請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97928完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭重顯 | zh_TW |
| dc.contributor.advisor | Chung-Hsien Kuo | en |
| dc.contributor.author | 楊端泓 | zh_TW |
| dc.contributor.author | DuanHong Yang | en |
| dc.date.accessioned | 2025-07-23T16:08:16Z | - |
| dc.date.available | 2025-07-24 | - |
| dc.date.copyright | 2025-07-23 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-09 | - |
| dc.identifier.citation | [1] M. M. Giahi, M. Naderi, S. O. Shahdi, and A. Ehsani, “A Review of the Robotic Artificial Hand: (Advances, Applications and Challenges),” in 2024 10th International Conference on Artificial Intelligence and Robotics (QICAR), Qazvin, Iran, Islamic Republic of: IEEE, Feb. 2024, pp. 157–163.
[2] W. Dou, G. Zhong, J. Cao, Z. Shi, B. Peng, and L. Jiang, “Soft Robotic Manipulators: Designs, Actuation, Stiffness Tuning, and Sensing,” Advanced Materials Technologies, vol. 6, no. 9, p. 2100018, 2021. [3] G. D. Goh, G. L. Goh, Z. Lyu, M. Z. Ariffin, W. Y. Yeong, G. Z. Lum, D. Campolo, B. S. Han, and H. Y. A. Wong, “3D Printing of Robotic Soft Grippers: Toward Smart Actuation and Sensing,” Adv Materials Technologies, vol. 7, no. 11, p. 2101672, Nov. 2022. [4] C.-H. Liu, L.-J. Chen, J.-C. Chi, and J.-Y. Wu, “Topology Optimization Design and Experiment of a Soft Pneumatic Bending Actuator for Grasping Applications,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 2086–2093, Apr. 2022. [5] D. Mei, X. Yu, G. Tang, S. Liu, X. Zhao, C. Zhao, C. Li, and Y. Wang, “Blue Hand: A Novel Type of Soft Anthropomorphic Hand Based on Pneumatic Series-Parallel Mechanism,” IEEE Robot. Autom. Lett., vol. 8, no. 11, pp. 7615–7622, Nov. 2023. [6] Y. Li, Y. Chen, T. Ren, Y. Hu, H. Liu, S. Lin, Y. Yang, Y. Li, and J. Zhou, “A Dual-Mode Actuator for Soft Robotic Hand,” IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 1144–1151, Apr. 2021. [7] J. Zhou, J. Yi, X. Chen, Z. Liu, and Z. Wang, “BCL-13: A 13-DOF Soft Robotic Hand for Dexterous Grasping and In-Hand Manipulation,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3379–3386, Oct. 2018. [8] A. Pagoli, F. Chapelle, J. A. Corrales, Y. Mezouar, and Y. Lapusta, “A Soft Robotic Gripper with an Active Palm and Reconfigurable Fingers for Fully Dexterous In-Hand Manipulation,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 7706–7713, Oct. 2021. [9] O. Shorthose, A. Albini, L. He, and P. Maiolino, “Design of a 3D-Printed Soft Robotic Hand with Integrated Distributed Tactile Sensing,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 3945–3952, Apr. 2022. [10] S. Puhlmann, J. Harris, and O. Brock, “RBO Hand 3 : A Platform for Soft Dexterous Manipulation,” IEEE Trans. Robot., vol. 38, no. 6, pp. 3434–3449, Dec. 2022. [11] C.-W. Ou Yang, S.-Y. Yu, C.-W. Chan, C.-Y. Tseng, J.-F. Cai, H.-P. Huang, and J.-Y. Juang, “Enhancing the Versatility and Performance of Soft Robotic Grippers, Hands, and Crawling Robots Through Three-Dimensional-Printed Multifunctional Buckling Joints,” Soft Robotics, vol. 11, no. 5, pp. 741–754, Oct. 2024. [12] Y. Wang, W. Li, S. Togo, H. Yokoi, and Y. Jiang, “Survey on Main Drive Methods Used in Humanoid Robotic Upper Limbs,” Cyborg and Bionic Systems, vol. 2021, Jun. 2021. [13] U. Kim, D. Jung, H. Jeong, J. Park, H.-M. Jung, J. Cheong, H. R. Choi, H. Do, and C. Park, “Integrated Linkage-Driven Dexterous Anthropomorphic Robotic Hand,” Nat Commun, vol. 12, no. 1, p. 7177, Dec. 2021. [14] H. Liu, K. Xu, B. Siciliano, and F. Ficuciello, “The MERO Hand: A Mechanically Robust Anthropomorphic Prosthetic Hand using Novel Compliant Rolling Contact Joint,” in 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Hong Kong, China: IEEE, Jul. 2019, pp. 126–132. [15] C. Cipriani, M. Controzzi, and M. C. Carrozza, “The SmartHand Transradial Prosthesis,” J NeuroEngineering Rehabil, vol. 8, no. 1, p. 29, 2011. [16] “Shadow Dexterous Hand Series - Research and Development Tool.” Accessed: May 03, 2025. [Online]. Available: https://www.shadowrobot.com/dexterous-hand-series/ [17] M. Leddy, “Underactuated Hand with Cable-Driven Fingers,” Apr. 04, 2024 Accessed: May 03, 2025. [Online]. Available: https://patentscope.wipo.int/search/en/WO2024073138 [18] C.-H. Xiong, W.-R. Chen, B.-Y. Sun, M.-J. Liu, S.-G. Yue, and W.-B. Chen, “Design and Implementation of an Anthropomorphic Hand for Replicating Human Grasping Functions,” IEEE Trans. Robot., vol. 32, no. 3, pp. 652–671, Jun. 2016. [19] S. Yang, W. W. Lee, Z. Zhang, Y. Xiong, J. Liang, P. Lu, Y. Zhu, T. Liu, J. Li, R. Wang, X. Li, and Y. Zheng, “TRX-Hand5: An Anthropomorphic Hand with Integrated Tactile Feedback for Grasping and Manipulation in Human Environments,” in 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2024, pp. 5289–5296. [20] B.-Y. Sun, X. Gong, J. Liang, W.-B. Chen, Z.-L. Xie, C. Liu, and C.-H. Xiong, “Design Principle of a Dual-Actuated Robotic Hand with Anthropomorphic Self-Adaptive Grasping and Dexterous Manipulation Abilities,” IEEE Trans. Robot., vol. 38, no. 4, pp. 2322–2340, Aug. 2022. [21] N. Zhang, P. Zhou, X. Yang, F. Shen, J. Ren, T. Hou, L. Dong, R. Bian, D. Wang, G. Gu, and X. Zhu, “Biomimetic Rigid-Soft Finger Design for Highly Dexterous and Adaptive Robotic Hands,” Sci. Adv., vol. 11, no. 17, p. eadu2018, Apr. 2025. [22] C. Wang, Y. Sun, J. Xu, X. Liu, X. Zhou, and X. Chen, “The Design and Development of an Anthropomorphic Worm-Gear Driven Robotic Hand: BIT-JOCKO,” in 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM), Jul. 2019, pp. 426–431. [23] W. Zhang, D. Che, H. Liu, X. Ma, Q. Chen, D. Du, and Z. Sun, “Super Under‐Actuated Multi‐Fingered Mechanical Hand with Modular Self‐Adaptive Gear‐Rack Mechanism,” Industrial Robot: An International Journal, vol. 36, no. 3, pp. 255–262, May 2009. [24] M. Grebenstein, M. Chalon, W. Friedl, S. Haddadin, T. Wimböck, G. Hirzinger, and R. Siegwart, “The Hand of the DLR Hand Arm System: Designed for Interaction,” The International Journal of Robotics Research, vol. 31, no. 13, pp. 1531–1555, Nov. 2012. [25] G. Palli, C. Melchiorri, G. Vassura, U. Scarcia, L. Moriello, G. Berselli, A. Cavallo, G. De Maria, C. Natale, S. Pirozzi, C. May, F. Ficuciello, and B. Siciliano, “The DEXMART Hand: Mechatronic Design and Experimental Evaluation of Synergy-Based Control for Human-Like Grasping,” The International Journal of Robotics Research, vol. 33, no. 5, pp. 799–824, Apr. 2014. [26] H. Mnyusiwalla, P. Vulliez, J.-P. Gazeau, and S. Zeghloul, “A New Dexterous Hand Based on Bio-Inspired Finger Design for Inside-Hand Manipulation,” IEEE Trans. Syst. Man Cybern, Syst., vol. 46, no. 6, pp. 809–817, Jun. 2016. [27] L.-R. Lin and H.-P. Huang, “NTU Hand: A New Design of Dexterous Hands,” Journal of Mechanical Design, vol. 120, no. 2, pp. 282–292, Jun. 1998. [28] Y. Youm, T. E. Gillespie, A. E. Flatt, and B. L. Sprague, “Kinematic Investigation of Normal MCP Joint,” Journal of Biomechanics, vol. 11, no. 3, pp. 109–118, Jan. 1978. [29] E. Peperoni, E. Trigili, E. Capotorti, S. L. Capitani, T. Fiumalbi, F. Pettinelli, S. Grandi, A. Rapalli, G. Lentini, I. Creatini, N. Vitiello, E. Taglione, and S. Crea, “Post-Traumatic Hand Rehabilitation Using a Powered Metacarpal-Phalangeal Exoskeleton: A Pilot Study,” J NeuroEngineering Rehabil, vol. 21, no. 1, p. 214, Dec. 2024. [30] X. Li, R. Wen, D. Duanmu, W. Huang, K. Wan, and Y. Hu, “Finger Kinematics during Human Hand Grip and Release,” Biomimetics, vol. 8, no. 2, p. 244, Jun. 2023. [31] J. D. Arbuckle and D. A. McGROUTHER, “Measurement of the Arc of Digital Flexion and Joint Movement Ranges,” Journal of Hand Surgery, vol. 20, no. 6, pp. 836–840, Dec. 1995. [32] T.-H. Yang, S.-C. Lu, W.-J. Lin, K. Zhao, C. Zhao, K.-N. An, I.-M. Jou, P.-Y. Lee, L.-C. Kuo, and F.-C. Su, “Assessing Finger Joint Biomechanics by Applying Equal Force to Flexor Tendons In Vitro Using a Novel Simultaneous Approach,” PLoS ONE, vol. 11, no. 8, p. e0160301, Aug. 2016. [33] J. Gülke, D. Gulkin, N. Wachter, M. Knöferl, C. Bartl, and M. Mentzel, “Dynamic Aspects During the Cylinder Grip — Flexion Sequence of the Finger Joints Analyzed Using a Sensor Glove,” J Hand Surg Eur Vol, vol. 38, no. 2, pp. 178–182, Feb. 2013. [34] J. Napier, “The Evolution of the Hand,” Sci Am, vol. 207, no. 6, pp. 56–65, Dec. 1962. [35] D. A. Neumann and T. Bielefeld, “The Carpometacarpal Joint of the Thumb: Stability, Deformity, and Therapeutic Intervention,” Journal of Orthopaedic & Sports Physical Therapy, vol. 33, no. 7, pp. 386–399, Jul. 2003. [36] T. A. R. Schreuders, J. W. Brandsma, and H. J. Stam, “Functional Anatomy and Biomechanics of the Hand,” in Hand Function: A Practical Guide to Assessment, M. T. Duruöz, Ed., New York, NY: Springer, 2014, pp. 3–22. [37] G. ElKoura and K. Singh, “Handrix: Animating the Human Hand”. [38] Media & Methods Lab UTL ETH Zurich, The Design and Fabrication of a Soft Robotic Hand, (Sep. 30, 2023). Accessed: May 09, 2025. [Online Video]. Available: https://www.youtube.com/watch?v=sOVMLvNhsJ8 [39] D. Gonzalez, J. Garcia, and B. Newell, “Electromechanical Characterization of a 3D Printed Dielectric Material for Dielectric Electroactive Polymer Actuators,” Sensors and Actuators A: Physical, vol. 297, p. 111565, Oct. 2019. [40] “PolyFlex_TPU95_PIS_EN_V1.1.pdf.” Accessed: May 16, 2025. [Online]. Available: https://polymaker.com/wp-content/tech-docs/PolyFlex_TPU95_PIS_EN_V1.1.pdf [41] Z. Li, Z. Wang, Y. Zhu, and L. Jiang, “Study on Movement Characteristics of Fingers During Hand Grabbing Process,” in Intelligent Human Systems Integration 2019, W. Karwowski and T. Ahram, Eds., Cham: Springer International Publishing, 2019, pp. 576–581. [42] A. Kapandji, “Cotation clinique de l’opposition et de la contre-opposition du pouce,” Annales de Chirurgie de la Main, vol. 5, no. 1, pp. 67–73, Jan. 1986. [43] T. Feix, J. Romero, H.-B. Schmiedmayer, A. M. Dollar, and D. Kragic, “The GRASP Taxonomy of Human Grasp Types,” IEEE Trans. Human-Mach. Syst., vol. 46, no. 1, pp. 66–77, Feb. 2016. [44] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-Squares Fitting of Two 3-D Point Sets,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-9, no. 5, pp. 698–700, Sep. 1987. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97928 | - |
| dc.description.abstract | 仿生手的發展是機器人研究的關鍵方向,旨在實現類似人手的功能性、靈巧性、適應性。在結構仿生、靈活性與輕量化、抗衝擊性和低成本之間取得平衡,是當前研究挑戰之一。同時,在驅動自由度有限的條件下,如何盡可能提升仿生程度與抓握擬人化程度,也成為能否完成各類抓握類型任務的關鍵因素。
為此,本研究提出了具複合韌帶骨架結構仿生手 —— Skeleton Bionic Hand(SkB-Hand),每根手指整合兩種不同材質、由超彈性材料構成的韌帶,分別用於模擬人體手指伸肌腱(extensor tendon)與掌側板(volar plate),以模擬人體手指的伸展及一定程度的過伸功能與自我保護功能。 SkB-Hand 整體質量小於 600g、手部約120g,成本低於 200 美元, 其提供了一種輕量化且低成本的解決方案。為系統驗證其性能,本研究進行了一系列實驗,分為特性驗證(Characteristics Analysis and Validation)與應用場景(Application Scenarios)兩部分。特性驗證包括:三種回彈機制比較、關節彎曲順序分析、拇指能力評估、衝擊下的柔順性與保護性驗證、及各類抓握與基準測試。測試結果表明,SkB-Hand能在單自由度驅動下再現類人彎曲模式,並具備良好的抗衝擊與拇指活動能力。SkB-Hand在Kapandji test中得分為7/10,在GRASP Taxonomy系統測試中達成滿分(33/33),在基於資料手套的遙感操作下,SkB-Hand能順利執行焊槍操作、螺絲拾取等常見工程作業,同時展現了其優異的負載提拉能力。在應用場景中,SkB-Hand在與TM Robot,視覺系統基於ROS2整合下,完成了抽紙,抓取乒乓球等特定任務,展示了其的實際整合應用之潛力。 本研究實驗結果表明,SkB-Hand 不僅實現了預期的抓握目標,也展現出其在協作型機器人抓取、人機協作及與視覺感知系統集成等實際應用中的廣闊潛力。 | zh_TW |
| dc.description.abstract | The development of bionic hands is a critical focus in robotics, aiming to replicate the functionality, dexterity, and adaptability of human hands. Balancing structural biomimicry, flexibility, lightweight design, impact resistance and low cost remains a key challenge. Meanwhile, how to replicate the natural motion patterns of a human hand under limited degrees of freedom has become key to enabling diverse grasping tasks.
This study presents the Skeleton Bionic Hand (SkB-Hand), which features a composite ligament-bone structure. Each finger integrates two hyperelastic ligaments simulating human extensor tendons and volar plates, enabling extension, hyperextension, and self-protection. With a total weight under 600g (hand ~120g) and cost below $200, the SkB-Hand offers a lightweight, low-cost solution. To validate its performance, a series of validation tests—including rebound mechanisms, joint flexion sequencing, thumb dexterity, impact resistance, and benchmark grasp evaluations—confirmed its anthropomorphic motion and robustness. The SkB-Hand scored 7/10 in the Kapandji test and 33/33 in GRASP Taxonomy. It successfully performed soldering and screw handling via data-glove teleoperation, while demonstrating strong lifting capability. Integrated with a TM Robot and RealSense camera in a ROS2 environment, it completed tasks such as tissue paper extraction and ping pong ball grasping. These results indicate that the SkB-Hand not only achieves the expected grasping performance but also shows significant potential for collaborative robotic, human-robot interaction, and vision-integrated tasks. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-23T16:08:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-23T16:08:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 iv Chapter 1 Introduction 1 1.1 Research Background and Motivation 1 1.1.1 Soft Robotic Hands 2 1.1.2 Rigid Robotic Hands 3 1.1.3 Anatomy and Biomechanics 5 1.2 Structure of the Thesis 7 Chapter 2 System Architecture 9 2.1 System Framework 9 2.2 Hardware Architecture 12 Chapter 3 Design and Fabrication of SkB-Hand 19 3.1 SkB-Hand Design 19 3.1.1 Bio-Inspired Design of the Four Fingers 21 3.1.2 Bio-Inspired Design of the Thumb and Palm 28 3.1.3 Design of Actuation Unit and Tendon Winding Structure 35 3.2 Composite Ligament Design 38 3.3 Tactile Sensor and Soft Skin 44 3.3.1 Fingertip Tactile Sensor 44 3.3.2 Phalanx Soft Skin Design 49 3.4 Fabrication and Assembly of the Finger Skeleton 50 Chapter 4 Characteristic Analysis and Validation 53 4.1 Validation of Three Rebound Mechanisms 54 4.1.1 Finger Joint Test Platform Setup 54 4.1.2 Three Rebound Mechanisms Experimental Evaluation 58 4.2 Joint Flexion Sequence Validation 61 4.2.1 Joint Angle Estimation 61 4.2.2 Flexion Sequence of MCP, PIP, and DIP Joints 65 4.3 Impact Resistance Validation 71 4.3.1 Hyperextension Test 71 4.3.2 Impact Collision Test 73 4.4 Thumb Dexterity Validation 75 4.4.1 Basic Motion Validation of the Thumb 75 4.4.2 Thumb Opposition Capability Test 79 4.4.3 Kapandji Score-Based Evaluation 80 4.5 Grasping Performance Validation 82 4.5.1 Pinch Grasp Validation with Thumb and Index Finger 82 4.5.2 GRASP Taxonomy Validation 84 4.5.3 Grasp Execution with Collaborative Robot 87 4.5.4 Grasp Execution via Data Glove 89 4.6 Fingertip Tactile Sensor Validation 94 4.6.1 Functional Validation 94 4.6.2 Grasping-Based Functional Test 95 4.7 Lifting Capacity Evaluation 97 Chapter 5 Application Scenarios 99 5.1 System Integration with TM Robot 100 5.1.1 Kinematic Modeling of the TM Robot 100 5.2 Perception and Trajectory Preparation 103 5.2.1 Camera Calibration and Frame Transformation 103 5.2.2 Verification of Calibration Results 108 5.2.3 Offline Finger Trajectory Collection and Fitting 115 5.2.4 Tool Frame Mapping and Grasp Points Estimation 121 5.3 Tissue Pinching Experiment 123 5.3.1 Tissue Box Detection and Pose Estimation 123 5.3.2 Results of the Pinching Experiment 129 5.4 Table Tennis Ball Grasping Experiment 131 5.4.1 Grasp Execution without Jacobian Refinement 131 5.4.2 Grasp Execution with Jacobian Refinement 133 5.4.3 Comparative Analysis of Grasp Success Rates: Non-Jacobian vs. Jacobian 137 Chapter 6 Conclusions and Future Work 141 6.1 Conclusions 141 6.2 Future Work 141 References 143 Appendix 149 | - |
| dc.language.iso | en | - |
| dc.subject | 仿生啟發機械手 | zh_TW |
| dc.subject | 五指機械手 | zh_TW |
| dc.subject | 欠驅動 | zh_TW |
| dc.subject | 柔順結構 | zh_TW |
| dc.subject | 抓握策略 | zh_TW |
| dc.subject | 仿生啟發機械手 | zh_TW |
| dc.subject | 五指機械手 | zh_TW |
| dc.subject | 欠驅動 | zh_TW |
| dc.subject | 柔順結構 | zh_TW |
| dc.subject | 抓握策略 | zh_TW |
| dc.subject | bio-inspired robotic | en |
| dc.subject | bio-inspired robotic | en |
| dc.subject | five-fingered robotic hand | en |
| dc.subject | underactuated design | en |
| dc.subject | compliant mechanism | en |
| dc.subject | grasping strategy | en |
| dc.subject | five-fingered robotic hand | en |
| dc.subject | underactuated design | en |
| dc.subject | compliant mechanism | en |
| dc.subject | grasping strategy | en |
| dc.title | SkB-Hand:具複合韌帶骨架結構仿生手之機器手臂物件抓取任務 | zh_TW |
| dc.title | SkB-Hand: A Skeleton Bionic Hand with Composite Tendon Structure for Robotic Object Grasping Tasks | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黄漢邦;余國瑞;莊嘉揚 | zh_TW |
| dc.contributor.oralexamcommittee | Han-Pang Huang;Gwo-Ruey Yu;Jia-Yang Juang | en |
| dc.subject.keyword | 仿生啟發機械手,五指機械手,欠驅動,柔順結構,抓握策略, | zh_TW |
| dc.subject.keyword | bio-inspired robotic,five-fingered robotic hand,underactuated design,compliant mechanism,grasping strategy, | en |
| dc.relation.page | 155 | - |
| dc.identifier.doi | 10.6342/NTU202501508 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 26.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
