Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 會計學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97909
標題: ESG文本具有財務資訊性嗎?大型語言模型摘要與情緒的角色探討
Are ESG Narratives Financially Informative?The Role of LLM Summaries and Sentiment
作者: 詹雅婷
Ya-Ting Jhan
指導教授: 謝昇峯
Sheng-Feng Hsieh
關鍵字: ESG揭露,大型語言模型,情緒分析,財務表現,文字摘要,
ESG disclosure,large language models (LLMs),sentiment analysis,financial performance,text summarization,
出版年 : 2025
學位: 碩士
摘要: 本研究旨在探討企業永續報告書中關於環境、社會與公司治理(ESG)揭露內容是否具有財務資訊價值,並進一步分析大型語言模型(Large Language Models, LLMs)所生成之摘要文本與其所包含之情緒對企業財務績效與市場評價的影響。本文蒐集2010年至2024年間標準普爾500指數(S&P 500)中非金融類企業之ESG報告書,運用Gemini 1.5 Flash模型進行報告摘要生成,並透過FinBERT模型進行情緒分析。實證結果顯示,相較於原始報告書文本所萃取之情緒,LLM生成摘要中所反映之情緒與企業當期與次期資產報酬率(ROA),以及次期Tobin’s Q,皆呈現顯著正向關聯,顯示LLM摘要具備更高之資訊性與預測性。此外,傳統機構提供之ESG評等在本研究中未能展現顯著解釋力。綜合而言,本文證實大型語言模型可有效濃縮冗長的永續揭露內容,提升其可讀性與財務相關性,為資本市場參與者提供具決策意義之永續資訊,並為ESG文本分析提供嶄新的研究視角與方法論貢獻。
This study examines whether the narrative content of Environmental, Social, and Governance (ESG) reports contains financially informative signals, and further investigates the role of summary sentiment generated by Large Language Models (LLMs) in relation to firm performance and valuation. Utilizing a sample of ESG reports from non-financial firms listed on the S&P 500 between 2010 and 2024, we apply the Gemini 1.5 Flash model to generate concise summaries, followed by sentiment analysis using the FinBERT model. Empirical results reveal that, compared to sentiments derived from full-length ESG texts, sentiments extracted from LLM-generated summaries exhibit a significantly positive association with both contemporaneous and subsequent return on assets (ROA), as well as future Tobin’s Q. These findings suggest that LLM summaries enhance the informativeness and predictive power of ESG disclosures. In contrast, institutional ESG ratings do not demonstrate significant explanatory power in the same models. Overall, this study highlights the potential of LLMs to distill value-relevant content from lengthy ESG narratives, improve information processing efficiency, and enhance the decision-usefulness of sustainability disclosures. The findings contribute to the growing literature on AI-assisted financial text analysis and offer a novel methodological approach to ESG research.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97909
DOI: 10.6342/NTU202501836
全文授權: 同意授權(限校園內公開)
電子全文公開日期: 2026-08-31
顯示於系所單位:會計學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
1.29 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved