請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97945完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉伊純 | zh_TW |
| dc.contributor.advisor | Yi-Cheun Yeh | en |
| dc.contributor.author | 吳淑櫻 | zh_TW |
| dc.contributor.author | Shu Ying Wu | en |
| dc.date.accessioned | 2025-07-23T16:12:00Z | - |
| dc.date.available | 2025-09-09 | - |
| dc.date.copyright | 2025-07-23 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-17 | - |
| dc.identifier.citation | 1. Y. Zhang, L. Lin, Y. Wu, M. Zhang, W. Ma, N. Ju, Z. Li, F. Huang, Z. Feng and Z. Wang, Visual high-sensitive temperature sensing of a novel rare-earth doped ligand-free luminous hydrogel, Opt. Mater., 2024, 155, 115834.
2. Y.-Y. Pei, J.-T. Wang, L. Yuan, Y. Luo, X.-Y. Niu, X. Rong, L. Jin and Q.-F. Li, Multicolor, injectable BSA-based lanthanide luminescent hydrogels with biodegradability, Int. J. Biol. Macromol., 2023, 235, 123865. 3. D. Xia, J. Li, M. Gao, T. Zhou, S. Zhao, J. Zhang and G. Li, Lanthanide-hydrogel with reversible dual-stimuli responsive luminescent switching property for data protection, Inorg. Chim. Acta, 2023, 556, 121633. 4. D. Yang, W. Zhang, T. Zhu, X. Liu, L. He, S. Meng, Z. Li and Q. Xiong, Self-strengthen luminescent hydrogel, Spectrochim. Acta A: Mol. Biomol. Spectrosc. , 2023, 294, 122569. 5. Y. Liang, P. Zhao, Z. Yan, Q. Zhang, Y. Liu and R. Zhang, Highly Stretchable and Luminescent Polymer Hydrogels Cross-Linked by a Minute Amount of Water-Soluble Lanthanide Organic Polyhedra, Macromolecules, 2024, 58, 149-157. 6. Y. Wang, J. Chen, Y. Shang, P. Li and H. Li, A stimuli responsive lanthanide-based hydrogel possessing tunable luminescence by efficient energy transfer pathways, J. Rare Earths, 2022, 40, 696-701. 7. A. S. Hoffman, Hydrogels for biomedical applications, Adv. Drug Deliv. Rev., 2012, 64, 18-23. 8. R. Zhong, Q. Tang, S. Wang, H. Zhang, F. Zhang, M. Xiao, T. Man, X. Qu, L. Li and W. Zhang, Self‐assembly of enzyme‐like nanofibrous G‐molecular hydrogel for printed flexible electrochemical sensors, Adv. Mater., 2018, 30, 1706887. 9. Y. Zhou, K. Hao, C. Liu, R. Yu, A. Huang, C. Wu, Y. Yang and X. Zuo, 3D printed hydrogels with time/temperature-dependent photoluminescence for multi-information dynamic display, ACS Appl. Polym. Mater., 2024, 6, 2012-2021. 10. R. V. Freire, D. M. Coelho, L. G. Maciel, L. T. Jesus, R. O. Freire, J. V. Dos Anjos and S. A. Junior, Luminescent Supramolecular Metallogels: Drug Loading and Eu (III) as Structural Probe, Chem. -Eur. J., 2024, 30, e202400680. 11. M. Mei, B. Wu, S. Wang and F. Zhang, Lanthanide-dye hybrid luminophores for advanced NIR-II bioimaging, Curr. Opin. Chem. Biol., 2024, 80, 102469. 12. X. Zhang, H. Wang, W. Lu, T. Chen and P. Wei, Lanthanide coordinated multicolor luminescent polymeric hydrogels, J. Mater. Chem. C, 2024, 12, 18201-18210. 13. J.-T. Wang, Y.-Y. Pei, B.-J. Han, R.-S. Sun, R.-T. Zuo, G.-X. Cui, H. Zhang, Z.-Z. Cao, L. Jin and Q.-F. Li, Multifunctional chitosan-based lanthanide luminescent hydrogel with stretchability, adhesion, self-healing, color tunability and antibacterial ability, Int. J. Biol. Macromol., 2024, 264, 130768. 14. J. Pan, J. Lu, Y. Shang, Y. Li and B. Yan, Tb (iii)-functionalized MOF hybridized bis-crosslinked networked hydrogel luminescent films for arginine and dopamine hydrochloride sensing and anticounterfeiting, J. Mater. Chem. C, 2025, 13, 1198-1206. 15. L.-N. Sun, H. Peng, M. I. Stich, D. Achatz and O. S. Wolfbeis, pH sensor based on upconverting luminescent lanthanide nanorods, Chem. Commun., 2009, 5000-5002. 16. Y. Qiao, Y. Lin, S. Zhang and J. Huang, Lanthanide‐Containing Photoluminescent Materials: From Hybrid Hydrogel to Inorganic Nanotubes, Chem. Eur. J., 2011, 17, 5180-5187. 17. B. Li, Y. Qin, Z. Li, Y. Zhang and H. Li, Smart luminescent hydrogel with superior mechanical performance based on polymer networks embedded with lanthanide containing clay nanocomposites, Nanoscale, 2021, 13, 11380-11386. 18. P.-Y. Chiang, P.-H. Zeng and Y.-C. Yeh, Luminescent lanthanide-containing gelatin/polydextran/laponite nanocomposite double-network hydrogels for processing and sensing applications, Int. J. Biol. Macromol., 2024, 260, 129359. 19. F. Wang, K. Yao, C. Chen, K. Wang, H. Bai, X. L. Hao, Q. Wang, X. Dong and W. Liu, Lanthanide‐Coordinated Multifunctional Hydrogel for Detecting Human Motion and Encrypting Information, Adv. Funct. Mater., 2025, 2418373. 20. Y. Sun, X. Le, H. Shang, Y. Shen, Y. Wu, Q. Liu, P. Théato and T. Chen, Dual‐Mode Hydrogels with Structural and Fluorescent Colors toward Multistage Secure Information Encryption, Adv. Mater., 2024, 36, 2401589. 21. S. Wei, W. Lu, X. Le, C. Ma, H. Lin, B. Wu, J. Zhang, P. Theato and T. Chen, Bioinspired synergistic fluorescence‐color‐switchable polymeric hydrogel actuators, Angew. Chem., Int. Ed., 2019, 131, 16389-16397. 22. J.-C. G. Bünzli and C. Piguet, Taking advantage of luminescent lanthanide ions, Chem. Soc. Rev., 2005, 34, 1048-1077. 23. J. Sheng, X. Liu, F. Liu, Q. Xu, A. Zhu and X. Zhang, In-situ preparation of lanthanide luminescent MOF hydrogel for aldehyde detection☆, J. Rare Earths, 2024. 24. J. Wang, X. Lan, W. Shi and Z. Chen, Alginate-based hydrogel beads for ultrasensitive detection and effective adsorption of terbium and europium in water, Carbohydr. Polym., 2025, 353, 123258. 25. A. Biswas and U. Maitra, based sensing of phytotoxicant gossypol in aqueous media through turn-on visible-light emitting lanthanide-luminescence, Chem. Commun., 2024, 60, 6765-6768. 26. J. Yang, M. Chen, P. Li, F. Cheng, Y. Xu, Z. Li, Y. Wang and H. Li, Self-healing hydrogel containing Eu-polyoxometalate as acid-base vapor modulated luminescent switch, Sens. Actuators B: Chem., 2018, 273, 153-158. 27. P. Panda, A. Dutta, S. Pal, D. Ganguly, S. Chattopadhyay, N. C. Das and R. K. Das, Strain sensing multi-stimuli responsive light emitting lanthanide-based tough and stretchable hydrogels with tunable luminescence and fast self-recovery using metal–ligand and hydrophobic interactions, New J. Chem., 2023, 47, 5734-5750. 28. S. Meng, X. He, B. Li, Y. Yang, S. Mao and Z. Li, A luminescent lanthanide functionalized hydrogen-bonded organic framework hydrogel: Fluorescence sensing platform for copper and iron ions detection, Talanta, 2025, 285, 127420. 29. Y.-C. Su, L. C. Tseng, W.-T. Peng, C.-P. Hsu and Y.-C. Yeh, Tailoring Nanomaterial Cross-Linkers through Lanthanide–Ligand Pairs: Guidance for Fine-Tuning the Structures and Properties of Luminescent Nanocomposite Hydrogels, Inorg. Chem., 2025. 30. S. Xie, T. Dai, F. Li, F. Liu, Q. Xu, A. Zhu and X. Zhang, Shape memory luminescent cellulose/chitosan hydrogel for high sensitive detection of formaldehyde, Int. J. Biol. Macromol., 2023, 233, 123570. 31. Q. Zhou, X. Dong, B. Zhang, X. Zhang, K. Ou, Q. Wang, Y. Liao, Y. Yang and H. Wang, Naked-eye sensing and target-guiding treatment of bacterial infection using pH-tunable multicolor luminescent lanthanide-based hydrogel, J. Colloid Interface Sci., 2022, 610, 731-740. 32. T.-H. Chiu, S.-Y. Wu, Y.-C. Yang, C.-J. Yan and Y.-C. Yeh, Fabrication of Luminescent Triple-Cross-Linked Gelatin/Alginate Hydrogels through Freezing-Drying-Swelling and Freezing-Thawing Processes, Biomacromolecules, 2024, 25, 5758-5770. 33. F. Ahmed, M. M. Hussain, W. U. Khan and H. Xiong, Exploring recent advancements and future prospects on coordination self-assembly of the regulated lanthanide-doped luminescent supramolecular hydrogels, Coord. Chem. Rev., 2024, 499, 215486. 34. P. Li and H. Li, Recent progress in the lanthanide-complexes based luminescent hybrid materials, Coord. Chem. Rev., 2021, 441, 213988. 35. L. Boatner and M. Abraham, Electron paramagnetic resonance from actinide elements, Rep. Prog. Phys., 1978, 41, 87. 36. N. A. Sirajuddin, M. S. Md Jamil and M. A. S. Mat Lazim, Effect of cross-link density and the healing efficiency of self-healing poly (2-hydroxyethyl methacrylate) hydrogel, e-Polym., 2014, 14, 289-294. 37. S. Liu, J. Ling, K. Li, F. Yao, O. Oderinde, Z. Zhang and G. Fu, Bio-inspired and lanthanide-induced hierarchical sodium alginate/graphene oxide composite paper with enhanced physicochemical properties, Compos. Sci. Technol., 2017, 145, 62-70. 38. T. Berestova, K. Nosenko, O. Lusina, L. Kuzina, E. Kulish and A. Mustafin, Estimating the stability of metal–ligand bonding in carboxyl-containing polymer complexes by IR spectroscopy, J. Struct. Chem., 2020, 61, 1876-1887. 39. X. Liu, M. Wu, C. Li, P. Yu, S. Feng, Y. Li and Q. Zhang, Interaction structure and affinity of zwitterionic amino acids with important metal cations (Cd2+, Cu2+, Fe3+, Hg2+, Mn2+, Ni2+ and Zn2+) in aqueous solution: a theoretical study, Molecules, 2022, 27, 2407. 40. W. E. Luttrell, Acetic acid, J. Chem. Health Saf., 2012, 19, 37-38. 41. W. He, Y. Xu, H. Xu, J. Du, J. Wang, Y. Wang and Z. Wu, A high toughness hydrogel with Dy3+ enhanced fluorescence properties: For visual Zn2+ detection, Eur. Polym. J., 2024, 220, 113468. 42. R. Huo, G. Zeng, C. Wang, Y. F. Wang, Y. H. Xing and F. Y. Bai, Smart stimulation response of a pyrene-based lanthanide (III) MOF: Fluorescence enhancement to HX (F and Cl) or R-COOH and artificial applicable film on HCl vapor sensing, ACS Appl. Mater. Interfaces, 2023, 15, 50275-50289. 43. X. Yang, W. Liu, X. Liu, Y. Sun, X. Wang, Y. Shao and W. Liu, Construction of multifunctional luminescent lanthanide MOFs for luminescent sensing of temperature, trifluoroacetic acid vapor and explosives, Inorg. Chem., 2024, 63, 3921-3930. 44. X. Li, H. Chen, A. M. Kirillov, Y. Xie, C. Shan, B. Wang, C. Shi and Y. Tang, A paper-based lanthanide smart device for acid–base vapour detection, anti-counterfeiting and logic operations, Inorg. Chem. Front., 2016, 3, 1014-1020. 45. X. Li, Y. Xie, B. Song, H. L. Zhang, H. Chen, H. Cai, W. Liu and Y. Tang, A stimuli‐responsive smart lanthanide nanocomposite for multidimensional optical recording and encryption, Angew. Chem. Int. Edit., 2017, 56, 2689-2693. 46. Q.-F. Li, L. Jin, L. Li, W. Ma, Z. Wang and J. Hao, Water-soluble luminescent hybrid aminoclay grafted with lanthanide complexes synthesized by a Michael-like addition reaction and its gas sensing application in PVP nanofiber, J. Mater. Chem. C, 2017, 5, 4670-4676. 47. S. A. Al-Zeyara, B. Jarvis and B. M. Mackey, The inhibitory effect of natural microflora of food on growth of Listeria monocytogenes in enrichment broths, Int. J. Food Microbiol., 2011, 145, 98-105. 48. L. Barde and H. Adamu, Polyhydroxyalkanoates (PHAs), bioprocessing using waste oil, GSC Adv. Res. Rev., 2021, 9, 157-163. 49. J. Chen, J. Tang, H. Shi, C. Tang and R. Zhang, Characteristics of volatile organic compounds produced from five pathogenic bacteria by headspace‐solid phase micro‐extraction/gas chromatography‐mass spectrometry, J. Basic Microbiol., 2017, 57, 228-237. 1. S. Wei, Z. Li, W. Lu, H. Liu, J. Zhang, T. Chen and B. Z. Tang, Multicolor fluorescent polymeric hydrogels, Angew. Chem. Int. Ed., 2021, 60, 8608-8624. 2. A. S. Sharma, S. Ali, D. Sabarinathan, M. Murugavelu, H. Li and Q. Chen, Recent progress on graphene quantum dots‐based fluorescence sensors for food safety and quality assessment applications, Compr. Rev. Food Sci. Food Saf., 2021, 20, 5765-5801. 3. W. Li, C. Jiang, S. Lu, F. Wang, Z. Zhang, T. Wei, Y. Chen, J. Qiang, Z. Yu and X. Chen, A hydrogel microsphere-based sensor for dual and highly selective detection of Al3+ and Hg2+, Sens. Actuators B: Chem., 2020, 321, 128490. 4. D. Su, X. Zhao, X. Yan, X. Han, Z. Zhu, C. Wang, X. Jia, F. Liu, P. Sun and X. Liu, Background-free sensing platform for on-site detection of carbamate pesticide through upconversion nanoparticles-based hydrogel suit, Biosens. Bioelectron., 2021, 194, 113598. 5. X. Y. Xu, X. Lian, J. N. Hao, C. Zhang and B. Yan, A double‐stimuli‐responsive fluorescent center for monitoring of food spoilage based on dye covalently modified EuMOFs: From sensory hydrogels to logic devices, Adv. Mater. , 2017, 29, 1702298. 6. W. Cheng, X. Wu, Y. Zhang, D. Wu, L. Meng, Y. Chen and X. Tang, Recent applications of hydrogels in food safety sensing: Role of hydrogels, Trends Food Sci. Technol., 2022, 129, 244-257. 7. D. Parker, Luminescent lanthanide sensors for pH, pO2 and selected anions, Coordination Chemistry Reviews, 2000, 205, 109-130. 8. R. Boddula, K. Singh, S. Giri and S. Vaidyanathan, Controlled energy transfer from a ligand to an EuIII ion: a unique strategy to obtain bright-white-light emission and its versatile applications, Inorg. Chem., 2017, 56, 10127-10130. 9. J. Chen, Z. Xie, L. Meng, Z. Hu, X. Kuang, Y. Xie and C.-Z. Lu, Luminescence tunable europium and samarium complexes: Reversible On/Off switching and white-light emission, Inorg. Chem., 2020, 59, 6963-6977. 10. W. E. Luttrell, Acetic acid, J. Chem. Health Saf., 2012, 19, 37-38. 11. W. He, Y. Xu, H. Xu, J. Du, J. Wang, Y. Wang and Z. Wu, A high toughness hydrogel with Dy3+ enhanced fluorescence properties: For visual Zn2+ detection, Eur. Polym. J., 2024, 220, 113468. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97945 | - |
| dc.description.abstract | 鑭系金屬配合物具有優異的光學特性(例如高純色度、大斯托克斯位移和長生命期),因此,含鑭系金屬的發光水凝膠是感測應用的理想材料。本研究採用海藻酸二醛 (ADA) 和苯基硼酸-聚乙烯亞胺接枝明膠 (PPG),以及鑭系元素 (Ln3+) 離子(釤 (III) (Sm3+)、銪 (III) (Eu3+) 和铽 (III) (Tb3+)),合成了具有三重化學交聯的 PPG/ADA-Ln3+ 水凝膠。
在第一個研究中,PPG/ADA-Ln3+ 水凝膠網絡中具有三個動態交聯鍵,包括亞胺鍵、硼酸酯鍵和鑭系金屬配位鍵。研究結果顯示,透過改變鑭系元素的類型可以微調 PPG/ADA-Ln3+ 水凝膠的結構和性能(發光、流變、機械強度、膨潤能力和穩定性),其中較小的鑭系元素離子有助於增強水凝膠網絡的機械性能。這可能是因為較小的Tb³⁺ 離子的加入有助於形成更緻密的網絡,這不僅可以增強機械性能,還可以提高感測性能。線性區別分析 (LDA) 分析證明了 PPG/ADA-Ln3+ 水凝膠表現出顯著區分揮發性有機化合物中酸性和鹼性蒸氣的能力,該能力被進一步研究用於細菌感測上。綜上所述,我們系統性地研究了鑭系離子半徑的影響對PPG/ADA-Ln3+水凝膠結構、機械性質、感測能力的影響,並且證實PPG/ADA-Ln3+水凝膠在透過發光變化感測揮發性有機化合物和細菌方面的潛在應用。 在第二個研究中,進一步引入有機配體2-噻吩甲醯三氟丙酮(TTA)與Ln3+離子配位, TTA的引入增強了PPG/ADA-Ln3+水凝膠的發光強度,使得PPG/ADA-Ln3++TTA水凝膠成為可以透過發光變化感測揮發性有機化合物的更好材料。總體來說,本篇論文的研究開發了一系列含鑭系金屬的發光水凝膠,可藉由金屬離子以及有機配體調控含鑭系金屬水凝膠的結構、性質、感測性能。 | zh_TW |
| dc.description.abstract | Luminescent lanthanide-containing hydrogels were ideal materials for sensing applications due to the outstanding optical properties of lanthanide complexes (e.g., high color purity, large Stokes shift, and long lifetime). In this study, alginate dialdehyde (ADA) and phenylboronic acid-polyethyleneimine modified gelatin (PPG), along with the lanthanide (Ln3+) ions (i.e., samarium (III) (Sm3+), europium (III) (Eu3+), and terbium (III) (Tb3+)), were used to synthesize PPG/ADA-Ln3+ hydrogels.
In the first project, the three dynamic crosslinks in the PPG/ADA-Ln3+ hydrogel networks included imine, boronate ester, and coordination bonds. The results showed that the structures and properties (i.e., luminescence, rheological behavior, mechanical strength, swelling capacity, and stability) of PPG/ADA-Ln3+ hydrogels can be precisely adjusted through altering the types of lanthanides ions used, Notably, the incorporation of smaller lanthanide ions was found to enhance the mechanical properties of the hydrogel network. This can be attributed to the incorporation of smaller Tb³⁺ ions, which facilitates the formation of denser networks that not only enhance mechanical properties but also improve sensing performance. The PPG/ADA-Ln3+ hydrogels also exhibit a notable ability to distinguish acidic and basic vapors within volatile organic compounds, as demonstrated through linear discriminant analysis (LDA), a capability that is further investigated for the differentiation of bacterial species. Taken together, we not only systematically investigated the impact of the radius of lanthanide ions on the structure, mechanical properties, and the ability of sensing ability of PPG/ADA-Ln3+ hydrogels, but also demonstrated the potential application of PPG/ADA-Ln3+ hydrogels in sensing volatile organic compounds and bacteria through luminescence changes. In the second project, the organic ligand 2-thenoyltrifluoroacetone (TTA) was further introduced to coordinate Ln3+ ions. With TTA, the intensity of luminescence spectra of PPG/ADA-Ln3++TTA hydrogels was enhanced, making PPG/ADA-Ln3++TTA hydrogels a better material for sensing volatile organic compounds (VOCs) through luminescence changes. Overall, the study developed a series of lanthanide-containing hydrogels through the fine-tuning of structure, properties, and sensing ability using metal ions and organic ligands. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-23T16:12:00Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-23T16:12:00Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iii Contents v List of figures vi List of tables vii Project 1 1 1.1 Introduction 2 1.2 Materials and methods 10 1.2.1 Materials 10 1.2.2 Characterization techniques 11 1.2.3 Synthesis of PPG 12 1.2.4 Synthesis of ADA 12 1.2.5 Preparation of PPG/ADA-Ln3+ hydrogels 13 1.2.6 Rheological and mechanical measurements of hydrogels 13 1.2.7 Swelling ratio and water content behaviors of hydrogels 13 1.2.8 Degradation behaviors of hydrogels 14 1.2.9 VOC and bacteria sensing using lyophilized hydrogels 14 1.2.10 Statistical analysis 15 1.3 Results and discussion 16 1.3.1 Synthesis and characterizations of hydrogels 16 1.3.2 Microstructures and properties of hydrogels 26 1.3.3 Volatile organic compound sensing 33 1.4 Conclusion 45 1.5 Reference 46 Project 2 53 2.1. Introduction 54 2.2 Materials and methods 56 2.2.1 Materials 56 2.2.2 Characterization techniques 57 2.2.3 Synthesis of PPG 57 2.2.4 Synthesis of ADA 57 2.2.5 Preparation of PPG/ADA-Ln3++TTA hydrogels 57 2.2.6 VOC sensing using lyophilized hydrogels 58 2.2.7 Statistical analysis 58 2.3 Results and discussion 58 2.4 Conclusion and future work 70 2.5 Reference 72 | - |
| dc.language.iso | en | - |
| dc.subject | 鑭系離子 | zh_TW |
| dc.subject | 感測應用 | zh_TW |
| dc.subject | 明膠水凝膠 | zh_TW |
| dc.subject | 細菌感測 | zh_TW |
| dc.subject | 螢光水凝膠 | zh_TW |
| dc.subject | luminescent hydrogel | en |
| dc.subject | bacteria sensing | en |
| dc.subject | gelatin hydrogel | en |
| dc.subject | lanthanide ion | en |
| dc.subject | sensing application | en |
| dc.title | 利用鑭系金屬離子與2-噻吩甲酰三氟丙酮調控明膠/海 藻酸水凝膠之結構與性質於感測應用 | zh_TW |
| dc.title | Modulation of the Structures and Properties of Gelatin/Alginate Hydrogels Using Lanthanide Ions and 2 Thenoyltrifluoroacetone for Sensing Applications | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王如邦;林柏亨;吳仁彰 | zh_TW |
| dc.contributor.oralexamcommittee | Reuben Wang;Po-Heng LIN;Ren-Jang Wu | en |
| dc.subject.keyword | 感測應用,鑭系離子,螢光水凝膠,細菌感測,明膠水凝膠, | zh_TW |
| dc.subject.keyword | sensing application,lanthanide ion,luminescent hydrogel,bacteria sensing,gelatin hydrogel, | en |
| dc.relation.page | 73 | - |
| dc.identifier.doi | 10.6342/NTU202501978 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-18 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | - |
| dc.date.embargo-lift | 2030-07-17 | - |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 6.46 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
