. 153–185, Mar. 2014.
[8] J. Yoneda, J. S. Rojas-Arias, P. Stano, K. Takeda, A. Noiri, T. Nakajima, D. Loss, and S. Tarucha, “Noise-correlation spectrum for a pair of spin qubits in silicon,” Nat. Phys., vol. 19, p. 1793–1798, Oct. 2023.
[9] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM Journal on Computing, vol. 26, p. 1484–1509, Oct. 1997.
[10] D. Beckman, A. N. Chari, S. Devabhaktuni, and J. Preskill, “Efficient networks for quantum factoring,” Physical Review A, vol. 54, p. 1034–1063, Aug. 1996.
[11] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes: Towards practical large-scale quantum computation,” Phys. Rev. A, vol. 86, p. 032324, Sept. 2012.
[12] A. G. Fowler, A. M. Stephens, and P. Groszkowski, “High-threshold universal quantum computation on the surface code,” Phys. Rev. A, vol. 80, p. 052312, Nov. 2009.
[13] Google Quantum AI, “Quantum error correction below the surface code threshold,” Nature, vol. 638, p. 920–926, Dec. 2024.
[14] J. Edmonds, “Maximum matching and a polyhedron with 0, 1-vertices,” Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics, vol. 69B, p. 125, Jan. 1965.
[15] J. Edmonds, “Paths, trees, and flowers,” Canadian Journal of Mathematics, vol. 17, p. 449–467, 1965.
[16] D. S. Wang, A. G. Fowler, and L. C. L. Hollenberg, “Surface code quantum computing with error rates over 1%,” Phys. Rev. A, vol. 83, p. 020302, Feb. 2011.
[17] M. Kjaergaard, M. E. Schwartz, J. Braum¨uller, P. Krantz, J. I.-J. Wang, S. Gustavsson, and W. D. Oliver, “Superconducting qubits: Current state of play,” Annual Review of Condensed Matter Physics, vol. 11, p. 369–395, Mar. 2020.
[18] J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature, vol. 453, p. 1031–1042, June 2008.
[19] S. Slussarenko and G. J. Pryde, “Photonic quantum information processing: A concise review,” Applied Physics Reviews, vol. 6, Oct. 2019.
[20] M. AbuGhanem, “Photonic quantum computers,” 2024.
[21] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, “Trapped-ion quantum computing: Progress and challenges,” Applied Physics Reviews, vol. 6, May 2019.
[22] R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature, vol. 453, p. 1008–1015, June 2008.
[23] M. Saffman, “Quantum computing with neutral atoms,” National Science Review, vol. 6, p. 24–25, Sept. 2018.
[24] D. Bluvstein, S. J. Evered, A. A. Geim, S. H. Li, H. Zhou, T. Manovitz, S. Ebadi, M. Cain, M. Kalinowski, D. Hangleiter, J. P. Bonilla Ataides, N. Maskara, I. Cong, X. Gao, P. Sales Rodriguez, T. Karolyshyn, G. Semeghini, M. J. Gullans, M. Greiner, V. Vuleti´c, and M. D. Lukin, “Logical quantum processor based on reconfigurable atom arrays,” Nature, vol. 626, pp. 58–65, Feb. 2024.
[25] M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Physics Reports, vol. 528, p. 1–45, July 2013.
[26] M. Gulka, D. Wirtitsch, V. Iv´ady, J. Vodnik, J. Hruby, G. Magchiels, E. Bourgeois, A. Gali, M. Trupke, and M. Nesladek, “Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins,” Nature Communications, vol. 12, July 2021.
[27] D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A, vol. 57, pp. 120–126, Jan. 1998.
[28] G. Burkard, T. D. Ladd, A. Pan, J. M. Nichol, and J. R. Petta, “Semiconductor spin qubits,” Reviews of Modern Physics, vol. 95, June 2023.
[29] S. Neyens, O. K. Zietz, T. F. Watson, F. Luthi, A. Nethwewala, H. C. George, E. Henry, M. Islam, A. J. Wagner, F. Borjans, E. J. Connors, J. Corrigan, M. J. Curry, D. Keith, R. Kotlyar, L. F. Lampert, M. T. Madzik, K. Millard, F. A. Mohiyaddin, S. Pellerano, R. Pillarisetty, M. Ramsey, R. Savytskyy, S. Schaal, G. Zheng, J. Ziegler, N. C. Bishop, S. Bojarski, J. Roberts, and J. S. Clarke, “Probing single electrons across 300-mm spin qubit wafers,” Nature, vol. 629, p. 80–85, May 2024.
[30] K. Takeda, J. Kamioka, T. Otsuka, J. Yoneda, T. Nakajima, M. R. Delbecq, S. Amaha, G. Allison, T. Kodera, S. Oda, and S. Tarucha, “A fault-tolerant addressable spin qubit in a natural silicon quantum dot,” Sci. Adv., vol. 2, p. e1600694, Aug. 2016.
[31] J. Yoneda, K. Takeda, T. Otsuka, T. Nakajima, M. R. Delbecq, G. Allison, T. Honda, T. Kodera, S. Oda, Y. Hoshi, N. Usami, K. M. Itoh, and S. Tarucha, “A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%,” Nat. Nanotechnol., vol. 13, pp. 102–106, Feb. 2018.
[32] J. Yoneda, W. Huang, M. Feng, C. H. Yang, K. W. Chan, T. Tanttu, W. Gilbert, R. C. C. Leon, F. E. Hudson, K. M. Itoh, A. Morello, S. D. Bartlett, A. Laucht, A. Saraiva, and A. S. Dzurak, “Coherent spin qubit transport in silicon,” Nature Communications, vol. 12, July 2021.
[33] A. Noiri, K. Takeda, T. Nakajima, T. Kobayashi, A. Sammak, G. Scappucci, and S. Tarucha, “A shuttling-based two-qubit logic gate for linking distant silicon quantum processors,” Nature Communications, vol. 13, p. 5740, Sept. 2022.
[34] I. Seidler, T. Struck, R. Xue, N. Focke, S. Trellenkamp, H. Bluhm, and L. R. Schreiber, “Conveyor-mode single-electron shuttling in si/sige for a scalable quantum computing architecture,” npj Quantum Information, vol. 8, Aug. 2022.
[35] X. Xue, M. Russ, N. Samkharadze, B. Undseth, A. Sammak, G. Scappucci, and L. M. K. Vandersypen, “Quantum logic with spin qubits crossing the surface code threshold, ”Nature, vol. 601, pp. 343–347, Jan. 2022.
[36] A. Noiri, K. Takeda, T. Nakajima, T. Kobayashi, A. Sammak, G. Scappucci, and S. Tarucha, “Fast universal quantum gate above the fault-tolerance threshold in silicon, ”Nature, vol. 601, pp. 338–342, Jan. 2022.
[37] A. R. Mills, C. R. Guinn, M. J. Gullans, A. J. Sigillito, M. M. Feldman, E. Nielsen, and J. R. Petta, “Two-qubit silicon quantum processor with operation fidelity exceeding 99%,” Sci. Adv., vol. 8, p. eabn5130, Apr. 2022.
[38] M. T. Madzik, S. Asaad, A. Youssry, B. Joecker, K. M. Rudinger, E. Nielsen, K. C. Young, T. J. Proctor, A. D. Baczewski, A. Laucht, V. Schmitt, F. E. Hudson, K. M. Itoh, A. M. Jakob, B. C. Johnson, D. N. Jamieson, A. S. Dzurak, C. Ferrie, R. Blume-Kohout, and A. Morello, “Precision tomography of a three-qubit donor quantum processor in silicon,” Nature, vol. 601, pp. 348–353, Jan. 2022.
[39] P. Steinacker, N. D. Stuyck, W. H. Lim, T. Tanttu, M. Feng, A. Nickl, S. Serrano, M. Candido, J. D. Cifuentes, F. E. Hudson, K. W. Chan, S. Kubicek, J. Jussot, Y. Canvel, S. Beyne, Y. Shimura, R. Loo, C. Godfrin, B. Raes, S. Baudot, D. Wan, A. Laucht, C. H. Yang, A. Saraiva, C. C. Escott, K. De Greve, and A. S. Dzurak, “A 300 mm foundry silicon spin qubit unit cell exceeding 99% fidelity in all operations,” 2024.
[40] I. Thorvaldson, D. Poulos, C. M. Moehle, S. H. Misha, H. Edlbauer, J. Reiner, H. Geng, B. Voisin, M. T. Jones, M. B. Donnelly, L. F. Pe˜na, C. D. Hill, C. R. Myers, J. G. Keizer, Y. Chung, S. K. Gorman, L. Kranz, and M. Y. Simmons, “Grover’s algorithm in a four-qubit silicon processor above the fault-tolerant threshold,” Nature Nanotechnology, vol. 20, p. 472–477, Feb. 2025.
[41] S. G. J. Philips, M. T. Madzik, S. V. Amitonov, S. L. de Snoo, M. Russ, N. Kalhor, C. Volk, W. I. L. Lawrie, D. Brousse, L. Tryputen, B. P. Wuetz, A. Sammak, M. Veldhorst, G. Scappucci, and L. M. K. Vandersypen, “Universal control of a six-qubit quantum processor in silicon,” Nature, vol. 609, pp. 919–924, Sept. 2022.
[42] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, “Spins in few-electron quantum dots,” Reviews of Modern Physics, vol. 79, p. 1217–1265, Oct. 2007.
[43] D. J. Reilly, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Fast single-charge sensing with a rf quantum point contact,” Applied Physics Letters, vol. 91, Oct. 2007.
[44] A. Noiri, K. Takeda, J. Yoneda, T. Nakajima, T. Kodera, and S. Tarucha, “Radio-Frequency-Detected Fast Charge Sensing in Undoped Silicon Quantum Dots,” Nano Lett., vol. 20, pp. 947–952, Feb. 2020.
[45] D. Zajac, T. Hazard, X. Mi, E. Nielsen, and J. Petta, “Scalable Gate Architecture for a One-Dimensional Array of Semiconductor Spin Qubits,” Phys. Rev. Appl., vol. 6, p. 054013, Nov. 2016.
[46] J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, “Single-shot read-out of an individual electron spin in a quantum dot,” Nature, vol. 430, pp. 431–435, July 2004.
[47] K. Ono, D. G. Austing, Y. Tokura, and S. Tarucha, “Current rectification by pauli exclusion in a weakly coupled double quantum dot system,” Science, vol. 297, p. 1313–1317, Aug. 2002.
[48] N. S. Lai, W. H. Lim, C. H. Yang, F. A. Zwanenburg, W. A. Coish, F. Qassemi, A. Morello, and A. S. Dzurak, “Pauli spin blockade in a highly tunable silicon double quantum dot,” Scientific Reports, vol. 1, Oct. 2011.
[49] A. C. Johnson, J. R. Petta, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Singlet-triplet spin blockade and charge sensing in a few-electron double quantum dot,” Physical Review B, vol. 72, Oct. 2005.
[50] A. Mills, C. Guinn, M. Feldman, A. Sigillito, M. Gullans, M. Rakher, J. Kerckhoff, C. Jackson, and J. Petta, “High-fidelity state preparation, quantum control, and readout of an isotopically enriched silicon spin qubit,” Physical Review Applied, vol. 18, Dec. 2022.
[51] A. E. Seedhouse, T. Tanttu, R. C. Leon, R. Zhao, K. Y. Tan, B. Hensen, F. E. Hudson, K. M. Itoh, J. Yoneda, C. H. Yang, A. Morello, A. Laucht, S. N. Coppersmith, A. Saraiva, and A. S. Dzurak, “Pauli blockade in silicon quantum dots with spin-orbit control,” PRX Quantum, vol. 2, Jan. 2021.
[52] T. Kobayashi, T. Nakajima, K. Takeda, A. Noiri, J. Yoneda, and S. Tarucha, “Feedback-based active reset of a spin qubit in silicon,” npj Quantum Information, vol. 9, June 2023.
[53] J. Yoneda, K. Takeda, A. Noiri, T. Nakajima, S. Li, J. Kamioka, T. Kodera, and S. Tarucha, “Quantum non-demolition readout of an electron spin in silicon,” Nature Communications, vol. 11, Mar. 2020.
[54] E. Zavoisky, “Spin-magnetic resonance in paramagnetics,” J Phys USSR, vol. 9, pp. 211–245, 1945.
[55] F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink, K. C. Nowack, T. Meunier, L. P. Kouwenhoven, and L. M. K. Vandersypen, “Driven coherent oscillations of a single electron spin in a quantum dot,” Nature, vol. 442, p. 766–771, Aug. 2006.
[56] M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P. Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak, “An addressable quantum dot qubit with fault-tolerant control-fidelity,” Nat. Nanotechnol., vol. 9, pp. 981– 985, Dec. 2014.
[57] V. N. Golovach, M. Borhani, and D. Loss, “Electric-dipole-induced spin resonance in quantum dots,” Phys. Rev. B Condens. Matter Mater. Phys., vol. 74, Oct. 2006.
[58] Y. Tokura, W. G. van der Wiel, T. Obata, and S. Tarucha, “Coherent single electron spin control in a slanting zeeman field,” Phys. Rev. Lett., vol. 96, p. 047202, Feb. 2006.
[59] M. Pioro-Ladri`ere, T. Obata, Y. Tokura, Y.-S. Shin, T. Kubo, K. Yoshida, T. Taniyama, and S. Tarucha, “Electrically driven single-electron spin resonance in a slanting zeeman field,” Nature Physics, vol. 4, p. 776–779, Aug. 2008.
[60] J. Yoneda, T. Otsuka, T. Takakura, M. Pioro-Ladri`ere, R. Brunner, H. Lu, T. Nakajima, T. Obata, A. Noiri, C. J. Palmstrøm, A. C. Gossard, and S. Tarucha, “Robust micro- magnet design for fast electrical manipulations of single spins in quantum dots,” Applied Physics Express, vol. 8, p. 084401, July 2015.
[61] N. I. Dumoulin Stuyck, F. A. Mohiyaddin, R. Li, M. Heyns, B. Govoreanu, and I. P. Radu, “Low dephasing and robust micromagnet designs for silicon spin qubits,” Applied Physics Letters, vol. 119, Aug. 2021.
[62] W. Huang, C. H. Yang, K. W. Chan, T. Tanttu, B. Hensen, R. C. C. Leon, M. A. Fogarty, J. C. C. Hwang, F. E. Hudson, K. M. Itoh, A. Morello, A. Laucht, and A. S. Dzurak, “Fidelity benchmarks for two-qubit gates in silicon,” Nature, vol. 569, pp. 532–536, May 2019.
[63] A. J. Sigillito, M. J. Gullans, L. F. Edge, M. Borselli, and J. R. Petta, “Coherent transfer of quantum information in a silicon double quantum dot using resonant SWAP gates,” Npj Quantum Inf., vol. 5, p. 110, Dec. 2019.
[64] M. Rimbach-Russ, S. G. J. Philips, X. Xue, and L. M. K. Vandersypen, “Simple framework for systematic high-fidelity gate operations,” Quantum Science and Technology, vol. 8, p. 045025, Sept. 2023.
[65] T. Meunier, V. E. Calado, and L. M. K. Vandersypen, “Efficient controlled-phase gate for single-spin qubits in quantum dots,” Physical Review B, vol. 83, Mar. 2011.
[66] T. F. Watson, S. G. J. Philips, E. Kawakami, D. R. Ward, P. Scarlino, M. Veldhorst, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen, “A programmable two-qubit quantum processor in silicon,” Nature, vol. 555, pp. 633–637, Mar. 2018.
[67] K. Takeda, A. Noiri, T. Nakajima, J. Yoneda, T. Kobayashi, and S. Tarucha, “Quantum tomography of an entangled three-qubit state in silicon,” Nature Nanotechnology, vol. 16, p. 965–969, June 2021.
[68] J. van Dijk, E. Kawakami, R. Schouten, M. Veldhorst, L. Vandersypen, M. Babaie, E. Charbon, and F. Sebastiano, “Impact of classical control electronics on qubit fidelity,” Physical Review Applied, vol. 12, Oct. 2019.
[69] X. Xue, T. Watson, J. Helsen, D. Ward, D. Savage, M. Lagally, S. Coppersmith, M. Eriksson, S. Wehner, and L. Vandersypen, “Benchmarking gate fidelities in a Si/SiGe two-qubit device,” Physical Review X, vol. 9, Apr. 2019.
[70] E. J. Connors, J. Nelson, H. Qiao, L. F. Edge, and J. M. Nichol, “Low-frequency charge noise in si/sige quantum dots,” Physical Review B, vol. 100, Oct. 2019.
[71] E. J. Connors, J. Nelson, L. F. Edge, and J. M. Nichol, “Charge-noise spectroscopy of si/sige quantum dots via dynamically-decoupled exchange oscillations,” Nature Communications, vol. 13, Feb. 2022.
[72] K. Takeda, J. Yoneda, T. Otsuka, T. Nakajima, M. R. Delbecq, G. Allison, Y. Hoshi, N. Usami, K. M. Itoh, S. Oda, T. Kodera, and S. Tarucha, “Optimized electrical control of a Si/SiGe spin qubit in the presence of an induced frequency shift,” Npj Quantum Inf., vol. 4, p. 54, Dec. 2018.
[73] A. Elsayed, M. M. K. Shehata, C. Godfrin, S. Kubicek, S. Massar, Y. Canvel, J. Jussot, G. Simion, M. Mongillo, D. Wan, B. Govoreanu, I. P. Radu, R. Li, P. Van Dorpe, and K. De Greve, “Low charge noise quantum dots with industrial cmos manufacturing,” npj Quantum Information, vol. 10, July 2024.
[74] B. Paquelet Wuetz, D. Degli Esposti, A.-M. J. Zwerver, S. V. Amitonov, M. Botifoll, J. Arbiol, L. M. K. Vandersypen, M. Russ, and G. Scappucci, “Reducing charge noise in quantum dots by using thin silicon quantum wells,” Nature Communications, vol. 14, Mar. 2023.
[75] E. Magesan, J. M. Gambetta, and J. Emerson, “Scalable and Robust Randomized Benchmarking of Quantum Processes,” Phys. Rev. Lett., vol. 106, p. 180504, May 2011.
[76] E. Magesan, J. M. Gambetta, B. R. Johnson, C. A. Ryan, J. M. Chow, S. T. Merkel, M. P. da Silva, G. A. Keefe, M. B. Rothwell, T. A. Ohki, M. B. Ketchen, and M. Steffen, “Effi- cient Measurement of Quantum Gate Error by Interleaved Randomized Benchmarking,” Phys. Rev. Lett., vol. 109, p. 080505, Aug. 2012.
[77] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information. Cambridge, England: Cambridge University Press, Dec. 2010.
[78] E. Magesan, J. M. Gambetta, and J. Emerson, “Characterizing quantum gates via randomized benchmarking,” Physical Review A, vol. 85, Apr. 2012.
[79] R. Blume-Kohout, J. K. Gamble, E. Nielsen, K. Rudinger, J. Mizrahi, K. Fortier, and P. Maunz, “Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography,” Nat. Commun., vol. 8, p. 14485, Apr. 2017.
[80] E. Nielsen, J. K. Gamble, K. Rudinger, T. Scholten, K. Young, and R. Blume-Kohout, “Gate Set Tomography,” Quantum, vol. 5, p. 557, Oct. 2021.
[81] R. Blume-Kohout, M. P. da Silva, E. Nielsen, T. Proctor, K. Rudinger, M. Sarovar, and K. Young, “A Taxonomy of Small Markovian Errors,” PRX Quantum, vol. 3, p. 020335, May 2022.
[82] H. G. Stemp, S. Asaad, M. R. v. Blankenstein, A. Vaartjes, M. A. I. Johnson, M. T. Madzik, A. J. A. Heskes, H. R. Firgau, R. Y. Su, C. H. Yang, A. Laucht, C. I. Ostrove, K. M. Rudinger, K. Young, R. Blume-Kohout, F. E. Hudson, A. S. Dzurak, K. M. Itoh, A. M. Jakob, B. C. Johnson, D. N. Jamieson, and A. Morello, “Tomography of entangling two-qubit logic operations in exchange-coupled donor electron spin qubits,” Nature Communications, vol. 15, Sept. 2024.
[83] N. W. Hendrickx, W. I. L. Lawrie, M. Russ, F. van Riggelen, S. L. de Snoo, R. N. Schouten, A. Sammak, G. Scappucci, and M. Veldhorst, “A four-qubit germanium quantum processor,” Nature, vol. 591, pp. 580–585, Mar. 2021.
[84] J. Yoneda, T. Otsuka, T. Nakajima, T. Takakura, T. Obata, M. Pioro-Ladri`ere, H. Lu, C. Palmstrøm, A. Gossard, and S. Tarucha, “Fast Electrical Control of Single Electron Spins in Quantum Dots with Vanishing Influence from Nuclear Spins,” Phys. Rev. Lett., vol. 113, p. 267601, Dec. 2014.
[85] C. H. Yang, R. C. C. Leon, J. C. C. Hwang, A. Saraiva, T. Tanttu, W. Huang, J. Camirand Lemyre, K. W. Chan, K. Y. Tan, F. E. Hudson, K. M. Itoh, A. Morello, M. Pioro- Ladri`ere, A. Laucht, and A. S. Dzurak, “Operation of a silicon quantum processor unit cell above one kelvin,” Nature, vol. 580, pp. 350–354, Apr. 2020.
[86] L. Petit, H. G. J. Eenink, M. Russ, W. I. L. Lawrie, N. W. Hendrickx, S. G. J. Philips, J. S. Clarke, L. M. K. Vandersypen, and M. Veldhorst, “Universal quantum logic in hot silicon qubits,” Nature, vol. 580, pp. 355–359, Apr. 2020.
[87] L. C. Camenzind, S. Geyer, A. Fuhrer, R. J. Warburton, D. M. Zumb¨uhl, and A. V. Kuhlmann, “A spin qubit in a fin field-effect transistor,” Nat. Electron., vol. 5, pp. 178– 183, Mar. 2022.
[88] A. M. J. Zwerver, T. Kr¨ahenmann, T. F. Watson, L. Lampert, H. C. George, R. Pillarisetty, S. A. Bojarski, P. Amin, S. V. Amitonov, J. M. Boter, R. Caudillo, D. Correas-Serrano, J. P. Dehollain, G. Droulers, E. M. Henry, R. Kotlyar, M. Lodari, F. L¨uthi, D. J. Michalak, B. K. Mueller, S. Neyens, J. Roberts, N. Samkharadze, G. Zheng, O. K. Zietz, G. Scappucci, M. Veldhorst, L. M. K. Vandersypen, and J. S. Clarke, “Qubits made by advanced semiconductor manufacturing,” Nat. Electron., vol. 5, pp. 184–190, Mar. 2022.
[89] X. Xue, B. Patra, J. P. G. van Dijk, N. Samkharadze, S. Subramanian, A. Corna, B. Paquelet Wuetz, C. Jeon, F. Sheikh, E. Juarez-Hernandez, B. P. Esparza, H. Rampurawala, B. Carlton, S. Ravikumar, C. Nieva, S. Kim, H.-J. Lee, A. Sammak, G. Scappucci, M. Veldhorst, F. Sebastiano, M. Babaie, S. Pellerano, E. Charbon, and L. M. K. Vandersypen, “CMOS-based cryogenic control of silicon quantum circuits,” Nature, vol. 593, pp. 205–210, May 2021.
[90] L. M. K. Vandersypen, H. Bluhm, J. S. Clarke, A. S. Dzurak, R. Ishihara, A. Morello, D. J. Reilly, L. R. Schreiber, and M. Veldhorst, “Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent,” Npj Quantum Inf., vol. 3, p. 34, Sept. 2017.
[91] K. Takeda, A. Noiri, T. Nakajima, T. Kobayashi, and S. Tarucha, “Quantum error correction with silicon spin qubits,” Nature, vol. 608, pp. 682–686, Aug. 2022.
[92] F. Van Riggelen, W. I. L. Lawrie, M. Russ, N. W. Hendrickx, A. Sammak, M. Rispler, B. M. Terhal, G. Scappucci, and M. Veldhorst, “Phase flip code with semiconductor spin qubits,” Npj Quantum Inf., vol. 8, p. 124, Oct. 2022.
[93] C. H. Yang, K. W. Chan, R. Harper, W. Huang, T. Evans, J. C. C. Hwang, B. Hensen, A. Laucht, T. Tanttu, F. E. Hudson, S. T. Flammia, K. M. Itoh, A. Morello, S. D. Bartlett, and A. S. Dzurak, “Silicon qubit fidelities approaching incoherent noise limits via pulse engineering,” Nat. Electron., vol. 2, pp. 151–158, Apr. 2019.
[94] T. Tanttu, W. H. Lim, J. Y. Huang, N. Dumoulin Stuyck, W. Gilbert, R. Y. Su, M. Feng, J. D. Cifuentes, A. E. Seedhouse, S. K. Seritan, C. I. Ostrove, K. M. Rudinger, R. C. C. Leon, W. Huang, C. C. Escott, K. M. Itoh, N. V. Abrosimov, H.-J. Pohl, M. L. W. Thewalt, F. E. Hudson, R. Blume-Kohout, S. D. Bartlett, A. Morello, A. Laucht, C. H. Yang, A. Saraiva, and A. S. Dzurak, “Assessment of the errors of high-fidelity two-qubit gates in silicon quantum dots,” Nature Physics, vol. 20, p. 1804–1809, Aug. 2024.
[95] D. C. McKay, C. J. Wood, S. Sheldon, J. M. Chow, and J. M. Gambetta, “Efficient Z gates for quantum computing,” Phys. Rev. A, vol. 96, p. 022330, Aug. 2017.
[96] M. Russ, D. M. Zajac, A. J. Sigillito, F. Borjans, J. M. Taylor, J. R. Petta, and G. Burkard, “High-fidelity quantum gates in Si/SiGe double quantum dots,” Phys. Rev. B, vol. 97, p. 085421, Feb. 2018.
[97] D. M. Zajac, A. J. Sigillito, M. Russ, F. Borjans, J. M. Taylor, G. Burkard, and J. R. Petta, “Resonantly driven CNOT gate for electron spins,” Science, vol. 359, pp. 439–442, Jan. 2018.
[98] E. Nielsen, K. Rudinger, T. Proctor, A. Russo, K. Young, and R. Blume-Kohout, “Probing quantum processor performance with pyGSTi,” Quantum Sci. Technol., vol. 5, p. 044002, July 2020.
[99] J. Bylander, S. Gustavsson, F. Yan, F. Yoshihara, K. Harrabi, G. Fitch, D. G. Cory, Y. Nakamura, J.-S. Tsai, and W. D. Oliver, “Noise spectroscopy through dynamical decoupling with a superconducting flux qubit,” Nat. Phys., vol. 7, pp. 565–570, may 2011.
[100] P. Stano and D. Loss, “Review of performance metrics of spin qubits in gated semiconducting nanostructures,” Nat. Rev. Phys., vol. 4, pp. 672–688, Aug. 2022.
[101] A. Laucht, R. Kalra, S. Simmons, J. P. Dehollain, J. T. Muhonen, F. A. Mohiyaddin, S. Freer, F. E. Hudson, K. M. Itoh, D. N. Jamieson, J. C. McCallum, A. S. Dzurak, and A. Morello, “A dressed spin qubit in silicon,” Nat. Nanotechnol., vol. 12, pp. 61–66, Oct. 2016.
[102] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information. Cambridge ; New York: Cambridge University Press, 10th anniversary ed ed., 2010.
[103] M. J. Gullans and J. R. Petta, “Protocol for a resonantly driven three-qubit toffoli gate with silicon spin qubits,” Phys. Rev. B, vol. 100, p. 085419, Aug. 2019.
[104] C. Gidney and M. Ekerå, “How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits,” Quantum, vol. 5, p. 433, Apr. 2021.
[105] Google Quantum AI, “Exponential suppression of bit or phase errors with cyclic error correction,” Nature, vol. 595, pp. 383–387, July 2021.
[106] W. I. L. Lawrie, M. Rimbach-Russ, F. v. Riggelen, N. W. Hendrickx, S. L. d. Snoo, A. Sammak, G. Scappucci, J. Helsen, and M. Veldhorst, “Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold,” Nature Communications, vol. 14, June 2023.
[107] E. Kawakami, P. Scarlino, D. R. Ward, F. R. Braakman, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen, “Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot,” Nat. Nanotechnol., vol. 9, pp. 666–670, Sept. 2014.
[108] A. Noiri, K. Takeda, T. Nakajima, T. Kobayashi, A. Sammak, G. Scappucci, and S. Tarucha, “A shuttling-based two-qubit logic gate for linking distant silicon quantum processors,” Nature Communications, vol. 13, Sept. 2022.
[109] C.-A. Wang, V. John, H. Tidjani, C. X. Yu, A. S. Ivlev, C. D´eprez, F. van Riggelen-Doelman, B. D. Woods, N. W. Hendrickx, W. I. L. Lawrie, L. E. A. Stehouwer, S. D. Oosterhout, A. Sammak, M. Friesen, G. Scappucci, S. L. de Snoo, M. Rimbach-Russ, F. Borsoi, and M. Veldhorst, “Operating semiconductor quantum processors with hopping spins,” Science, vol. 385, p. 447–452, July 2024.
[110] B. Undseth, O. Pietx-Casas, E. Raymenants, M. Mehmandoost, M. T. Madzik, S. G. Philips, S. L. de Snoo, D. J. Michalak, S. V. Amitonov, L. Tryputen, B. P. Wuetz, V. Fezzi, D. D. Esposti, A. Sammak, G. Scappucci, and L. M. Vandersypen, “Hotter is easier: Unexpected temperature dependence of spin qubit frequencies,” Physical Review X, vol. 13, Oct. 2023.
[111] H. H. Vallabhapurapu, J. P. Slack-Smith, V. K. Sewani, C. Adambukulam, A. Morello, J. J. Pla, and A. Laucht, “Fast coherent control of a nitrogen-vacancy-center spin ensemble using a KTaO3 dielectric resonator at cryogenic temperatures,” Physical Review Applied, vol. 16, Oct. 2021.
[112] O. Malkoc, P. Stano, and D. Loss, “Optimal geometry of lateral gaas and si/sige quantum dots for electrical control of spin qubits,” Physical Review B, vol. 93, June 2016.
[113] J. M. Gambetta, A. D. C´orcoles, S. T. Merkel, B. R. Johnson, J. A. Smolin, J. M. Chow, C. A. Ryan, C. Rigetti, S. Poletto, T. A. Ohki, M. B. Ketchen, and M. Steffen, “Characterization of addressability by simultaneous randomized benchmarking,” Physical Review Letters, vol. 109, Dec. 2012.
[114] T. Nakajima, A. Noiri, K. Kawasaki, J. Yoneda, P. Stano, S. Amaha, T. Otsuka, K. Takeda, M. R. Delbecq, G. Allison, A. Ludwig, A. D. Wieck, D. Loss, and S. Tarucha, “Coherence of a driven electron spin qubit actively decoupled from quasistatic noise,” Physical Review X, vol. 10, Mar. 2020.
[115] M. Tadokoro, T. Nakajima, T. Kobayashi, K. Takeda, A. Noiri, K. Tomari, J. Yoneda, S. Tarucha, and T. Kodera, “Designs for a two-dimensional si quantum dot array with spin qubit addressability,” Sci. Rep., vol. 11, p. 19406, Sept. 2021.
[116] H. C. George, M. T. Madzik, E. M. Henry, A. J. Wagner, M. M. Islam, F. Borjans, E. J. Connors, J. Corrigan, M. Curry, M. K. Harper, D. Keith, L. Lampert, F. Luthi, F. A. Mohiyaddin, S. Murcia, R. Nair, R. Nahm, A. Nethwewala, S. Neyens, B. Patra, R. D. Raharjo, C. Rogan, R. Savytskyy, T. F. Watson, J. Ziegler, O. K. Zietz, S. Pellerano, R. Pillarisetty, N. C. Bishop, S. A. Bojarski, J. Roberts, and J. S. Clarke, “12-spin-qubit arrays fabricated on a 300 mm semiconductor manufacturing line,” Nano Lett., vol. 25, pp. 793–799, Jan. 2025.
[117] A. J. Weinstein, M. D. Reed, A. M. Jones, R. W. Andrews, D. Barnes, J. Z. Blumoff, L. E. Euliss, K. Eng, B. H. Fong, S. D. Ha, D. R. Hulbert, C. A. C. Jackson, M. Jura, T. E. Keating, J. Kerckhoff, A. A. Kiselev, J. Matten, G. Sabbir, A. Smith, J. Wright, M. T. Rakher, T. D. Ladd, and M. G. Borselli, “Universal logic with encoded spin qubits in silicon,” Nature, vol. 615, p. 817–822, Feb. 2023.
[118] C. Piltz, B. Scharfenberger, A. Khromova, A. F. Var´on, and C. Wunderlich, “Protecting conditional quantum gates by robust dynamical decoupling,” Physical Review Letters, vol. 110, May 2013.
[119] A. D’Arrigo, G. Falci, and E. Paladino, “High-fidelity two-qubit gates via dynamical decoupling of local 1/f noise at the optimal point,” Physical Review A, vol. 94, Aug. 2016.
[120] W.-J. Lin, H. Cho, Y. Chen, M. G. Vavilov, C. Wang, and V. E. Manucharyan, “24 days-stable cnot gate on fluxonium qubits with over 99.9% fidelity,” PRX Quantum, vol. 6, Mar. 2025.
[121] T. Harty, D. Allcock, C. Ballance, L. Guidoni, H. Janacek, N. Linke, D. Stacey, and D. Lucas, “High-fidelity preparation, gates, memory, and readout of a trapped-ion quan- tum bit,” Physical Review Letters, vol. 113, Nov. 2014.
[122] C. Ballance, T. Harty, N. Linke, M. Sepiol, and D. Lucas, “High-fidelity quantum logic gates using trapped-ion hyperfine qubits,” Physical Review Letters, vol. 117, Aug. 2016.
[123] A. Leu, M. Gely, M. Weber, M. Smith, D. Nadlinger, and D. Lucas, “Fast, high-fidelity addressed single-qubit gates using efficient composite pulse sequences,” Physical Review Letters, vol. 131, Sept. 2023.
[124] W. Ha, S. D. Ha, M. D. Choi, Y. Tang, A. E. Schmitz, M. P. Levendorf, K. Lee, J. M. Chappell, T. S. Adams, D. R. Hulbert, E. Acuna, R. S. Noah, J. W. Matten, M. P. Jura, J. A. Wright, M. T. Rakher, and M. G. Borselli, “A flexible design platform for Si/SiGe exchange-only qubits with low disorder,” Nano Lett., vol. 22, pp. 1443–1448, Feb. 2022. arXiv:2107.10916 [cond-mat, physics:quant-ph].
[125] S. D. Ha, E. Acuna, K. Raach, Z. T. Bloom, T. L. Brecht, J. M. Chappell, M. D. Choi, J. E. Christensen, I. T. Counts, D. Daprano, J. P. Dodson, K. Eng, D. J. Fialkow, C. A. C. Garcia, W. Ha, T. R. B. Harris, n. holman, I. Khalaf, J. W. Matten, C. A. Peterson, C. E. Plesha, M. J. Ruiz, A. Smith, B. J. Thomas, S. J. Whiteley, T. D. Ladd, M. P. Jura, M. T. Rakher, and M. G. Borselli, “Two-dimensional si spin qubit arrays with multilevel interconnects,” 2025.
[126] E. Acuna, J. D. Broz, K. Shyamsundar, A. B. Mei, C. P. Feeney, V. Smetanka, T. Davis, K. Lee, M. D. Choi, B. Boyd, J. Suh, W. Ha, C. Jennings, A. S. Pan, D. S. Sanchez, M. D. Reed, and J. R. Petta, “Coherent control of a triangular exchange-only spin qubit,” Physical Review Applied, vol. 22, Oct. 2024.
[127] R. Li, V. Levajac, C. Godfrin, S. Kubicek, G. Simion, B. Raes, S. Beyne, I. Fattal, A. Loenders, W. De Roeck, M. Mongillo, D. Wan, and K. De Greve, “A trilinear quantum dot architecture for semiconductor spin qubits,” arXiv:2501.17814 [quant-ph], 2025.
[128] J. Schuff, M. J. Carballido, M. Kotzagiannidis, J. C. Calvo, M. Caselli, J. Rawling, D. L. Craig, B. van Straaten, B. Severin, F. Fedele, S. Svab, P. C. Kwon, R. S. Eggli, T. Patlatiuk, N. Korda, D. Zumb¨uhl, and N. Ares, “Fully autonomous tuning of a spin qubit,” 2024.
[129] J. M. Boter, J. P. Dehollain, J. P. G. van Dijk, Y. Xu, T. Hensgens, R. Versluis, H. W. L. Naus, J. S. Clarke, M. Veldhorst, F. Sebastiano, and L. M. K. Vandersypen, “Spider- web array: A sparse spin-qubit array,” Phys. Rev. Appl., vol. 18, p. 024053, Aug. 2022. arXiv:2110.00189 [cond-mat, physics:quant-ph].
[130] S. R. Katiraee-Far, Y. Matsumoto, B. Undseth, M. De Smet, V. Gualtieri, C. V. Meinersen, I. F. de Fuentes, K. Capannelli, M. Rimbach-Russ, G. Scappucci, L. M. K. Vandersypen, and E. Greplova, “Unified evolutionary optimization for high-fidelity spin qubit operations,” 2025.
[131] E. Vahapoglu, J. P. Slack-Smith, R. C. C. Leon, W. H. Lim, F. E. Hudson, T. Day, J. D. Cifuentes, T. Tanttu, C. H. Yang, A. Saraiva, N. V. Abrosimov, H.-J. Pohl, M. L. W. Thewalt, A. Laucht, A. S. Dzurak, and J. J. Pla, “Coherent control of electron spin qubits in silicon using a global field,” npj Quantum Information, vol. 8, Nov. 2022.
[132] I. Hansen, A. E. Seedhouse, S. Serrano, A. Nickl, M. Feng, J. Y. Huang, T. Tanttu, N. Dumoulin Stuyck, W. H. Lim, F. E. Hudson, K. M. Itoh, A. Saraiva, A. Laucht, A. S. Dzurak, and C. H. Yang, “Entangling gates on degenerate spin qubits dressed by a global field,” Nature Communications, vol. 15, Sept. 2024.
[133] W. Gilbert, T. Tanttu, W. H. Lim, M. Feng, J. Y. Huang, J. D. Cifuentes, S. Serrano, P. Y. Mai, R. C. C. Leon, C. C. Escott, K. M. Itoh, N. V. Abrosimov, H.-J. Pohl, M. L. W. Thewalt, F. E. Hudson, A. Morello, A. Laucht, C. H. Yang, A. Saraiva, and A. S. Dzurak, “On-demand electrical control of spin qubits,” Nature Nanotechnology, vol. 18, p. 131–136, Jan. 2023.
[134] F. K. Unseld, B. Undseth, E. Raymenants, Y. Matsumoto, S. Karwal, O. Pietx-Casas, A. S. Ivlev, M. Meyer, A. Sammak, M. Veldhorst, G. Scappucci, and L. M. K. Vandersypen, “Baseband control of single-electron silicon spin qubits in two dimensions,” 2024.
[135] M. P. Hynes, D. Burke, K. Ganesh, A. Vekris, B. J. Villis, J. C. Gartside, T. Kanne, J. Nyg˚ard, K. Moors, W. R. Branford, M. R. Connolly, and M. R. Buitelaar, “Synthetic spin-orbit coupling in superconductor-semiconductor hybrid nanowires with micromagnet arrays,” 2025.
[136] S. Im, N. Srivastava, K. Banerjee, and K. Goodson, “Scaling analysis of multilevel inter-connect temperatures for high-performance ics,” IEEE Transactions on Electron Devices, vol. 52, p. 2710–2719, Dec. 2005.
[137] T.-Y. Chiang, B. Shieh, and K. Saraswat, “Impact of joule heating on scaling of deep sub-micron cu/low-k interconnects,” in 2002 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.01CH37303), VLSIT-02, p. 38–39, IEEE, 2002.
[138] Y.-L. Shen, “Analysis of joule heating in multilevel interconnects,” Journal of Vacuum Science amp; Technology B: Microelectronics and Nanometer Structures Processing, Mea- surement, and Phenomena, vol. 17, p. 2115–2121, Sept. 1999.
[139] Google Quantum AI, “Suppressing quantum errors by scaling a surface code logical qubit,” Nature, vol. 614, p. 676–681, Feb. 2023.
[140] A. S. Ivlev, D. R. Crielaard, M. Meyer, W. I. L. Lawrie, N. W. Hendrickx, A. Sammak, G. Scappucci, C. D´eprez, and M. Veldhorst, “Operating semiconductor qubits without individual barrier gates,” 2025.
[141] M. Reed, B. Maune, R. Andrews, M. Borselli, K. Eng, M. Jura, A. Kiselev, T. Ladd, S. Merkel, I. Milosavljevic, E. Pritchett, M. Rakher, R. Ross, A. Schmitz, A. Smith, J. Wright, M. Gyure, and A. Hunter, “Reduced Sensitivity to Charge Noise in Semicon- ductor Spin Qubits via Symmetric Operation,” Phys. Rev. Lett., vol. 116, p. 110402, Mar. 2016.
[142] J. Z. Blumoff, A. S. Pan, T. E. Keating, R. W. Andrews, D. W. Barnes, T. L. Brecht, E. T. Croke, L. E. Euliss, J. A. Fast, C. A. Jackson, A. M. Jones, J. Kerckhoff, R. K. Lanza, K. Raach, B. J. Thomas, R. Velunta, A. J. Weinstein, T. D. Ladd, K. Eng, M. G. Borselli, A. T. Hunter, and M. T. Rakher, “Fast and high-fidelity state preparation and measurement in triple-quantum-dot spin qubits,” PRX Quantum, vol. 3, Mar. 2022.
[143] K. Takeda, A. Noiri, T. Nakajima, L. C. Camenzind, T. Kobayashi, A. Sammak, G. Scappucci, and S. Tarucha, “Rapid single-shot parity spin readout in a silicon double quantum dot with fidelity exceeding 99%,” npj Quantum Information, vol. 10, Feb. 2024.
[144] A. M. Jakob, S. G. Robson, V. Schmitt, V. Mourik, M. Posselt, D. Spemann, B. C. Johnson, H. R. Firgau, E. Mayes, J. C. McCallum, A. Morello, and D. N. Jamieson, “Deterministic shallow dopant implantation in silicon with detection confidence upper- bound to 99.85% by ion–solid interactions,” Advanced Materials, vol. 34, Nov. 2021.
[145] D. Holmes, B. Wilhelm, A. M. Jakob, X. Yu, F. E. Hudson, K. M. Itoh, A. S. Dzurak, D. N. Jamieson, and A. Morello, “Improved placement precision of donor spin qubits in silicon using molecule ion implantation,” Advanced Quantum Technologies, vol. 7, Jan. 2024.
[146] S. R. Schofield, A. J Fisher, E. Ginossar, J. W. Lyding, R. Silver, F. Fei, P. Namboodiri, J. Wyrick, M. G. Masteghin, D. C. Cox, B. N. Murdin, S. K. Clowes, J. G Keizer, M. Y Simmons, H. G. Stemp, A. Morello, B. Voisin, S. Rogge, R. A Wolkow, L. Livadaru, J. Pitters, T. J Z Stock, N. J Curson, R. E. Butera, T. V Pavlova, A. M. Jakob, D. Spe- mann, P. R¨acke, F. Schmidt-Kaler, D. N. Jamieson, U. Pratiush, G. Duscher, S. V Kalinin, D. Kazazis, P. Constantinou, G. Aeppli, Y. Ekinci, J. H. G. Owen, E. Fowler, S. O. R. Moheimani, J. Randall, S. Misra, J. A Ivie, C. R. Allemang, E. M. Anderson, E. Buss- mann, Q. Campbell, X. Gao, T.-M. Lu, and S. W. Schmucker, “Roadmap on atomic-scale semiconductor devices,” Nano Futures, vol. 9, p. 012001, Mar. 2025.
[147] E. M. Anderson, C. R. Allemang, A. J. Leenheer, S. W. Schmucker, J. A. Ivie, D. M. Campbell, W. Lepkowski, X. Gao, P. Lu, C. Arose, T. M. Lu, C. Halsey, T. D. England, D. R. Ward, D. A. Scrymgeour, and S. Misra, “Direct integration of atomic precision advanced manufacturing into middle-of-line silicon fabrication,” 2025.
[148] M. Veldhorst, H. G. J. Eenink, C. H. Yang, and A. S. Dzurak, “Silicon cmos architecture for a spin-based quantum computer,” Nature Communications, vol. 8, Dec. 2017.
[149] T. Struck, M. Volmer, L. Visser, T. Offermann, R. Xue, J.-S. Tu, S. Trellenkamp, Cywi´nski, H. Bluhm, and L. R. Schreiber, “Spin-epr-pair separation by conveyor-mode single electron shuttling in si/sige,” Nature Communications, vol. 15, Feb. 2024.
[150] M. De Smet, Y. Matsumoto, A.-M. J. Zwerver, L. Tryputen, S. L. de Snoo, S. V. Amitonov, A. Sammak, N. Samkharadze, O. G¨ul, R. N. M. Wasserman, M. Rimbach- Russ, G. Scappucci, and L. M. K. Vandersypen, “High-fidelity single-spin shuttling in silicon,” arXiv:2406.07267 [cond-mat.mes-hall], 2024.
[151] Y. Matsumoto, M. De Smet, L. Tryputen, S. L. de Snoo, S. V. Amitonov, A. Sammak, M. Rimbach-Russ, G. Scappucci, and L. M. K. Vandersypen, “Two-qubit logic and tele- portation with mobile spin qubits in silicon,” arXiv:2503.15434 [quant-ph], 2025.
[152] H. Bombin and M. A. Martin-Delgado, “Topological quantum distillation,” Physical Review Letters, vol. 97, Oct. 2006.
[153] F. Thomsen, M. S. Kesselring, S. D. Bartlett, and B. J. Brown, “Low-overhead quantum computing with the color code,” Physical Review Research, vol. 6, Nov. 2024.
[154] D. Gottesman, Fault-tolerant quantum computation with constant overhead, arXiv:1310.2984 [quant-ph], 2013.
[155] Y. Li, “Low-density parity-check representation of fault-tolerant quantum circuits,” Physical Review Research, vol. 7, Jan. 2025.
[156] Z. Shi, C. B. Simmons, J. R. Prance, J. King Gamble, M. Friesen, D. E. Savage, M. G. Lagally, S. N. Coppersmith, and M. A. Eriksson, “Tunable singlet-triplet splitting in a few-electron si/sige quantum dot,” Applied Physics Letters, vol. 99, Dec. 2011.
[157] X. Mi, C. G. P´eterfalvi, G. Burkard, and J. Petta, “High-resolution valley spectroscopy of si quantum dots,” Physical Review Letters, vol. 119, Oct. 2017.
[158] C. H. Yang, A. Rossi, R. Ruskov, N. S. Lai, F. A. Mohiyaddin, S. Lee, C. Tahan, G. Klimeck, A. Morello, and A. S. Dzurak, “Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting,” Nature Communications, vol. 4, June 2013.
[159] J. C. Marcks, E. Eagen, E. C. Brann, M. P. Losert, T. Oh, J. Reily, C. S. Wang, D. Keith, F. A. Mohiyaddin, F. Luthi, M. J. Curry, J. Zhang, F. J. Heremans, M. Friesen, and M. A. Eriksson, “Valley splitting correlations across a silicon quantum well,” arXiv:2504.12455 [cond-mat.mes-hall], 2025.
[160] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Superconducting quantum circuits at the surface code threshold for fault tolerance,” Nature, vol. 508, pp. 500–503, Apr. 2014.
[161] E. Nielsen, R. Blume-Kohout, K. Rudinger, T. Proctor, and L. Saldyt, “Python gst implementation (pygsti) v. 0.9,” 2019.
[162] E. Kawakami, T. Jullien, P. Scarlino, D. R. Ward, D. E. Savage, M. G. Lagally, V. V. Dobrovitski, M. Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen, “Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micro- magnet,” Proc. Natl. Acad. Sci. U. S. A., vol. 113, pp. 11738–11743, Oct. 2016.
[163] E. Paladino, Y. M. Galperin, G. Falci, and B. L. Altshuler, “1/fnoise: Implications for solid-state quantum information,” Rev. Mod. Phys., vol. 86, pp. 361–418, Apr. 2014.
[164] T. J. Green, J. Sastrawan, H. Uys, and M. J. Biercuk, “Arbitrary quantum control of qubits in the presence of universal noise,” New J. Phys., vol. 15, p. 095004, Sept. 2013.
[165] M. Ortner and L. G. Coliado Bandeira, “Magpylib: A free python package for magnetic field computation,” SoftwareX, vol. 11, p. 100466, Jan. 2020.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97980-
dc.description.abstract矽自旋量子位元是實現可大規模量子計算的平台,大規模量子計算需要的量子糾錯碼要求量子位元操控保真度需超越 99% 的閾值。在此,我們展示了在矽元件中自旋量子位元的高保真度控制,我們展示了超越了此閾值並且接近 99.9% 的保真度目標。我們在純化後的矽/矽鍺自旋量子位元裝置中,實現了單量子位元閘 99.99% 的保真度,以及雙量子位元受控反閘(controlled-NOT gate) 99.5% 的保真度。此外,我們還證明了利用共用微波控制線同時控制多個自旋量子位元陣列的可行性,同時維持了約 99.9% 的單量子位元閘保真度。這些結果將在未來提升量子位元保真度時提供幫助,並且也突顯了自旋量子位元裝置在邁向實用量子計算方面的潛力。zh_TW
dc.description.abstractSpin qubits in silicon are a leading platform for scalable quantum computation. To implement large-scale quantum computation, the ability to implement fault-tolerant surface code is needed, which requires qubit operation fidelities exceeding the 99% fault-tolerance threshold. Moreover, improving these operation fidelities further reduces the number of physical qubits required to encode a logical qubit with the same logical error rate, making it more practical to implement useful quantum computation. Here, we demonstrate high-fidelity control of spin qubits in isotopically purified silicon, surpassing the 99% threshold and approaching the practical fidelity target of 99.9%. We achieved 99.99% fidelity for single-qubit gates and 99.5% fidelity for two-qubit controlled-NOT gates in purified Si/SiGe spin qubit devices. Furthermore, we demonstrate the ability to control an array of spin qubits simultaneously with a shared control line while maintaining the ∼ 99.9% single-qubit gate fidelity. These results will help improve operation fidelities in future spin qubit devices and underscore the potential for spin qubit devices to be scaled up towards practical quantum computation.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-23T16:19:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-23T16:19:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgments II
摘要 IV
Abstract V
Contents VI
List of Figures IX
List of Tables XII
List of Publications XIII
1. Introduction 1
1.1 Quantum Computers and Qubits 1
1.2 Surface Code and Error Thresholds 2
1.3 Spin Qubits in Solid-State Devices 6
1.4 Structure of this Thesis 8
2. Si/SiGe Spin Qubits 10
2.1 Confining electrons in Si/SiGe devices 10
2.2 Initialization and Readout of Spin State 16
2.2.1 Energy-selective readout 16
2.2.2 Spin-selective readout 17
2.3 Manipulating Single Spin State 20
2.4 Spin Qubit Error and Noise 27
2.5 Evaluation of Quantum Gate Performance 29
2.5.1 Randomized Benchmarking 30
2.5.2 Gate-Set Tomography 32
3. Hamiltonian Phase Error in Resonantly Driven CNOT Gate Above the Fault-Tolerant Threshold 37
3.1 Introduction 37
3.2 Results 39
3.2.1 Device and controlled rotation gates 39
3.2.2 Measuring the off-resonant Hamiltonian phase error 43
3.2.3 Compensation of the off-resonant Hamiltonian phase error 51
3.2.4 Virtual CZ Gate 54
3.3 Discussion 58
4. Simultaneous High-Fidelity Single-Qubit Gates in a Spin Qubit Array 60
4.1 Introduction 61
4.2 Five-qubit device and operation 62
4.3 High fidelity gate with Kaiser-window pulse 65
4.4 Simultaneous operation of two qubits 74
4.5 Simultaneous operation of multiple qubits 79
4.6 Conclusions 83
5 Conclusion 86
5.1 Summary 86
5.2 Outlook and future directions 87
Bibliography 94
A Measurement Setup 118
B Fidelity Benchmarking Experiments 120
B.1 Two-qubit CROT randomized benchmarking 120
B.2 Two-qubit CROT gate-set-tomography 121
B.3 Single-qubit randomized benchmarking 124
B.4 Single-qubit gate-set-tomography 125
C Simulation 129
C.1 Single-qubit gate simulation 129
C.2 Two-qubit controlled-rotation simulation 130
C.3 Simulation of gate-set-tomography with PSB readout 131
D Experiments Details 133
D.1 Quantum gate tuneup 133
D.2 Device fabrication 135
D.3 Qubit control 135
D.4 Kaiser-window pulse 136
D.4.1 Five-qubit tomographic readout 137
D.4.2 RB simulations incorporating measured qubit noise 138
D.5 Micromagnet for power-efficient control 139
-
dc.language.isoen-
dc.subject量子容錯閾值zh_TW
dc.subject量子操作zh_TW
dc.subject高保真度zh_TW
dc.subject自旋量子位元zh_TW
dc.subject量子點zh_TW
dc.subjectfault-tolerant thresholden
dc.subjectSpin qubitsen
dc.subjectquantum doten
dc.subjecthigh-fidelityen
dc.subjectquantum operationen
dc.title超過量子容錯計算閾值的矽/矽鍺自旋量子位元控制zh_TW
dc.titleSi/SiGe Spin Qubit Operations with Fidelities Above the Fault-Tolerant Thresholden
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee樽茶清悟;梁啟德;徐碩鴻;張鑑元zh_TW
dc.contributor.oralexamcommitteeSeigo Tarucha;Chi-Te Liang;Shawn SH Hsu;Chien-Yuan Changen
dc.subject.keyword自旋量子位元,量子點,高保真度,量子操作,量子容錯閾值,zh_TW
dc.subject.keywordSpin qubits,quantum dot,high-fidelity,quantum operation,fault-tolerant threshold,en
dc.relation.page141-
dc.identifier.doi10.6342/NTU202501374-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-08-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
dc.date.embargo-lift2026-07-01-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2026-07-01
16.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved