請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97940完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖國基 | zh_TW |
| dc.contributor.advisor | Kuo-Chi Liao | en |
| dc.contributor.author | 劉祿展 | zh_TW |
| dc.contributor.author | Lu-Chan Liu | en |
| dc.date.accessioned | 2025-07-23T16:10:54Z | - |
| dc.date.available | 2025-07-24 | - |
| dc.date.copyright | 2025-07-23 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-02 | - |
| dc.identifier.citation | 朱翊慈。2023。應用神經網路於無骨雨刷之金屬彈片幾何最佳化。碩士論文。台北:台灣大學生物機電工程研究所。
蕭郁達。2024。以類神經網路之漸進式學習方法開發胺系碳捕捉之熱力學製程模型。博士論文。台南:成功大學化學工程研究所 ABAQUS. 2016. ABAQUS/Standard User’s Manual. Ver. 6.14. Johnston, R.I.: Dassault Systèmes Simulia Corp. Bounoua Z., L. Ouazzani Chahidi, and A. Mechaqrane, 2021. Estimation of daily global solar radiation using empirical and machine-learning methods: A case study of five Moroccan locations. Sustainable Materials and Technologies 28(2021): e00261. Demianenko, M., and C.I. De Gaetani. 2021. A procedure for automating energy analyses in the BIM context exploiting artificial neural networks and transfer learning technique. Energies 14(10): 2956 Grenouillat, R., and C. Leblanc. 2002. Simulation of mechanical pressure in a rubber-glass contact for wiper systems. Transactions of the SAE 111(6): 1173-1181. Huang, T.C., J.W. Tsai, and K.C. Liao. 2021. Geometry optimization of a metallic flexor for flat wipers. International Journal of Automotive Technology 22(3): 823-830. Lee, C.E., and H.K. Kim. 2020. Analysis of the cross-sectional shape and wiping angle of a wiper blade. SAE International Journal of Materials and Manufacturing 13(2): 182-194 Le Rouzic, J., A. Le Bot, J. Perret-Liaudet, M. Guibert, A. Rusanov, L. Douminge, F. Bretagnol, and D. Mazuyer. 2013. Friction-induced vibration by Stribeck’s law: application to wiper blade squeal noise. Tribol Lett 49: 563-572 Liang L., M. Liu, C. Martin, and W. Sun. 2018. A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis. Journal of The Royal Society Interface 15(138): 20170844. MATLAB. 2014. MATLAB User’s Guide. Ver.8.3 (R2014a). Natick Mass.: The MathWorks Inc. Mnih, V., K. Kavukcuoglu, and D. Silver. 2015. Human-level control through deep reinforcement learning. Nature 518: 529-533. SOLIDWORKS. 2017. Waltham, Massachusetts.: Dassault Systems SolidWorks Corporation. Winkler, E. 1867. Die Lehre von der Elasticitaet und Festigeit. H. Dominicus. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97940 | - |
| dc.description.abstract | 近年無骨雨刷因其結構簡潔美觀,市場需求大幅增長,對應之設計需求亦日益提升。前人針對無骨雨刷之關鍵零件—金屬彈片,提出結合數值模型與機器學習(machine learning)之彈片幾何適配化方法,可快速提供業者具備優良刮刷表現之適配化彈片弧形,然僅適用於單一彈片長度、彈片厚度、及承壓單位負荷,對於其餘彈片規格仍須仰賴基於有限元素分析(finite element analysis)之彈片幾何適配化流程,所需時間成本高昂。
本研究針對此限制,應用漸進式學習法(progressive learning)於前人提出之基於機器學習之彈片適配化方法,旨於擴展適配化流程之適用範圍。研究架構為透過文克爾模型(Winkler’s model)與基於有限元素分析之無骨雨刷刮刷模型,分別累積彈片接觸壓力與刮刷壓力分佈資料,並以兩類神經網路(artificial neural networks, ANN)分別進行訓練,藉以快速預測對應之結果。並應用漸進式學習於基於有限元素之無骨雨刷刮刷模型之類神經網路,透過少量資料擴展適用之彈片規格,提升此類神經網路於彈片規格參數之泛化能力,同時維持快速預測刮刷壓力分佈之效率,最終模型適用於業界常用之7種彈片長度l (500、525、550、600、625、650 mm);2種單位承壓負荷p (1.4、1.6 g/mm);3種彈片厚度t (0.9、1.0、1.1 mm),共42種彈片規格。 實際應用則透過兩類神經網路模型串接,經由彈片與玻璃參數快速預測接觸壓力分佈,再進一步預測刮刷壓力分佈,並據以判斷刮刷表現。此外,本研究將適配化流程同時應用於多片玻璃,透過交叉比對刮刷結果,獲致同時適用多片玻璃之泛用型彈片幾何。最終,本研究可適用於多種彈片規格,並於非特定玻璃快速預測任意彈片幾何之刮刷壓力分佈,據以判斷實務刮刷表現,於業界設計適配化及泛用型彈片幾何上具備高度實用價值。 | zh_TW |
| dc.description.abstract | Demands of flat wipers have increased recently due to their simpler structure compared to conventional wipers. Previously a series of procedures based on the machine learning approach were introduced to effectively forecast wiping patterns of the flat wiper with a given metallic flexor, one of the major components dominating the wiping capability. However, aforementioned approach was merely suitable for the certain specification of flexor. In order to further predict wiping patterns of the flexor with various design parameters such as length, thickness, and applied load, the concept of progressive learning is then introduced in the present study.
A discrete Winkler model and a finite element analysis (FEA) were used to obtain contact pressure distributions of a flexor being compressed against a windshield glass and to evaluate wiping patterns of a flat wiper swiping over the windshield, respectively. These numerical results were subsequently adopted as datasets to train two artificial neural networks (ANNs) for rapid assessments of the wiping performance. A progressive learning approach was applied to the artificial neural network of the FEA-based wiping model to efficiently expand various specifications of flexor with rather limited amount of additional data. Wiping patterns based on the artificial intelligence model are in good agreement with those based on the finite element analysis, and the wiping capability of wipers can be reasonably evaluated. The current proposed procedure demonstrates high practical values to provide the compatible flexor geometry for the specific windshield and simultaneously for different windshields within relatively short period. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-23T16:10:54Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-23T16:10:54Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
口試委員會審訂書 i 誌謝 ii 中文摘要 iii 英文摘要 v 目次 vii 圖次 ix 表次 xi 第一章 前言 1 1-1. 研究背景 1 1-2. 研究目的 3 第二章 文獻探討 5 第三章 研究流程與實驗設計 7 3-1. 研究架構 7 3-2. 數據準備與模型應用 9 3-3. 泛用型彈片幾何試驗設計 11 第四章 數值模擬方法 13 4-1. 基於有限元素分析之無骨雨刷刮刷模型 13 4-2. 基於文克爾模型之彈片下壓模擬 14 4-3. 應用類神經網路於彈片下壓接觸壓力分佈及無骨雨刷刮刷壓力分佈預測 15 4-4. 應用漸進式學習法於無骨雨刷刮刷壓力分佈預測之類神經網路 17 第五章 結果與討論 19 5-1. 文克爾模型與ANN-CP模型之接觸壓力分佈結果比對 19 5-2. 有限元素刮刷結果與ANN-WP結果比對 24 5-3. 泛用型彈片幾何結果 34 5-4. 漸進式學習效果比較 41 5-5. 彈片幾何適配化流程比較 43 第六章 結論 44 參考文獻 46 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 無骨雨刷 | zh_TW |
| dc.subject | 金屬彈片幾何 | zh_TW |
| dc.subject | 有限元素分析 | zh_TW |
| dc.subject | 漸進式學習 | zh_TW |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | 無骨雨刷 | zh_TW |
| dc.subject | 金屬彈片幾何 | zh_TW |
| dc.subject | 有限元素分析 | zh_TW |
| dc.subject | 漸進式學習 | zh_TW |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | flat wiper | en |
| dc.subject | metallic flexor | en |
| dc.subject | flat wiper | en |
| dc.subject | artificial neural network | en |
| dc.subject | progressive learning approach | en |
| dc.subject | finite element analysis | en |
| dc.subject | metallic flexor | en |
| dc.subject | finite element analysis | en |
| dc.subject | progressive learning approach | en |
| dc.subject | artificial neural network | en |
| dc.title | 基於漸進式學習法之類神經網路於無骨雨刷適配化彈片幾何規格之擴展 | zh_TW |
| dc.title | Application of Progressive Learning Approaches to the Expansion of Metallic Flexor Compatibility of Flat Wipers with Various Specifications | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王建凱;陳世芳;丁健芳 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Kai Wang ;Shih-Fang Chen;Chien-Fang Ding | en |
| dc.subject.keyword | 無骨雨刷,類神經網路,漸進式學習,有限元素分析,金屬彈片幾何, | zh_TW |
| dc.subject.keyword | flat wiper,artificial neural network,progressive learning approach,finite element analysis,metallic flexor, | en |
| dc.relation.page | 46 | - |
| dc.identifier.doi | 10.6342/NTU202501455 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-02 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物機電工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 13.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
