請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97950完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭光宇 | zh_TW |
| dc.contributor.advisor | Guang-Yu Guo | en |
| dc.contributor.author | 江明寯 | zh_TW |
| dc.contributor.author | Ming-Chun Jiang | en |
| dc.date.accessioned | 2025-07-23T16:13:04Z | - |
| dc.date.available | 2025-07-24 | - |
| dc.date.copyright | 2025-07-23 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-11 | - |
| dc.identifier.citation | 1. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
2. R. Kubo, Statistical-Mechanical Theory of Irreversible Processes. I. General The- ory and Simple Applications to Magnetic and Conduction Problems, J. Phys. Soc. Jpn. 12, 570 (1957). 3. X. Wang, J. R. Yates, I. Souza, and D. Vanderbilt, Ab initio calculation of the anomalous Hall conductivity by Wannier interpolation, Phys. Rev. B 74, 195118 (2006). 4. M.-C. Jiang and G.-Y. Guo, Large magneto-optical effect and magnetic anisotropy energy in two-dimensional metallic ferromagnet Fe3GeTe2, Phys. Rev. B 105, 014437 (2022). 5. Y. Onishi and L. Fu, Fundamental Bound on Topological Gap, Phys. Rev. X 14, 011052 (2024). 6. Y. Onishi and L. Fu, “Quantum weight: A fundamental property of quantum many- body systems,” (2024), arXiv:2406.06783 [cond-mat.str-el] . 7. B. Ghosh, Y. Onishi, S.-Y. Xu, H. Lin, L. Fu, and A. Bansil, Probing quantum geometry through optical conductivity and magnetic circular dichroism, Sci. Adv. 10, eado1761 (2024). 8. N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Anomalous Hall effect, Rev. Mod. Phys. 82, 1539 (2010). 9. D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82, 1959 (2010). 10. F. Schilberth, M.-C. Jiang, S. Minami, M. A. Kassem, F. Mayr, T. Koretsune, Y. Tabata, T. Waki, H. Nakamura, G.-Y. Guo, R. Arita, I. Kézsmárki, and S. Bor- dács, Nodal-line resonance generating the giant anomalous Hall effect of Co3Sn2S2, Phys. Rev. B 107, 214441 (2023). 11. F. Schilberth, M. C. Jiang, F. L. Mardelé, L. B. Papp, I. Mohelsky, M. A. Kassem, Y. Tabata, T. Waki, H. Nakamura, G. Y. Guo, M. Orlita, R. Arita, I. Kézsmárki, and S. Bordács, Generation of Weyl points and a nodal line by magnetization reori- entation in Co3Sn2S2, (2024), arXiv:2408.03575 [cond-mat.mtrl-sci] . 12. J. Ebad-Allah, M.-C. Jiang, R. Borkenhagen, F. Meggle, L. Prodan, V. Tsurkan, F. Schilberth, G.-Y. Guo, R. Arita, I. Kézsmárki, and C. A. Kuntscher, Optical anisotropy of the kagome magnet FeSn: Dominant role of excitations between kagome and Sn layers, Phys. Rev. B 109, L201106 (2024). 13. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008). 14. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Generation of Optical Harmonics, Phys. Rev. Lett. 7, 118 (1961). 15. T. H. Maiman, Stimulated Optical Radiation in Ruby, Nature 187, 493 (1960). 16. C. Y. Fong and Y. R. Shen, Theoretical studies on the dispersion of the nonlinear optical susceptibilities in GaAs, InAs, and InSb, Phys. Rev. B 12, 2325 (1975). 17. D. J. Moss, J. E. Sipe, and H. M. van Driel, Empirical tight-binding calculation of dispersion in the second-order nonlinear optical constant for zinc-blende crystals, Phys. Rev. B 36, 9708 (1987). 18. D. J. Moss, E. Ghahramani, J. E. Sipe, and H. M. van Driel, Band-structure calculation of dispersion and anisotropy in ←→χ (3) for third-harmonic generation in Si, Ge, and GaAs, Phys. Rev. B 41, 1542 (1990). 19. D. J. Moss, E. Ghahramani, and J. E. Sipe, Semi‐ab initio tight‐binding band‐ structure calculations of χ(3) (− 3ω; ω, ω, ω) in C, Si, Ge, SiC, BP, AIP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, and InSb, Phys. Status Solidi B Basic Res. 164, 587 (1991). 20. J. E. Sipe and E. Ghahramani, Nonlinear optical response of semiconductors in the independent-particle approximation, Phys. Rev. B 48, 11705 (1993). 21. C. Aversa and J. E. Sipe, Nonlinear optical susceptibilities of semiconductors: Results with a length-gauge analysis, Phys. Rev. B 52, 14636 (1995). 22. S. N. Rashkeev, W. R. L. Lambrecht, and B. Segall, Efficient ab initio method for the calculation of frequency-dependent second-order optical response in semiconductors, Phys. Rev. B 57, 3905 (1998). 23. J. E. Sipe and A. I. Shkrebtii, Second-order optical response in semiconductors, Phys. Rev. B 61, 5337 (2000). 24. F. de Juan, Y. Zhang, T. Morimoto, Y. Sun, J. E. Moore, and A. G. Grushin, Differ- ence frequency generation in topological semimetals, Phys. Rev. Res. 2, 012017(R) (2020). 25. J. Ahn, G.-Y. Guo, and N. Nagaosa, Low-Frequency Divergence and Quantum Geometry of the Bulk Photovoltaic Effect in Topological Semimetals, Phys. Rev. X 10, 041041 (2020). 26. J. Ahn, G.-Y. Guo, N. Nagaosa, and A. Vishwanath, Riemannian geometry of res- onant optical responses, Nat. Phys. 18, 290 (2021). 27. H.-C. Hsu, J.-S. You, J. Ahn, and G.-Y. Guo, Nonlinear photoconductivities and quantum geometry of chiral multifold fermions, Phys. Rev. B 107, 155434 (2023). 28. P. Bhalla, K. Das, D. Culcer, and A. Agarwal, Resonant Second-Harmonic Gener- ation as a Probe of Quantum Geometry, Phys. Rev. Lett. 129, 227401 (2022). 29. P. Törmä, Essay: Where Can Quantum Geometry Lead Us?, Phys. Rev. Lett. 131, 240001 (2023). 30. J. Yu, C. J. Ciccarino, R. Bianco, I. Errea, P. Narang, and B. A. Bernevig, Non- trivial quantum geometry and the strength of electron–phonon coupling, Nat. Phys. 20, 1262 (2024). 31. T. Kitamura, A. Daido, and Y. Yanase, Spin-Triplet Superconductivity from Quantum-Geometry-Induced Ferromagnetic Fluctuation, Phys. Rev. Lett. 132, 036001 (2024). 32. J. L. Martin, General Relativity: A Guide to Its Consequences for Gravity and Cosmology (Ellis Horwood Ltd, 1988). 33. N. Nagaosa and T. Morimoto, Concept of Quantum Geometry in Optoelectronic Processes in Solids: Application to Solar Cells, Adv. Mater. 29, 1603345 (2017). 34. Y. Hwang, J. Jung, J.-W. Rhim, and B.-J. Yang, Wave-function geometry of band crossing points in two dimensions, Phys. Rev. B 103, L241102 (2021). 35. S. Chaudhary, C. Lewandowski, and G. Refael, Shift-current response as a probe of quantum geometry and electron-electron interactions in twisted bilayer graphene, Phys. Rev. Res. 4, 013164 (2022). 36. A. A. Lima, C. Filgueiras, and F. Moraes, Torsion effects on condensed matter: like a magnetic field but not so much, Eur. Phys. J. B 90, 32 (2017). 37. Z.-M. Huang, B. Han, and M. Stone, Nieh-Yan anomaly: Torsional Landau lev- els, central charge, and anomalous thermal Hall effect, Phys. Rev. B 101, 125201 (2020). 38. H.Onnes Kamerlingh, Further Experiments with Liquid Helium. On the Change of Electric Resistance of Pure Metals at Very Low Temperatures, etc. IV. The Resistance of Pure Mercury at Helium Temperatures, Communications from the Physical Laboratory of the University of Leiden 122, 1274 (1911). 39. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of Superconductivity, Phys. Rev. 108, 1175 (1957). 40. G. M. Eliashberg, Interactions between electrons and lattice vibrations in a super- conductor, Sov. Phys. - JETP (Engl. Transl.); (United States) 11:3 (1960). 41. L. Boeri, R. Hennig, P. Hirschfeld, G. Profeta, A. Sanna, E. Zurek, W. E. Pickett, M. Amsler, R. Dias, and M. I. Eremets et al., The 2021 room-temperature super- conductivity roadmap, J. Phys. Condens. Matter 34, 183002 (2022). 42. P. B. Allen and B. Mitrović, Theory of Superconducting Tcin (Elsevier, 1983) p. 1–92. 43. W. L. McMillan, Transition Temperature of Strong-Coupled Superconductors, Phys. Rev. 167, 331 (1968). 44. R. Dynes, McMillan's equation and the Tc of superconductors, Solid State Com- mun. 10, 615 (1972). 45. P.B.AllenandR.C.Dynes,Superconductivityatverystrongcoupling,J.Phys.C: Solid State Phys. 8, L158 (1975). 46. F.Giustino,Electron-phononinteractionsfromfirstprinciples,Rev.Mod.Phys.89, 015003 (2017). 47. P.Giannozzi,O.Andreussi,T.Brumme,O.Bunau,M.BuongiornoNardelli,M.Ca- landra, R. Car, C. Cavazzoni, D. Ceresoli, and M. Cococcioni et al., Advanced capabilities for materials modelling with Quantum ESPRESSO, J. Phys. Condens. Matter 29, 465901 (2017). 48. E. R. Margine and F. Giustino, Anisotropic Migdal-Eliashberg theory using Wan- nier functions, Phys. Rev. B 87, 024505 (2013). 49. F. Schrodi, P. M. Oppeneer, and A. Aperis, Full-bandwidth Eliashberg theory of superconductivity beyond Migdal's approximation, Phys. Rev. B 102, 024503 (2020). 50. T. Wang, T. Nomoto, Y. Nomura, H. Shinaoka, J. Otsuki, T. Koretsune, and R. Arita, Efficient ab initio Migdal-Eliashberg calculation considering the retarda- tion effect in phonon-mediated superconductors, Phys. Rev. B 102, 134503 (2020). 51. H. Lee, S. Poncé, K. Bushick, S. Hajinazar, J. Lafuente-Bartolome, J. Leveillee, C. Lian, J.-M. Lihm, F. Macheda, and H. Mori et al., Electron–phonon physics from first principles using the EPW code, npj Comput. Mater. 9, 156 (2023). 52. H. Mori, T. Nomoto, R. Arita, and E. R. Margine, Efficient anisotropic Migdal- Eliashberg calculations with an intermediate representation basis and Wannier in- terpolation, Phys. Rev. B 110, 064505 (2024). 53. I. Pallikara, P. Kayastha, J. M. Skelton, and L. D. Whalley, The physical signifi- cance of imaginary phonon modes in crystals, Electron. Struct. 4, 033002 (2022). 54. K. R. Babuand G.-Y.Guo,Electron-phononcoupling,superconductivity,andnon- trivial band topology in NbN polytypes, Phys. Rev. B 99, 104508 (2019). 55. I. Errea, M. Calandra, and F. Mauri, First-Principles Theory of Anharmonicity and the Inverse Isotope Effect in Superconducting Palladium-Hydride Compounds, Phys. Rev. Lett. 111, 177002 (2013). 56. I. Errea, M. Calandra, and F. Mauri, Anharmonic free energies and phonon disper- sions from the stochastic self-consistent harmonic approximation: Application to platinum and palladium hydrides, Phys. Rev. B 89, 064302 (2014). 57. I. Errea, M. Calandra, C. J. Pickard, J. Nelson, R. J. Needs,Y. Li, H. Liu, Y. Zhang, Y. Ma, and F. Mauri, High-Pressure Hydrogen Sulfide from First Principles: A Strongly Anharmonic Phonon-Mediated Superconductor, Phys. Rev. Lett. 114, 157004 (2015). 58. I. Errea, M. Calandra, C. J. Pickard, J. R. Nelson, R. J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, and F. Mauri, Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system, Nature 532, 81 (2016). 59. I. Errea, F. Belli, L. Monacelli, A. Sanna, T. Koretsune, T. Tadano, R. Bianco, M. Calandra, R. Arita, F. Mauri, and J. A. Flores-Livas, Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride, Nature 578, 66 (2020). 60. M.-C. Jiang, R. Masuki, G.-Y. Guo, and R. Arita, Ab initio study on magnetism suppression, anharmonicity, rattling mode, and superconductivity in Sc6MTe2 (M =Fe, Co, Ni, Phys. Rev. B 110, 104505 (2024). 61. G. S. Nolas, G. A. Slack, D. T. Morelli, T. M. Tritt, and A. C. Ehrlich, The effect of rare-earth filling on the lattice thermal conductivity of skutterudites, J. Appl. Phys. 79, 4002 (1996). 62. B. C. Sales, D. Mandrus, B. C. Chakoumakos, V. Keppens, and J. R. Thompson, Filled skutterudite antimonides: Electron crystals and phonon glasses, Phys. Rev. B 56, 15081 (1997). 63. Z. Hiroi, S. Yonezawa, T. Muramatsu, J.-I. Yamaura, and Y. Muraoka, Specific Heat of the β-Pyrochlore Oxide Superconductors CsOs2O6 and RbOs2O6, J. Phys. Soc. Jpn. 74, 1255 (2005). 64. M. Yoshida, K. Arai, R. Kaido, M. Takigawa, S. Yonezawa, Y. Muraoka, and Z. Hiroi, NMR Observation of Rattling Phonons in the Pyrochlore Superconductor KOs2O6, Phys. Rev. Lett. 98, 197002 (2007). 65. T. Dahm and K. Ueda, NMR Relaxation and Resistivity from Rattling Phonons in Pyrochlore Superconductors, Phys. Rev. Lett. 99, 187003 (2007). 66. A. Rykov, K. Nomura, T. Mitsui, and M. Seto, Low-energy excitations in brown- millerites and related oxides, Phys. B: Condens. Matter 350, 287 (2004). 67. M. Christensen, A. B. Abrahamsen, N. B. Christensen, F. Juranyi, N. H. Andersen, K. Lefmann, J. Andreasson, C. R. H. Bahl, and B. B. Iversen, Avoided crossing of rattler modes in thermoelectric materials, Nat. Mater. 7, 811 (2008). 68. Y. Nagao, J.-i. Yamaura, H. Ogusu, Y. Okamoto, and Z. Hiroi, Rattling-Induced Su- perconductiviy in the β-Pyrochlore Oxides AOs2O6, J. Phys. Soc. Jpn. 78, 064702 (2009). 69. M. J. Winiarski, B. Wiendlocha, M. Sternik, P. Wiśniewski, J. R. O’Brien, D. Kaczorowski, and T. Klimczuk, Rattling-enhanced superconductivity in MV2Al20 (M = Sc, Lu, Y) intermetallic cage compounds, Phys. Rev. B 93, 134507 (2016). 70. W. Kohn, A. D. Becke, and R. G. Parr, Density Functional Theory of Electronic Structure, J. Phys. Chem. 100, 12974 (1996). 71. R. G. Parr and W. Yang, Density-Functional Theory of the Electronic Structure of Molecules, Annu. Rev. Phys. Chem. 46, 701 (1995). 72. T. Fransson, M. G. Delcey, I. E. Brumboiu, M. Hodecker, X. Li, Z. Rinkevicius, A. Dreuw, Y. M. Rhee, and P. Norman, Computational Chemistry from Laptop to HPC: A notebook exploration of quantum chemistry (KTH Royal Institute of Technology, 2022). 73. P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136, B864 (1964). 74. W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140, A1133 (1965). 75. G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys.Rev. B 47, 558 (1993). 76. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996). 77. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758 (1999). 78. P.Giannozzi, S.Baroni, N.Bonini, M.Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, and I. D. et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter 21, 395502 (2009). 79. C. Kittel, Introduction to Solid State Physics, 8th ed. (John Wiley and Sons, 2004). 80. G.H.Wannier, The Structure of Electronic Excitation Levels in Insulating Crystals, Phys. Rev. 52, 191 (1937). 81. G. H. Wannier, Dynamics of Band Electrons in Electric and Magnetic Fields, Rev. Mod. Phys. 34, 645 (1962). 82. N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, Maximally localized Wannier functions: Theory and applications, Rev. Mod. Phys. 84, 1419 (2012). 83. I. Souza, N. Marzari, and D. Vanderbilt, Maximally localized Wannier functions for entangled energy bands, Phys. Rev. B 65, 035109 (2001). 84. R. Resta, Theory of the electric polarization in crystals, Ferroelectrics 136, 51 (1992). 85. R. D. King-Smith and D. Vanderbilt, Theory of polarization of crystalline solids, Phys. Rev. B 47, 1651 (1993). 86. R. Resta, Macroscopic polarization in crystalline dielectrics: the geometric phase approach, Rev. Mod. Phys. 66, 899 (1994). 87. R. Resta and D. Vanderbilt, Theory of Polarization: A Modern Approachin (Springer Berlin Heidelberg, 2007) p. 31. 88. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Thomson Learning, 1976). 89. D.A.Greenwood, The Boltzmann Equation in the Theory of Electrical Conduction in Metals, Proc. Phys. Soc. 71, 585 (1958). 90. B. B. Prasad, G.-F. Liu, and G.-Y. Guo, Magnetism-induced second-order nonlinear optical responses in multiferroic BiFeO3, Phys. Rev. B 110, 014422 (2024). 91. M. Wierzbowska, S. de Gironcoli, and P. Giannozzi, “Origins of low- and high-pressure discontinuities of tc in niobium,” (2006), arXiv:condmat/0504077 [cond- mat.supr-con] . 92. S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73, 515 (2001). 93. P. B. Allen, Neutron Spectroscopy of Superconductors, Phys. Rev. B 6, 2577 (1972). 94. D. J. Hooton, The use of a model in anharmonic lattice dynamics, Phil. Mag. 3, 49 (1958). 95. T. Tadano and S. Tsuneyuki, Self-consistent phonon calculations of lattice dynamical properties in cubic SrTiO3 with first-principles anharmonic force constants, Phys. Rev. B 92, 054301 (2015). 96. T. Tadano and S. Tsuneyuki, First-Principles Lattice Dynamics Method for Strongly Anharmonic Crystals, J. Phys. Soc. Jpn. 87, 041015 (2018). 97. T. Tadano, Y. Gohda, and S. Tsuneyuki, Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations, J. Phys. Condens. Matter 26, 225402 (2014). 98. F. Knoop, N. Shulumba, A. Castellano, J. P. A. Batista, R. Farris, M. J. Verstraete, M. Heine, D. Broido, D. S. Kim, and K. et al., TDEP: Temperature Dependent Effective Potentials, J. Open Source Softw. 9, 6150 (2024). 99. L. Monacelli, R. Bianco, M. Cherubini, M. Calandra, I. Errea, and F. Mauri, The stochastic self-consistent harmonic approximation: calculating vibrational proper- ties of materials with full quantum and anharmonic effects, J. Phys. Condens. Matter 33, 363001 (2021). 100. M. Zacharias and F. Giustino, Theory of the special displacement method for elec- tronic structure calculations at finite temperature, Phys. Rev. Res. 2, 013357 (2020). 101. F. Zhou, W. Nielson, Y. Xia, and V. Ozoliņš, Lattice Anharmonicity and Ther- mal Conductivity from Compressive Sensing of First-Principles Calculations, Phys. Rev. Lett. 113, 185501 (2014). 102. J.-J. Zhou, O. Hellman, and M. Bernardi, Electron-Phonon Scattering in the Pres- ence of Soft Modes and Electron Mobility in SrTiO3 Perovskite from First Princi- ples, Phys. Rev. Lett. 121, 226603 (2018). 103. H.-Y. Chen, T. Nomoto, and R. Arita, Development of an ab initio method for exciton condensation and its application to TiSe2, Phys. Rev. Res. 5, 043183 (2023). 104. A. Einstein, Die Feldgleichungen der Gravitation, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin) , 844 (1915). 105. D. Hilbert, Die Grundlagen der Physik . (Erste Mitteilung.), Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1915, 395 (1915). 106. A.Einstein,DieGrundlagederallgemeinenRelativitätstheorie,AnnalenderPhysik 354, 769 (1916). 107. B.Riemann,UeberdieHypothesen,welchederGeometriezuGrundeliegen,Gott. Abh. Ges. Wiss. 13, 133 (1867). 108. T. Eguchi, P. B. Gilkey, and A. J. Hanson, Gravitation, gauge theories and differential geometry, Phys. Rep. 66, 213 (1980). 109. J. Yepez, Einstein’s vierbein field theory of curved space, (2011), arXiv:1106.2037 [gr-qc] . 110. M. Nakahara, Geometry, topology and physics (2003) bristol, UK: Hilger (1990) 505 p. (Graduate student series in physics). 111. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitationin (Princeton University Press, Princeton, 2017). 112. D. Momeni and R. Myrzakulov, Myrzakulov Gravity in Vielbein Formalism: A Study in Weitzenböck Spacetime, (2024), arXiv:2412.04524 [gr-qc] . 113. C.-Y. Ju, A. Miranowicz, F. Minganti, C.-T. Chan, G.-Y. Chen, and F. Nori, Ein- stein's quantum elevator: Hermitization of non-Hermitian Hamiltonians via a gen- eralized vielbein formalism, Phys. Rev. Res. 4, 023070 (2022). 114. S. Busuioc and V. E. Ambruş, Lattice Boltzmann models based on the vielbein formalism for the simulation of flows in curvilinear geometries, Phys. Rev. E 99, 033304 (2019). 115. T. Amitani and Y. Nishida, Torsion-induced chiral magnetic current inequilibrium, Annals of Physics 448, 169181 (2023). 116. M. O. Katanaev, Geometric theory of defects, Physics-Uspekhi 48, 675 (2005). 117. E. Schrödinger, Space-Time Structure (Cambridge University Press, 1985). 118. J. Beltrán Jiménez, L. Heisenberg, and T. Koivisto, The Geometrical Trinity of Gravity, Universe 5, 173 (2019). 119. L. Ming, S.-D. Liang, H.-H. Zhang, and T. Harko, From the Weyl-Schrödinger connection to the accelerating Universe: Extending Einstein’s gravity via a length preserving nonmetricity, Phys. Rev. D 109, 024003 (2024). 120. S. Yan, D. A. Huse, and S. R. White, Spin-Liquid Ground State of the S = 1/2 Kagome Heisenberg Antiferromagnet, Science 332, 1173 (2011). 121. C. Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, M. R. Norman, and T. Senthil, Quantum spin liquids, Science 367, 263 (2020). 122. I. I. Mazin, H. O. Jeschke, F. Lechermann, H. Lee, M. Fink, R. Thomale, and R. Valentí, Theoretical prediction of a strongly correlated Dirac metal, Nat. Comm. 5, 4261 (2014). 123. K. Kuroda, T. Tomita, M.-T. Suzuki, C. Bareille, A. A. Nugroho, P. Goswami, M. Ochi, M. Ikhlas, M. Nakayama, and S. Akebi et al., Evidence for magnetic Weyl fermions in a correlated metal, Nat. Mater. 16, 1090 (2017). 124. Z. Hou, W. Ren, B. Ding, G. Xu, Y. Wang, B. Yang, Q. Zhang, Y. Zhang, E. Liu, F. Xu, W. Wang, G. Wu, X. Zhang, B. Shen, and Z. Zhang, Observation of Var- ious and Spontaneous Magnetic Skyrmionic Bubbles at Room Temperature in a Frustrated Kagome Magnet with Uniaxial Magnetic Anisotropy, Adv. Mater. 30, 1701144 (2018). 125. Y. Xu, J. Zhao, C. Yi, Q. Wang, Q. Yin, Y. Wang, X. Hu, L. Wang, E. Liu, G. Xu, L. Lu, A. A. Soluyanov, H. Lei, Y. Shi, J. Luo, and Z.-G. Chen, Electronic corre- lations and flattened band in magnetic Weyl semimetal candidate Co3Sn2S2, Nat. Comm. 11, 3985 (2020). 126. J.-X. Yin, S. S. Zhang, G. Chang, Q. Wang, S. S. Tsirkin, Z. Guguchia, B. Lian, H. Zhou, K. Jiang, and I. Belopolski et al., Negative flat band magnetism in a spin–orbit-coupled correlated kagome magnet, Nat. Phys. 15, 443 (2019). 127. M. Kang, L. Ye, S. Fang, J.-S. You, A. Levitan, M. Han, J. I. Facio, C. Jozwiak, A. Bostwick, and E. Rotenberg et al., Dirac fermions and flat bands in the ideal kagome metal FeSn, Nat. Mater. 19, 163 (2019). 128. H.Yamamoto,MössbauerEffectMeasurementofIntermetallicCompoundsinIron- Tin System: Fe5Sn3 and FeSn, J. Phys. Soc. Jpn. 21, 1058 (1966). 129. B. C. Sales, J. Yan, W. R. Meier, A. D. Christianson, S. Okamoto, and M. A. McGuire, Electronic, magnetic, and thermodynamic properties of the kagome layer compound FeSn, Phys. Rev. Mater. 3, 114203 (2019). 130. F. Schilberth, N. Unglert, L. Prodan, F. Meggle, J. Ebad Allah, C. A. Kuntscher, A. A. Tsirlin, V. Tsurkan, J. Deisenhofer, L. Chioncel, I. Kézsmárki, and S. Bor- dács, Magneto-optical detection of topological contributions to the anomalous Hall effect in a kagome ferromagnet, Phys. Rev. B 106, 144404 (2022). 131. A. Biswas, O. Iakutkina, Q. Wang, H. Lei, M. Dressel, and E. Uykur, Spin- Reorientation-Induced Band Gap in Fe3Sn2: Optical Signatures of Weyl Nodes, Phys. Rev. Lett. 125, 076403 (2020). 132. G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6, 15 (1996). 133. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996). 134. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996). 135. G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G. Géranton, M. Gibertini, D. Gresch, C. Johnson, and T. K. et al., Wannier90 as a community code: new features and applications, J. Phys.: Cond. Matter 32, 165902 (2020). 136. Z. Lin, C. Wang, P. Wang, S. Yi, L. Li, Q. Zhang, Y. Wang, Z. Wang, H. Huang, and Y. Sun et al., Dirac fermions in antiferromagnetic FeSn kagome lattices with combined space inversion and time-reversal symmetry, Phys. Rev. B 102, 155103 (2020). 137. K. Zhao, H. Deng, H. Chen, K. A. Ross, V. Petříček, G. Günther, M. Russina, V. Hutanu, and P. Gegenwart, Realization of the kagome spin ice state in a frustrated intermetallic compound, Science 367, 1218 (2020). 138. T. Y. Yang, Q. Wan, J. P. Song, Z. Du, J. Tang, Z. W. Wang, N. C. Plumb, M. Radovic, G. W. Wang, and G. Y. Wang et al., Fermi-level flat band in a kagome magnet, Quantum Frontiers 1, 14 (2022). 139. L. Prodan, A. Chmeruk, L. Chioncel, V. Tsurkan, and I. Kézsmárki, Anisotropic charge transport in the easy-plane kagome ferromagnet Fe3Sn, Phys. Rev. B 110, 094407 (2024). 140. Q. Du, Z. Hu, M.-G. Han, F. Camino, Y. Zhu, and C. Petrovic, Topological Hall Effect Anisotropy in Kagome Bilayer Metal Fe3Sn2, Phys. Rev. Lett. 129, 236601 (2022). 141. C. J. Tabert, J. P. Carbotte, and E. J. Nicol, Optical and transport properties in three-dimensional Dirac and Weyl semimetals, Phys. Rev. B 93, 085426 (2016). 142. R. Yang, T. Zhang, L. Zhou, Y. Dai, Z. Liao, H. Weng, and X. Qiu, Magnetization- Induced Band Shift in Ferromagnetic Weyl Semimetal Co3Sn2S2, Phys. Rev. Lett. 124, 077403 (2020). 143. R. S. Li, T. Zhang,W. Ma, S. X. Xu, Q. Wu, L. Yue, S. J. Zhang, Q. M. Liu, Z. X. Wang, and H. et al., Flat optical conductivity in the topological kagome magnet TbMn6Sn6, Phys. Rev. B 107, 045115 (2023). 144. E. Dagotto, Correlated electrons in high-temperature superconductors, Rev. Mod. Phys. 66, 763 (1994). 145. A. J. Millis, A. Zimmers, R. P. S. M. Lobo, N. Bontemps, and C. C. Homes, Mott physics and the optical conductivity of electron-doped cuprates, Phys. Rev. B 72, 224517 (2005). 146. M. M. Qazilbash, J. J. Hamlin, R. E. Baumbach, L. Zhang, D. J. Singh, M. B. Maple, and D. N. Basov, Electronic correlations in the iron pnictides, Nat. Phys. 5, 647 (2009). 147. E. Liu, Y. Sun, N. Kumar, L. Muechler, A. Sun, L. Jiao, S.-Y. Yang, D. Liu, A. Liang, and X. et al., Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal, Nat. Phys. 14, 1125 (2018). 148. C. Fang, H. Weng, X. Dai, and Z. Fang, Topological nodal line semimetals, Chinese Physics B 25, 117106 (2016). 149. M. Zabel, S. Wandinger, and K.-J. Range, Ternäre Chalkogenide M3M2′X2 mit Shandit-Struktur / Ternary Chalcogenides M3M2′X2 with Shandite-Type Structure, Zeitschrift für Naturforschung B 34, 238 (1979). 150. M. A. Kassem, Y. Tabata, T. Waki, and H. Nakamura, Low-field anomalous magnetic phase in the kagome-lattice shandite Co3Sn2S2, Phys. Rev. B 96, 014429 (2017). 151. Z. Guguchia, J. A. T. Verezhak, D. J. Gawryluk, S. S. Tsirkin, J.-X. Yin, I. Belopolski, H. Zhou, G. Simutis, S.-S. Zhang, and T. A. Cochran et al., Tunable anomalous Hall conductivity through volume-wise magnetic competition in a topological kagome magnet, Nat. Comm. 11, 559 (2020). 152. C. Lee, P. Vir, K. Manna, C. Shekhar, J. E. Moore, M. A. Kastner, C. Felser, and J. Orenstein, Observation of a phase transition within the domain walls of ferromagnetic Co3Sn2S2, Nat. Comm. 13, 3000 (2022). 153. J.-R. Soh, C. Yi, I. Zivkovic, N. Qureshi, A. Stunault, B. Ouladdiaf, J. A. Rodríguez-Velamazán, Y. Shi, H. M. Rønnow, and A. T. Boothroyd, Magnetic structure of the topological semimetal Co3Sn2S2, Phys. Rev. B 105, 094435 (2022). 154. Q. Wang, Y. Xu, R. Lou, Z. Liu, M. Li, Y. Huang, D. Shen, H. Weng, S. Wang, and H. Lei, Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions, Nat. Comm. 9, 3681 (2018). 155. S. Minami, F. Ishii, M. Hirayama, T. Nomoto, T. Koretsune, and R. Arita, Enhancement of the transverse thermoelectric conductivity originating from stationary points in nodal lines, Phys. Rev. B 102, 205128 (2020). 156. I. Belopolski, T. A. Cochran, X. Liu, Z.-J. Cheng, X. P. Yang, Z. Guguchia, S. S. Tsirkin, J.-X. Yin, P. Vir, and G. S. Thakur et al., Signatures of Weyl Fermion Annihilation in a Correlated Kagome Magnet, Phys. Rev. Lett. 127, 256403 (2021). 157. D. F. Liu, A. J. Liang, E. K. Liu, Q. N. Xu,Y. W. Li, C. Chen, D. Pei, W. J. Shi, S. K. Mo, and P. Dudin et al., Magnetic Weyl semimetal phase in a Kagomé crystal, Science 365, 1282 (2019). 158. D. F. Liu, E. K. Liu, Q. N. Xu, J. L. Shen, Y. W. Li, D. Pei, A. J. Liang, P. Dudin, T. K. Kim, and C. Cacho et al., Direct observation of the spin–orbit coupling effect in magnetic Weyl semimetal Co3Sn2S2, npj Quantum Mater. 7, 11 (2022). 159. Y. Okamura, S. Minami, Y. Kato, Y. Fujishiro, Y. Kaneko, J. Ikeda, J. Muramoto, R. Kaneko, K. Ueda, and V. Kocsis et al., Giant magneto-optical responses in magnetic Weyl semimetal Co3Sn2S2, Nat. Comm. 11, 4619 (2020). 160. A. A. Burkov and L. Balents, Weyl Semimetal in a Topological Insulator Multilayer, Phys. Rev. Lett. 107, 127205 (2011). 161. M. P. Ghimire, J. I. Facio, J.-S. You, L. Ye, J. G. Checkelsky, S. Fang, E. Kaxiras, M. Richter, and J. van den Brink, Creating Weyl nodes and controlling their energy by magnetization rotation, Phys. Rev. Res. 1, 032044 (2019). 162. P. Li, J. Koo, W. Ning, J. Li, L. Miao, L. Min, Y. Zhu, Y. Wang, N. Alem, C.-X. Liu, Z. Mao, and B. Yan, Giant room temperature anomalous Hall effect and tunable topology in a ferromagnetic topological semimetal Co2MnAl, Nat. Comm. 11, 3476 (2020). 163. M. A. Wilde, M. Dodenhöft, A. Niedermayr, A. Bauer, M. M. Hirschmann, K. Alpin, A. P. Schnyder, and C. Pfleiderer, Symmetry-enforced topological nodal planes at the Fermi surface of a chiral magnet, Nature 594, 374 (2021). 164. P. Vaqueiro and G. G. Sobany, ChemInform Abstract: A Powder Neutron Diffrac- tion Study of the Metallic Ferromagnet Co3Sn2S2., ChemInform 40, 513 (2009). 165. H. T. Stokes and D. M. Hatch, FINDSYM: a program for identifying the space-group symmetry of a crystal, J. Appl. Crystallogr. 38, 237 (2005). 166. Q. Wu, S. Zhang, H.-F. Song, M. Troyer, and A. A. Soluyanov, WannierTools: An open-source software package for novel topological materials, Comput. Phys. Comm. 224, 405 (2018). 167. M. Hirayama, R. Okugawa, and S. Murakami, Topological Semimetals Studied by Ab Initio Calculations, J. Phys. Soc. Jpn. 87, 041002 (2018). 168. J. F. Steiner, A. V. Andreev, and D. A. Pesin, Anomalous Hall Effect in Type-I Weyl Metals, Phys. Rev. Lett. 119, 036601 (2017). 169. K. Sonowal, A. Singh, and A. Agarwal, Giant optical activity and Kerr effect in type-I and type-II Weyl semimetals, Phys. Rev. B 100, 085436 (2019). 170. B. He, T. Yu, Y. Pan, C. Le, D. Chen, Y. Sun, and C. Felser, Evolution of nodal line induced out-of-plane anomalous Hall effect in Co3Sn2S2, Phys. Rev. B 111, 045157 171. G. Y. Guo and H. Ebert, Theoretical investigation of the orientation dependence of the magneto-optical Kerr effect in Co, Phys. Rev. B 50, 10377 (1994). 172. D.-s. Wang, R. Wu, and A. J. Freeman, First-principles theory of surface mag- netocrystalline anisotropy and the diatomic-pair model, Phys. Rev. B 47, 14932 (1993). 173. H. Takayama, K.-P. Bohnen, and P. Fulde, Magnetic surface anisotropy of transition metals, Phys. Rev. B 14, 2287 (1976). 174. I. Souza, T. Wilkens, and R. M. Martin, Polarization and localization in insulators: Generating function approach, Phys. Rev. B 62, 1666 (2000). 175. J. Ibañez Azpiroz, S. S. Tsirkin, and I. Souza, Ab initio calculation of the shift photocurrent by Wannier interpolation, Phys. Rev. B 97, 245143 (2018). 176. C. Le, Y. Zhang, C. Felser, and Y. Sun, Ab initio study of quantized circular pho- togalvanic effect in chiral multifold semimetals, Phys. Rev. B 102, 121111 (2020). 177. J. P. Provost and G. Vallee, Riemannian structure on manifolds of quantum states, Commun. Math. Phys. 76, 289 (1980). 178. Y.-Q. Ma, S. Chen, H. Fan, and W.-M. Liu, Abelian and non-Abelian quantum geometric tensor, Phys. Rev. B 81, 245129 (2010). 179. R. Resta, The insulating state of matter: a geometrical theory, Eur. Phys. J. B 79, 121 (2011). 180. W. J. Jankowski and R.-J. Slager, Quantized Integrated Shift Effect in Multigap Topological Phases, Phys. Rev. Lett. 133, 186601 (2024). 181. T. L. Hughes, R. G. Leigh, and E. Fradkin, Torsional Response and Dissipationless Viscosity in Topological Insulators, Phys. Rev. Lett. 107, 075502 (2011). 182. T. L. Hughes, R. G. Leigh, and O. Parrikar, Torsional anomalies, Hall viscosity, and bulk-boundary correspondence in topological states, Phys. Rev. D 88, 025040 (2013). 183. E. Schrödinger, Multivalued Fields: In Condensed Matter, Electromagnetism, And Gravitation (Cambridge University Press, 1985). 184. A. Avdoshkin, J. Mitscherling, and J. E. Moore, The multi-state geometry of shift current and polarization, (2024), arXiv:2409.16358 [cond-mat.supr-con] . 185. J. Ahn, S. Park, and B.-J. Yang, Failure of Nielsen-Ninomiya Theorem and Frag- ile Topology in Two-Dimensional Systems with Space-Time Inversion Symmetry: Application to Twisted Bilayer Graphene at Magic Angle, Phys. Rev. X 9, 021013 (2019). 186. B. Altan and E. Aifantis, On Some Aspects in the Special Theory of Gradient Elasticity, Journal of the Mechanical Behavior of Materials 8, 231 (1997). 187. J.-M. Lihm and C.-H. Park, Comprehensive theory of second-order spin photocur- rents, Phys. Rev. B 105, 045201 (2022). 188. H.-C. Hsu and T.-W. Chen, Shift spin photocurrents in two-dimensional systems, (2024), arXiv:2411.18437 [cond-mat.mes-hall] . 189. K. Hattori, H. Watanabe, and R. Arita, Nonlinear Hall effect driven by spin-charge- coupled motive force, (2025), arXiv:2501.11234 [cond-mat.str-el] . 190. Y. Duan and Z. Duan, Gauge field theory of a continuum with dislocations and disclinations, Int. J. Eng. Sci. 24, 513 (1986). 191. S. Chaudhary, M. Endres, and G. Refael, Berry electrodynamics: Anomalous drift and pumping from a time-dependent Berry connection, Phys. Rev. B 98, 064310 (2018). 192. Y. Okamoto, T. Inohara, A. Yamakage, Y. Yamakawa, and K. Takenaka, Low Carrier Density Metal Realized in Candidate Line-Node Dirac Semimetals CaAgP and CaAgAs, J. Phys. Soc. Jpn. 85, 123701 (2016). 193. Y. Okamoto, K. Saigusa, T. Wada, Y. Yamakawa, A. Yamakage, T. Sasagawa, N. Katayama, H. Takatsu, H. Kageyama, and K. Takenaka, High-mobility carriers induced by chemical doping in the candidate nodal-line semimetal CaAgP, Phys. Rev. B 102, 115101 (2020). 194. R. J. Quinn and J.-W. G. Bos, Promising thermoelectric performance in CaAgP with intrinsic Ag vacancies, Appl. Phys. Lett. 120, 073903 (2022). 195. R. Dhawan, V. Chaudhary, T. Nautiyal, J. van den Brink, and H. C. Kandpal, Electronic and Thermoelectric Transport Properties of CaAgP from First Principles, J. Phys. Chem. C. 127, 10922 (2023). 196. U.-G. Jong, C. Ryu, C.-J. Kang, and C.-J. Yu, Theoretical insight into potential thermoelectric performance of ternary metal phosphide CaAgP, Appl. Phys. Lett. 122, 133905 (2023). 197. R. Yano, S. Nagasaka, N. Matsubara, K. Saigusa, T. Tanda, S. Ito, A. Yamakage, Y. Okamoto, K. Takenaka, and S. Kashiwaya, Evidence of unconventional superconductivity on the surface of the nodal semimetal CaAg1−xPdxP, Nat. Comm. 14, 6817 (2023). 198. A. Yamakage, Y. Yamakawa, Y. Tanaka, and Y. Okamoto, Line-Node Dirac Semimetal and Topological Insulating Phase in Noncentrosymmetric Pnictides CaAgX(X= P, As), J. Phys. Soc. Jpn. 85, 013708 (2016). 199. N. Xu, Y. T. Qian, Q. S. Wu, G. Autès, C. E. Matt, B. Q. Lv, M. Y. Yao, V. N. Strocov, E. Pomjakushina, and K. Conder et al., Trivial topological phase of CaAgP and the topological nodal-line transition in CaAg(P1−xAsx), Phys. Rev. B 97, 161111 (2018). 200. A. Mewis, CaAgP and CaAgAs-ZweiVerbindungenmitFe2P-Struktur/CaAgPand CaAgAs -Two Compounds with the Fe2P-Structure, Zeitschrift für Naturforschung B 34, 14 (1979). 201. P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50, 17953 (1994). 202. O. Jepson and O. Anderson, The electronic structure of h.c.p. Ytterbium, Solid State Commun. 9, 1763 (1971). 203. W. M. Temmerman, P. A. Sterne, G. Y. Guo, and Z. Szotek, Electronic Structure Calculations of High Tc Materials, Mol. Simul. 4, 153 (1989). 204. K. Momma and F. Izumi, V E S T A for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44, 1272 (2011). 205. N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, Maximally localized Wannier functions: Theory and applications, Rev. Mod. Phys. 84, 1419 (2012). 206. J. R. Yates, X. Wang, D. Vanderbilt, and I. Souza, Spectral and Fermi surface properties from Wannier interpolation, Phys. Rev. B 75, 195121 (2007). 207. F. Nastos, B. Olejnik, K. Schwarz, and J. E. Sipe, Scissors implementation within length-gauge formulations of the frequency-dependent nonlinear optical response of semiconductors, Phys. Rev. B 72, 045223 (2005). 208. B. Lu, S. Sayyad, M. A. Sánchez-Martínez, K. Manna, C. Felser, A. G. Grushin, and D. H. Torchinsky, Second-harmonic generation in the topological multifold semimetal RhSi, Phys. Rev. Res. 4, L022022 (2022). 209. G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the Thirty-Two Point Groups (The MIT Press, Cambridge, 1963). 210. O. Tavakol and Y. B. Kim, Nonlinear optical responses in nodal line semimetals, Phys. Rev. B 107, 035114 (2023). 211. Z. Li, Y.-Q. Jin, T. Tohyama, T. Iitaka, J.-X. Zhang, and H. Su, Second harmonic generation in the Weyl semimetal TaAs from a quantum kinetic equation, Phys. Rev. B 97, 085201 (2018). 212. [212] L. Wu, S. Patankar, T. Morimoto, N. L. Nair, E. Thewalt, A. Little, J. G. Ana- lytis, J. E. Moore, and J. Orenstein, Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals, Nat. Phys. 13, 350 (2016). 213. S. Patankar, L. Wu, B. Lu, M. Rai, J. D. Tran, T. Morimoto, D. E. Parker, A. G. Grushin, N. L. Nair, and J. G. Analytis et al., Resonance-enhanced optical nonlin- earity in the Weyl semimetal TaAs, Phys. Rev. B 98, 165113 (2018). 214. Z. Fisk, H.-R. Ott, and J. Thompson, Superconducting materials: What the record tells us, Phil. Mag. 89, 2111 (2009). 215. J. G. Bednorz and K. A. Müller, Possible high Tc superconductivity in the Ba-La-Cu-O system, Zeitschrift für Physik B Condensed Matter 64, 189 (1986). 216. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-Based Layered Superconductor La[O1−xFx]FeAs (x = 0.05 − 0.12) with Tc = 26 K, J. Am. Chem. Soc. 130, 3296 (2008). 217. F.-C.Hsu, J.-Y.Luo, K.-W.Yeh, T.-K. Chen, T.-W. Huang, P. M. Wu, Y.-C. Lee, Y.- L. Huang, Y.-Y. Chu, D.-C. Yan, and M.-K. Wu, Superconductivity in the PbO-type structure α-FeSe, PNAS 105, 14262 (2008). 218. J. M. Heintz, M. Drillon, R. Kuentzler, Y. Dossmann, J. P. Kappler, O. Durmeyer, and F. Gautier, Superconductivity of LiTi2O4 and related systems, Zeitschrift für Physik B Condensed Matter 76, 303 (1989). 219. Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz, and F. Lichtenberg, Superconductivity in a layered perovskite without copper, Nature 372, 532 (1994). 220. K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian, and T. Sasaki, Superconductivity in two-dimensional CoO2 layers, Nature 422, 53 (2003). 221. S. Yonezawa, Y. Muraoka, Y. Matsushita, and Z. Hiroi, Superconductivity in a pyrochlore-related oxide KOs2O6, J. Phys. Condens. Matter 16, L9 (2004). 222. B. R. Ortiz, S. M. L. Teicher, Y. Hu, J. L. Zuo, P. M. Sarte, E. C. Schueller, A. M. M. Abeykoon, M. J. Krogstad, S. Rosenkranz, and R. Osborn et al., CsV3Sb5: A Z2 Topological Kagome Metal with a Superconducting Ground State, Phys. Rev. Lett. 125, 247002 (2020). 223. D. Li, K. Lee, B. Y. Wang, M. Osada, S. Crossley, H. R. Lee, Y. Cui, Y. Hikita, and H. Y. Hwang, Superconductivity in an infinite-layer nickelate, Nature 572, 624 (2019). 224. S. Sen and G.-Y. Guo, Electronic structure, lattice dynamics, and magnetic properties of ThXAsN (X = Fe, Co, Ni) superconductors: A first-principles study, Phys. Rev. B 102, 224505 (2020). 225. Y. Shinoda, Y. Okamoto, Y. Yamakawa, H. Matsumoto, D. Hirai, and K. Takenaka, Superconductivity in Ternary Scandium Telluride Sc6MTe2 with 3d, 4d, and 5d Transition Metals, J. Phys. Soc. Jpn. 92, 103701 (2023). 226. H. Aoki and H. Hosono, A superconducting surprise comes of age, Phys.World28, 31 (2015). 227. H. Hosono, A. Yamamoto, H. Hiramatsu, and Y. Ma, Recent advances in iron-based superconductors toward applications, Mater. Today 21, 278 (2018). 228. D. R. Slocombe, V. L. Kuznetsov, W. Grochala, R. J. P. Williams, and P. P. Edwards, Superconductivity in transition metals, Philos. trans., Math. phys. eng. sci. 373, 20140476 (2015). 229. J. A. Flores-Livas, L. Boeri, A. Sanna, G. Profeta, R. Arita, and M. Eremets, A perspective on conventional high-temperature superconductors at high pressure: Methods and materials, Phys. Rep. 856, 1 (2020). 230. H. Alloul and A. Cano, Foreword, Comptes Rendus Physique 17, 1 (2016). 231. L. Boeri, O. V. Dolgov, and A. A. Golubov, Is LaFeAsO1−xFx an Electron-Phonon Superconductor?, Phys. Rev. Lett. 101, 026403 (2008). 232. F. Essenberger, A. Sanna, P. Buczek, A. Ernst, L. Sandratskii, and E. K. U. Gross, Ab initio theory of iron-based superconductors, Phys. Rev. B 94, 014503 (2016). 233. M. Kawamura, Y. Hizume, and T. Ozaki, Benchmark of density functional theory for superconductors in elemental materials, Phys. Rev. B 101, 134511 (2020). 234. P. A. Maggard and J. D. Corbett, Sc6MTe2 (M = Mn, Fe, Co, Ni): Members of the Flexible Zr6CoAl2-Type Family of Compounds, Inorg. Chem. 39, 4143 (2000). 235. L. Chen and J. D. Corbett, R6TT’2, New Variants of the Fe2P Structure Type. Sc6TTe2 (T = Ru, Os, Rh, Ir), Lu6MoSb2, and the Anti-typic Sc6Te0.80Bi1.68, In- org. Chem. 43, 436 (2003). 236. Z. V. Pchelkina, E. V. Komleva, V. Y. Irkhin, Y. Long, and S. V. Streltsov, Rattling Phonon Modes in Quadruple Perovskites, JETP Letters 118, 738 (2023). 237. B. Wei, Q. Sun, C. Li, and J. Hong, Phonon anharmonicity: a pertinent review of recent progress and perspective, Sci. China: Phys. Mech. Astron. 64, 117001 (2021). 238. C. C. Yu and P. W. Anderson, Local-phonon model of strong electron-phonon interactions in A15 compounds and other strong-coupling superconductors, Phys. Rev. B 29, 6165 (1984). 239. C. Setty, M. Baggioli, and A. Zaccone, Anharmonic phonon damping enhances the Tc of BCS-type superconductors, Phys. Rev. B 102, 174506 (2020). 240. C. Setty, M. Baggioli, and A. Zaccone, Anharmonic theory of superconductivity and its applications to emerging quantum materials, J. Phys. Condens. Matter 36, 173002 (2024). 241. H. Uzunok, H. Tütüncü, E. Karaca, and G. Srivastava, Theoretical investigation of superconductivity mechanism in the filled skutterudites YRu4P12, YOs4P12, LaOs1P12 and LaOs4As12, J. Phys. Chem. Solids 130, 197 (2019). 242. A. Dal Corso, Pseudopotentials periodic table: From H to Pu, Comput. Mater. Sci. 95, 337 (2014). 243. H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13, 5188 (1976). 244. P. E. Blöchl, O. Jepsen, and O. K. Andersen, Improved tetrahedron method for Brillouin-zone integrations, Phys. Rev. B 49, 16223 (1994). 245. M. Kawamura, FermiSurfer: Fermi-surface viewer providing multiple representation schemes, Comput. Phys. Comm. 239, 197 (2019). 246. F. Zhou, W. Nielson, Y. Xia, and V. Ozoliņš, Compressive sensing lattice dynamics. I. General formalism, Phys. Rev. B 100, 184308 (2019). 247. W. Tang, E. Sanville, and G. Henkelman, A grid-based Bader analysis algorithm without lattice bias, J. Phys. Condens. Matter 21, 084204 (2009). 248. S. S. Zumdahl, Chemical Principles, 5th ed.(HoughtonMifflin,2004) chapter 13.2 ”Electronegativity” pgs. 587-590. 249. G. Y. Guo and W. M. Temmerman, Suppression of superconductivity in PrBa2Cu3O7: 4f and conduction-band hybridization effect, Phys. Rev. B 41, 6372 (1990). 250. J. R. Schrieffer, Theory Of Superconductivity (Westview Press, 1971). 251. Z. Hiroi, S. Yonezawa, Y. Nagao, and J. Yamaura, Extremely strong-coupling superconductivity and anomalous lattice properties in the β-pyrochlore oxide KOs2O6, Phys. Rev. B 76, 014523 (2007). 252. M. Baggioli, B. Cui, and A. Zaccone, Theory of the phonon spectrum in host-guest crystalline solids with avoided crossing, Phys. Rev. B 100, 220201 (2019). 253. A. I. Lebedev, Ab initio calculations of phonon spectra in ATiO3 perovskite crystals (A = Ca, Sr, Ba, Ra, Cd, Zn, Mg, Ge, Sn, Pb), Phys. Solid State 51, 362 (2009). 254. Y. Shinoda, Y. Okamoto, Y. Yamakawa, H. Takatsu, H. Kageyama, D. Hirai, and K. Takenaka, Superconductivity in Ternary Germanide ScPdGe and Silicide ScPdSi, J. Phys. Soc. Jpn. 93, 023701 (2024). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97950 | - |
| dc.description.abstract | 這篇論文以第一原理計算為基礎,深入探討多種尖端材料中的光學性質與超 導特性,並著重於量子幾何在其中所扮演的關鍵角色。首先,我們研究了在拓樸 磁性籠目材料鐵錫合金 (FeSn) 和鈷閃鋅礦化合物 (Co3Sn2S2) 中的線性光學反應, 揭示了光學異向性、可調變的拓樸結構與低能量電子能帶等現象。
在鐵錫合金 (FeSn) 的研究中,透過詳細的第一原理分析,我們透過選擇不同 原子間的共振了解到來自於籠目平面與錫緩衝層之間的激發對於其異常的強垂直 導電性的重要性。這本與該材料作為結構上理想的籠目金屬所預期的行為相反。 而在鈷閃鋅礦化合物 (Co3Sn2S2) 中,我們揭示了節線共振對於其強反常霍爾效 應的貢獻,並進一步顯示透過改變磁化方向可以生成或湮滅節線與外爾點 (Weyl points)。在此同時,低能量的能帶結構改變伴隨著光學導電譜的紅移,反映出量 子度量 (quantum metric)的增強。 在此基礎上,我們拓展研究至二階非線性光學效應,特別是第二諧波響應。 本研究引入了數學上的四分體形式 (vielbein formalism),建立了量子力學中仿射 連接 (affine connection) 的數學形式以及其物理詮釋。我們提出了具有物理意義的“量子變形張量",並將扭率 (torsion) 與應變效應(strain)類比於量子態在希爾伯 特空間的演化,進而與非線性光學中電子激發態的位移機制建立直接關聯。此理 論以第一原理計算節線半金屬鈣-銀-磷化合物 (CaAgP) 的第二諧波響應當作實例 得到驗證,展現量子幾何如何引致顯著的非線性光學反應。 最後,我們探討了在含有過渡金屬元素的鈧六碲二-過渡金屬化合物 [Sc6MTe2(M = Fe, Co, Ni)] 的聲子媒介超導性質。我們的計算揭示了強烈的高諧 聲子效應與低頻率的搖擺聲子 (rattling phonons),不僅大幅增強了電子-聲子耦合, 也提高了超導相變溫度。透過自洽聲子理論與聲子頻譜的分析,我們釐清了這些 複雜材料中超導現象的起源,並強調高諧聲子在第一原理預測超導的重要性。此外,透過引入電負度概念,我們亦展示了如何利用磁性元素與非超導元素的結合 來設計新型超導體。 | zh_TW |
| dc.description.abstract | This thesis presents a comprehensive first-principles investigation of the optical properties and superconductivity in various advanced materials, emphasizing the role of quantum geometry. We first explore the linear optical responses of topological magnetic kagome materials FeSn and Co3Sn2S2, highlighting phenomena such as optical anisotropy, tunable topology, and low-energy electronic bands.
Detailed ab initio analysis on site-selected resonances on FeSn reveals the importance of the excitation between the kagome plane and Sn buffer plane, explaining the origin of the stronger out-of-plane conductivity that is counterintuitive to the usual belief for a structurally ideal kagome metal FeSn is. For Co3Sn2S2, we reveal the nodal-line resonance toward the strong anamolous Hall effect and a generation or annihilation of nodal lines and Weyl points by tuning the magnetic direction. Upon modifying the low-energy band structures, we observe a redshift of the optical conductivity, indicating an enhancement of the quantum metric for Co3Sn2S2. Building on this foundation, we extend our analysis to second-order nonlinear optical effects, particularly second harmonic generation. By introducing a vielbein-based formal- ism, we uncover a deep geometrical interpretation of the affine connections in quantum mechanics. The physically interpretable form of the quantum deformation tensor is proposed. The torsion and strain effects are analogous in quantum states, which is directly related to the shift mechanism in nonlinear optics. This approach is validated through a case study of the second harmonic generation of nodal-line semimetal CaAgP, where we demonstrate how nontrivial quantum geometry gives rise to pronounced nonlinear responses. In the final part of the thesis, we investigate phonon-mediated superconductivity in d-element-rich compounds Sc6MTe2 (M = Fe, Co, Ni). Our calculations reveal strong anharmonic effects and low-frequency rattling phonons that significantly enhance the electron-phonon coupling and superconducting transition temperature. Through the self-consistent phonon method and analysis of Eliashberg spectral functions, we elucidate the origin of superconductivity in these complex systems and highlight the importance of incorporating anharmonicity in predictive ab initio frameworks. Also, by incorporating electronegativity, we can design superconductors by combining nonsuperconducting elements with magnetic elements. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-23T16:13:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-23T16:13:04Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Contents
Acknowledgements i Publication List iii 摘要 v Abstract vii Contents ix List of Figures xiii List of Tables xix Abbreviations xxi Chapter 1 Introduction 1 1.1 Overview of this Thesis........................ 1 1.2 Optics in Advanced Materials..................... 1 1.2.1 Linear Optics............................. 1 1.2.2 Second-order Nonlinear Optical Effects. . . . . . . . . . . . . . . 3 1.2.3 Quantum Geometry.......................... 4 1.3 Superconductivity ........................... 6 1.3.1 Bardeen-Cooper-Schrieffer Theory.................. 6 1.3.2 Ab Initio Approach.......................... 7 1.3.3 Anharmonicity and Rattling Phonons................. 8 Chapter 2 Theoretical Background 11 2.1 Density Functional Theory....................... 11 2.2 Wannier Functions........................... 13 2.2.1 Wannierization ............................ 13 2.2.2 Modern Theory of Polarization.................... 16 2.3 Linear Response Theory........................ 17 2.3.1 Quantum Liouville Equation and Kubo Formula . . . . . . . . . . . 17 2.3.2 Linear Optical Response ....................... 20 2.3.3 Second-order Optical Response.................... 22 2.4 Electron-phonon coupling ....................... 25 2.4.1 Electron-phonon Coupling by Density Functional Perturbation Theory 27 2.4.2 Toward Phonon-mediated Superconductors . . . . . . . . . . . . . 28 2.4.3 Beyond Harmonic Phonons: Self-consistent Phonon Theory . . . . 30 2.4.4 Practical Implementation....................... 32 2.5 Quantum Geometry........................... 34 2.5.1 Metric Tensor and the Vielbein Formalism. . . . . . . . . . . . . . 34 2.5.2 Affine Connection in Differential Geometry. . . . . . . . . . . . . 35 2.5.3 Quantum Distance to Quantum Metric ................ 36 2.5.4 Quantum Metric Tensor in terms of Berry Connection . . . . . . . . 39 Chapter 3 Linear Optics 43 3.1 Kagome Magnets FeSn......................... 43 3.1.1 Computational Method........................ 44 3.1.2 Electronic Band Structure of FeSn.................. 46 3.1.3 Optical Anisotropy and Role of Kagome-Sn Excitation . . . . . . . 48 3.1.4 Role of Dirac Nodal Lines and Antiferromagnetism . . . . . . . . . 51 3.1.5 Electron Correlation Strengthin FeSn . . . . . . . . . . . . . . . . 54 3.1.6 Summary ............................... 55 3.2 Magnetic Weyl Semimetal Co3Sn2S2 ................. 55 3.2.1 Computational Method ........................ 58 3.2.2 Topology of Co3Sn2S2 ........................ 59 3.2.3 Electronic Band Structure of Co3Sn2S2 . . . . . . . . . . . . . . . . 62 3.2.4 Nodal-line Resonance Generating Large Anomalous Hall Effect in Co3Sn2S2 ............................... 64 3.2.5 Modifying Optical Conductivity by Magnetization Reorientation in Co3Sn2S2 ............................... 70 3.2.6 Origin of Nodal-line Reconstruction and Relation to Quantum Metric 74 3.2.7 Summary ............................... 77 Chapter 4 Nonlinear Optics and Quantum Geometry 79 4.1 Vielbein Formalism of the Quantum States . . . . . . . . . . . . . . 79 4.2 Quantum Deformation Tensor ..................... 82 4.2.1 Torsion Effect of Quantum States in Nonlinear Optics . . . . . . . . 85 4.2.2 Strain Effect of Quantum States in Nonlinear Optics . . . . . . . . . 89 4.2.3 Affine Connection in Nonlinear Optics . . . . . . . . . . . . . . . . 90 4.3 Second Harmonic Generation ..................... 92 4.4 Case Study: Ideal Nodal-line Semimetal CaAgP . . . . . . . . . . . 93 4.4.1 Computational Details ........................ 94 4.4.2 Electronic Structure of CaAgP .................... 95 4.4.3 Optical Conductivity and Optical Anisotropy of CaAgP . . . . . . . 96 4.4.4 Shift Current and Divergence Behavior. . . . . . . . . . . . . . . . 100 4.4.5 Second Harmonic Generation.....................101 4.4.6 Quantum Geometry Analysis.....................104 4.5 Role of Quantum Geometry in Second Harmonic Generation . . . . . 106 4.6 Summary................................107 Chapter 5 Superconductivity of Transition-Metal Compounds Sc6MTe2 (M = Fe, Co, Ni) 109 5.1 Motivation ...............................109 5.2 Crystal Structure Characteristics.................... 111 5.3 Computational Details ......................... 112 5.4 Magnetism Suppression ........................ 113 5.5 Electronic Structures..........................116 5.6 PhononProperties ........................... 119 5.7 Electron-phonon coupling .......................122 5.8 Anharmonicity and Rattling Phonons . . . . . . . . . . . . . .123 5.8.1 One-Dimensional Spring Model for Rattler Phonon Dispersion … 127 5.9 Two-Dimensional Spring Model for Rattler Phonon Dispersion … 128 5.9.1 Two-Dimensional Triangular Lattice Dynamical Equation . . . 129 5.9.2 Rattler Phonon Dispersion......................130 5.10 Superconductivity ...........................132 5.10.1 Impact of TSCPH on Phonon Properties and Electron-phonon Coupling 134 5.10.2 Origin to Overestimation of Tc in Sc6MTe2 ............. 135 5.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Chapter 6 Conclusions and Outlooks. 139 6.1 Conclusions . . . . . . . . . . . . . . . . . . 139 6.2 Outlooks . . . . . . . . . . . . . . . . . . . 140 References 141 Appendix A — Kähler Form and Torsion Tensor for the Hermitian Metric Tensor in the Vielbein Formalism 165 A.1 Complex Vielbein Formalism .....................165 A.1.1 Covariant Derivatives and Metric Compatibility . . . . . . . . . . . 166 A.2 Kähler Form and Torsion Tensor . . . . . . . . . . . . . . . . . . . . 167 | - |
| dc.language.iso | en | - |
| dc.subject | 拓墣材料 | zh_TW |
| dc.subject | 超導 | zh_TW |
| dc.subject | 非線性光學 | zh_TW |
| dc.subject | 線性光學 | zh_TW |
| dc.subject | 第一原理計算 | zh_TW |
| dc.subject | 搖擺聲子 | zh_TW |
| dc.subject | 高階聲子 | zh_TW |
| dc.subject | 電子聲子耦合 | zh_TW |
| dc.subject | 量子幾何 | zh_TW |
| dc.subject | 光學異象性 | zh_TW |
| dc.subject | 籠目材料 | zh_TW |
| dc.subject | 拓墣材料 | zh_TW |
| dc.subject | 超導 | zh_TW |
| dc.subject | 非線性光學 | zh_TW |
| dc.subject | 線性光學 | zh_TW |
| dc.subject | 第一原理計算 | zh_TW |
| dc.subject | 搖擺聲子 | zh_TW |
| dc.subject | 高階聲子 | zh_TW |
| dc.subject | 電子聲子耦合 | zh_TW |
| dc.subject | 量子幾何 | zh_TW |
| dc.subject | 光學異象性 | zh_TW |
| dc.subject | 籠目材料 | zh_TW |
| dc.subject | Rattling Phonon | en |
| dc.subject | Ab initio Calculation | en |
| dc.subject | Linear Optics | en |
| dc.subject | Nonlinear Optics | en |
| dc.subject | Superconductivity | en |
| dc.subject | Topological Materials | en |
| dc.subject | Kagome Materials | en |
| dc.subject | Optical Anisotropy | en |
| dc.subject | Quantum Geometry | en |
| dc.subject | Electron-Phonon Coupling | en |
| dc.subject | Anharmonicity | en |
| dc.subject | Rattling Phonon | en |
| dc.subject | Ab initio Calculation | en |
| dc.subject | Linear Optics | en |
| dc.subject | Nonlinear Optics | en |
| dc.subject | Superconductivity | en |
| dc.subject | Topological Materials | en |
| dc.subject | Kagome Materials | en |
| dc.subject | Optical Anisotropy | en |
| dc.subject | Quantum Geometry | en |
| dc.subject | Electron-Phonon Coupling | en |
| dc.subject | Anharmonicity | en |
| dc.title | 以第一原理計算研究尖端材料之光學與超導性質 | zh_TW |
| dc.title | Ab Initio Study of the Optical Properties and Superconductivity of Advanced Materials | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 有田亮太郎 | zh_TW |
| dc.contributor.coadvisor | Ryotaro Arita | en |
| dc.contributor.oralexamcommittee | 鄭舜仁;黃斯衍;李偉立;詹楊皓;河村光晶 | zh_TW |
| dc.contributor.oralexamcommittee | Shun-Jen Cheng;Ssu-Yen Huang;Wei-Li Lee;Yang-hao Chan;Mitsuaki Kawamura | en |
| dc.subject.keyword | 第一原理計算,線性光學,非線性光學,超導,拓墣材料,籠目材料,光學異象性,量子幾何,電子聲子耦合,高階聲子,搖擺聲子, | zh_TW |
| dc.subject.keyword | Ab initio Calculation,Linear Optics,Nonlinear Optics,Superconductivity,Topological Materials,Kagome Materials,Optical Anisotropy,Quantum Geometry,Electron-Phonon Coupling,Anharmonicity,Rattling Phonon, | en |
| dc.relation.page | 168 | - |
| dc.identifier.doi | 10.6342/NTU202501726 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-15 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| dc.date.embargo-lift | 2030-07-11 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-07-11 | 30.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
