Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97965
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉伊純zh_TW
dc.contributor.advisorYi-Cheun Yehen
dc.contributor.author林沛涵zh_TW
dc.contributor.authorPei-Han Linen
dc.date.accessioned2025-07-23T16:16:29Z-
dc.date.available2025-09-09-
dc.date.copyright2025-07-23-
dc.date.issued2025-
dc.date.submitted2025-07-17-
dc.identifier.citation1. Choudhary, A.; Sharma, A.; Singh, A.; Han, S. S.; Sood, A., Strategy and Advancement in Hybrid Hydrogel and Their Applications: Recent Progress and Trends. Adv. Eng. Mater. 2024, 26, (21), 2400944.
2. Palmese, L. L.; Thapa, R. K.; Sullivan, M. O.; Kiick, K. L., Hybrid hydrogels for biomedical applications. Curr. Opin. Chem. Eng. 2019, 24, 143-157.
3. Yu, H.; Xiao, Q.; Qi, G.; Chen, F.; Tu, B.; Zhang, S.; Li, Y.; Chen, Y.; Yu, H.; Duan, P., A hydrogen bonds-crosslinked hydrogels with self-healing and adhesive properties for hemostatic. Front. Bioeng. Biotechnol. 2022, 10, 855013.
4. Jiang, H.; Duan, L.; Ren, X.; Gao, G., Hydrophobic association hydrogels with excellent mechanical and self-healing properties. Eur. Polym. J. 2019, 112, 660-669.
5. Wang, Z.; Zhai, X.; Fan, M.; Tan, H.; Chen, Y., Thermal-reversible and self-healing hydrogel containing magnetic microspheres derived from natural polysaccharides for drug delivery. Eur. Polym. J. 2021, 157, 110644.
6. Li, D.-q.; Wang, S.-y.; Meng, Y.-j.; Guo, Z.-w.; Cheng, M.-m.; Li, J., Fabrication of self-healing pectin/chitosan hybrid hydrogel via Diels-Alder reactions for drug delivery with high swelling property, pH-responsiveness, and cytocompatibility. Carbohydr. Polym. 2021, 268, 118244.
7. Borelli, A. N.; Young, M. W.; Kirkpatrick, B. E.; Jaeschke, M. W.; Mellett, S.; Porter, S.; Blatchley, M. R.; Rao, V. V.; Sridhar, B. V.; Anseth, K. S., Stress relaxation and composition of hydrazone‐crosslinked hybrid biopolymer‐synthetic hydrogels determine spreading and secretory properties of MSCs. Adv. Healthcare Mater. 2022, 11, (14), 2200393.
8. Sun, J.; Hu, D.; Li, Y.; Wei, J.; Yu, Y., A photocrosslinked hybrid hydrogel based on chitosan/hyaluronic acid/ZnO toward wound sealing. Polym. Chem. 2025, 16, (3), 272-279.
9. Du, J.; She, X.; Zhu, W.; Yang, Q.; Zhang, H.; Tsou, C., Super-tough, anti-fatigue, self-healable, anti-fogging, and UV shielding hybrid hydrogel prepared via simultaneous dual in situ sol–gel technique and radical polymerization. J. Mater. Chem. B 2019, 7, (45), 7162-7175.
10. Zhang, F.; Zhang, S.; Lin, R.; Cui, S.; Jing, X.; Coseri, S., High mechanical and self-healing carboxymethyl chitosan-hyaluronic acid hybrid hydrogel via multiple dynamic covalent bonds for drug delivery. Eur. Polym. J. 2023, 197, 112342.
11. Andrabi, S. M.; Majumder, S.; Gupta, K. C.; Kumar, A., Dextran based amphiphilic nano-hybrid hydrogel system incorporated with curcumin and cerium oxide nanoparticles for wound healing. Colloids Surf., B 2020, 195, 111263.
12. Shen, J.; Jiao, W.; Chen, Z.; Wang, C.; Song, X.; Ma, L.; Tang, Z.; Yan, W.; Xie, H.; Yuan, B., Injectable multifunctional chitosan/dextran-based hydrogel accelerates wound healing in combined radiation and burn injury. Carbohydr. Polym. 2023, 316, 121024.
13. Ren, J.; Wang, X.; Zhao, L.; Li, M.; Yang, W., Double network gelatin/chitosan hydrogel effective removal of dyes from aqueous solutions. J. Polym. Environ. 2022, 30, (5), 2007-2021.
14. Khodami, S.; Kaniewska, K.; Stojek, Z.; Karbarz, M., Hybrid double-network dual-crosslinked hydrogel with self-healing ability and mechanical stability. Synthesis, characterization and application for motion sensors. Eur. Polym. J. 2022, 173, 111258.
15. Pruksawan, S.; Lim, J. W. R.; Lee, Y. L.; Lin, Z.; Chee, H. L.; Chong, Y. T.; Chi, H.; Wang, F., Enhancing hydrogel toughness by uniform cross-linking using modified polyhedral oligomeric silsesquioxane. Commun. Mater. 2023, 4, (1), 75.
16. Mredha, M. T. I.; Pathak, S. K.; Cui, J.; Jeon, I., Hydrogels with superior mechanical properties from the synergistic effect in hydrophobic–hydrophilic copolymers. Chem. Eng. J. 2019, 362, 325-338.
17. Zhou, B.; Gao, M.; Feng, X.; Huang, L.; Huang, Q.; Kootala, S.; Larsson, T. E.; Zheng, L.; Bowden, T., Carbazate modified dextrans as scavengers for carbonylated proteins. Carbohydr. Polym. 2020, 232, 115802.
18. Sun, S.-W.; Lin, Y.-C.; Weng, Y.-M.; Chen, M.-J., Efficiency improvements on ninhydrin method for amino acid quantification. J. Food Compos. Anal. 2006, 19, (2-3), 112-117.
19. Yan, C. J.; Yang, S. R.; Yeh, Y. C., Injectable pH‐and Ultrasound‐Responsive Dual‐Crosslinked Dextran/Chitosan/TiO2 Nanocomposite Hydrogels for Antibacterial Applications. Chem. Asian J. 2024, 19, (15), e202301151.
20. Yeh, Y. Y.; Tsai, Y. T.; Wu, C. Y.; Tu, L. H.; Bai, M. Y.; Yeh, Y. C., The Role of Aldehyde‐Functionalized Crosslinkers on the Property of Chitosan Hydrogels. Macromol. Biosci. 2022, 22, (5), 2100477.
21. Pan, S.; Zhu, C.; Tao, L., Hydrogels constructed by multicomponent reactions. Polym. Chem. 2024, 15, (47), 4799-4809.
22. Xia, S.; Song, S.; Li, Y.; Gao, G., Highly sensitive and wearable gel-based sensors with a dynamic physically cross-linked structure for strain-stimulus detection over a wide temperature range. J. Mater. Chem. C 2019, 7, (36), 11303-11314.
23. Xia, S.; Song, S.; Jia, F.; Gao, G., A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring. J. Mater. Chem. B 2019, 7, (30), 4638-4648.
24. Chen, R.; Yu, X.; Wang, W.; Zhu, L.; Yu, R.; Tang, G.; Wang, X.; Yu, J., Facile synthesis of mechanically robust and injectable tetra-polyethylene glycol/methacrylate chitosan double-network hydrogel cartilage repair. Polym. Test. 2024, 133, 108410.
25. Kumar, S.; Arora, A.; Kumar, S.; Kumar, R.; Maity, J.; Singh, B. K., Passerini reaction: synthesis and applications in polymer chemistry. Eur. Polym. J. 2023, 190, 112004.
26. Li, W.; Feng, J.; Wang, Y.; Shi, Q.; Ma, G.; Aglyamov, S.; Larin, K. V.; Lan, G.; Twa, M., Micron-scale hysteresis measurement using dynamic optical coherence elastography. Biomed. Opt. Express 2022, 13, (5), 3021-3041.
27. Wang, L.; Xu, T.; Zhang, X., Multifunctional conductive hydrogel-based flexible wearable sensors. TrAC, Trends Anal. Chem. 2021, 134, 116130.
28. Li, S.; Wang, H.; Wan, Z.; Guo, Y.; Chen, C.; Li, D.; Zhu, M.; Chen, Y., Strong, water-resistant, and ionic conductive all-chitosan film with a self-locking structure. ACS Appl. Mater. Interfaces 2022, 14, (20), 23797-23807.
29. Gao, M.; Zhao, R.; Kang, B.; Zhao, Z.; Song, S., High-performance ionic conductive double-network hydrogel enabling a long-term flexible strain sensor. Colloids Surf., A 2023, 663, 131051.
30. Li, J.; Fang, L.; Tait, W. R.; Sun, L.; Zhao, L.; Qian, L., Preparation of conductive composite hydrogels from carboxymethyl cellulose and polyaniline with a nontoxic crosslinking agent. RSC Adv. 2017, 7, (86), 54823-54828.
31. Wang, Z.; Xu, X.; Tan, R.; Zhang, S.; Zhang, K.; Hu, J., Hierarchically structured hydrogel composites with ultra‐high conductivity for soft electronics. Adv. Funct. Mater. 2024, 34, (16), 2312667.
32. Shan, M.; Chen, X.; Zhang, X.; Zhang, S.; Zhang, L.; Chen, J.; Wang, X.; Liu, X., Injectable conductive hydrogel with self‐healing, motion monitoring, and bacteria theranostics for bioelectronic wound dressing. Adv. Healthcare Mater. 2024, 13, (11), 2303876.
33. Jiao, T.; Wu, G.; Zhang, Y.; Shen, L.; Lei, Y.; Wang, C. Y.; Fahrenbach, A. C.; Li, H., Self‐Assembly in Water with N‐Substituted Imines. Angew. Chem. Int. Ed. 2020, 59, (42), 18350-18367.
34. Gao, Y.; Duan, L.; Guan, S.; Gao, G.; Cheng, Y.; Ren, X.; Wang, Y., The effect of hydrophobic alkyl chain length on the mechanical properties of latex particle hydrogels. RSC Adv. 2017, 7, (71), 44673-44679.
35. Xu, J.; Ren, X.; Gao, G., Salt-inactive hydrophobic association hydrogels with fatigue resistant and self-healing properties. Polymer 2018, 150, 194-203.
36. An, H.; Zhang, M.; Huang, Z.; Xu, Y.; Ji, S.; Gu, Z.; Zhang, P.; Wen, Y., Hydrophobic cross‐linked chains regulate high wet tissue adhesion hydrogel with toughness, anti‐hydration for dynamic tissue repair. Adv. Mater. 2024, 36, (8), 2310164.
37. Chiu, T.-H.; Wu, S.-Y.; Yang, Y.-C.; Yan, C.-J.; Yeh, Y.-C., Fabrication of Luminescent Triple-Cross-Linked Gelatin/Alginate Hydrogels through Freezing-Drying-Swelling and Freezing-Thawing Processes. Biomacromolecules 2024, 25, (9), 5758-5770.
38. Xu, X.-Y.; Yan, B., A fluorescent wearable platform for sweat Cl− analysis and logic smart-device fabrication based on color adjustable lanthanide MOFs. J. Mater. Chem. C 2018, 6, (7), 1863-1869.
39. Wang, Y.; Liu, H.; Xie, H.; Zhou, S., An autofluorescent hydrogel with water‐dependent emission for dehydration‐visualizable smart wearable electronics. Adv. Funct. Mater. 2023, 33, (19), 2213545.
40. Wang, F.; Yao, K.; Chen, C.; Wang, K.; Bai, H.; Hao, X. L.; Wang, Q.; Dong, X.; Liu, W., Lanthanide‐Coordinated Multifunctional Hydrogel for Detecting Human Motion and Encrypting Information. Adv. Funct. Mater. 2025, 2418373.
41. Hou, Y.; Jiang, N.; Sun, D.; Wang, Y.; Chen, X.; Zhu, S.; Zhang, L., A fast UV-curable PU-PAAm hydrogel with mechanical flexibility and self-adhesion for wound healing. RSC Adv. 2020, 10, (9), 4907-4915.
42. Xie, S.; Dai, T.; Li, F.; Liu, F.; Xu, Q.; Zhu, A.; Zhang, X., Shape memory luminescent cellulose/chitosan hydrogel for high sensitive detection of formaldehyde. Int. J. Biol. Macromol. 2023, 233, 123570.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97965-
dc.description.abstract交聯劑在水凝膠的製備及網絡結構和特性等方面至關重要,在親水高分子中引入疏水片段會引起微相分離,從而顯著提高水凝膠的機械拉伸性。透過調整這些疏水鏈段的長度,可以調整水凝膠的彈性和延展性。在本研究中,我們利用不同疏水鏈長的二羧酸(即己二酸 (AA)、癸二酸 (SA) 和十四烷二酸 (TDA))合成功能性交聯劑,並透過帕瑟里尼反應與醛官能化的聚乙二醇 (PEG-FA) 反應,得到三種含醛的交聯劑(即 AA-PEG-FA, SA-PEG-FA, and TDA-PEG-FA)。隨後將這些交聯劑與季銨化幾丁聚醣 (QCS) 和葡聚醣肼 (PDH) 結合,並透過動態鍵(例如靜電相互作用、氫鍵、亞胺鍵和腙鍵)形成 QCS/PDH 水凝膠。結果表明,交聯劑的疏水鏈段越長,水凝膠的拉伸應變就越大。因此,可以透過交聯劑的長短來微調 QCS/PDH 水凝膠的機械特性,以滿足生物醫學工程、穿戴式裝置和其他先進材料應用的需求。
此外,我們期望透過共價鍵形成的網絡結構來提升水凝膠的抗壓強度,我們使用由聚丙烯醯胺(PAM)與TDA-PEG-FA形成的互穿高分子網絡(IPN)水凝膠。為了進一步增強其功能性,我們在水凝膠中引入了銪離子。銪離子的加入不僅能強化水凝膠的網絡結構,還使其具有發光特性。藉由這些特性,該水凝膠未來有望應用於即時監測與先進感測等領域。
zh_TW
dc.description.abstractIt has been well-documented that crosslinkers play a crucial role in determining the structures and properties of hydrogel networks. Introducing hydrophobic segments in hydrophilic polymers induces microphase separation, significantly improving the mechanical stretchability of the hydrogel matrix. By adjusting the length of these hydrophobic segments, one can tailor the elasticity and extendibility of the hydrogels. In this study, we synthesized functional crosslinkers using dicarboxylic acids with different hydrophobic chain lengths (i.e., adipic acid (AA), sebacic acid (SA), and tetradecanedioic acid (TDA)), which were reacted with aldehyde-functionalized polyethylene glycol (PEG-FA) via the Passerini reaction, yielding three types of aldehyde-containing crosslinkers (i.e., AA-PEG-FA, SA-PEG-FA, and TDA-PEG-FA). These crosslinkers were subsequently incorporated with quaternized chitosan (QCS) and polydextran hydrazide (PDH) to form hybrid QCS/PDH hydrogels through dynamic bonds (e.g., electrostatic interactions, hydrogen bonding, imine bonds, and hydrazone bonds). The results showed that the tensile strains of hydrogels increased with crosslinkers with longer hydrophobic chain segments. Therefore, the mechanical characteristics of QCS/PDH hydrogels can be fine-tuned through crosslinker design, addressing requirements across biomedical engineering, wearable devices, and other advanced material applications.
Besides, we aim to construct a covalent bond-formed network to allow the hydrogel with enhanced mechanical strength by developing an interpenetrating polymer network (IPN) hydrogel with polyacrylamide (PAM) and TDA-PEG-FA. To enhance the functionality, trivalent europium (Eu3+) was incorporated into the hydrogel. The addition of Eu³⁺ not only strengthens the hydrogel network but also enables luminescence. With these features, the hydrogel may be used in real-time monitoring and advanced sensing applications.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-23T16:16:29Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-23T16:16:29Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xv
1. Introduction 1
2. Experimental section 6
2.1 Materials 6
2.2 Instruments 7
2.3 Synthesis of polydextran hydrazide (PDH) 8
2.4 Synthesis of quaternized chitosan (QCS) 9
2.5 Synthesis of aldehyde-functionalized polyethylene glycol (PEG-FA) 9
2.6 Preparation of Dicarboxylate-PEG-FA 10
2.7 Preparation of hydrogels 11
2.8 Scanning Electron Microscopy (SEM) and micro-CT Analysis 12
2.9 Compression and tensile testing of hydrogels 12
2.10 Adhesion measurement studies 13
2.11 Degradation of hydrogels 13
2.12 Water content of hydrogels 14
2.13 Electrical properties of hydrogels 14
2.14 Cellular studies 15
3. Results 16
3.1 Syntheses and characterizations of polymers 16
3.2 Microstructure of hydrogels 27
3.3 Compression tests of the hydrogels 31
3.4 Tensile tests of hydrogels 34
3.5 Adhesion test of the hydrogels 37
3.6 Water content and stability of hydrogels 39
3.7 Motion monitoring of hydrogels 43
3.8 Biocompatibility of hydrogels 46
4. Discussion 47
5. Conclusion 54
6. Ongoing and future work 55
7. Reference 64
-
dc.language.isoen-
dc.subject水凝膠zh_TW
dc.subject彈性體zh_TW
dc.subject幾丁聚醣zh_TW
dc.subject葡聚醣zh_TW
dc.subject穿戴式裝置zh_TW
dc.subjectpolydextranen
dc.subjecthydrogelen
dc.subjectelastomeren
dc.subjectchitosanen
dc.subjectwearable deviceen
dc.title透過交聯劑設計調控幾丁聚醣/葡聚醣水凝膠的結構與性質於感測應用zh_TW
dc.titleEngineering the structures and properties of chitosan/dextran hydrogels via crosslinker design for sensing applicationsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鍾仁傑;鄭詠馨;杜玲嫻zh_TW
dc.contributor.oralexamcommitteeRen-Jei Chung;Yung-Hsin Cheng;Ling-Hsien Tuen
dc.subject.keyword水凝膠,彈性體,幾丁聚醣,葡聚醣,穿戴式裝置,zh_TW
dc.subject.keywordhydrogel,elastomer,chitosan,polydextran,wearable device,en
dc.relation.page70-
dc.identifier.doi10.6342/NTU202502001-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-18-
dc.contributor.author-college工學院-
dc.contributor.author-dept高分子科學與工程學研究所-
dc.date.embargo-lift2030-07-17-
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
7.11 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved