請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97905完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭鴻基 | zh_TW |
| dc.contributor.advisor | Hung-Chi Kuo | en |
| dc.contributor.author | 廖奕鈞 | zh_TW |
| dc.contributor.author | Yi-Jyun Liao | en |
| dc.date.accessioned | 2025-07-22T16:09:02Z | - |
| dc.date.available | 2025-07-23 | - |
| dc.date.copyright | 2025-07-22 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-15 | - |
| dc.identifier.citation | [1] Belanger, J. I., & Webster, P. J, 2012 : Extended Prediction of North Indian Ocean Tropical Cyclones. Weather and Forecasting, 27, 757–769.
[2] Bessafi, M., & Wheeler, M. C, 2006 : Modulation of South Indian Ocean Tropical Cyclones by the Madden–Julian Oscillation and Convectively Coupled Equatorial Waves. Monthly Weather Review, 134, 638–656. [3] Camargo, S. J., & Wheeler, M. C, 2009 : Diagnosis of the MJO Modulation of Tropical Cyclogenesis Using an Empirical Index. Journal of the Atmospheric Sciences, 66, 3061–3074. [4] Camp, J., & Wheeler, M. C, 2018 : Skilful multiweek tropical cyclone prediction in ACCESS-S1 and the role of the MJO. RMetS, 144, 1337–1351. [5] Cao, X., & Chen, G, 2016 : Simulations of tropical cyclogenesis associated with different monsoon trough patterns over the western North Pacific. Meteorology and Atmospheric Physics, 128, 491–511. [6] Elsberry, R. L, 2014 : Advances in research and forecasting of tropical cyclones from 1963–2013. Asia-Pacific J. Atmos. Sci., 50, 3–16. [7] Elsberry, R. L., Jordan, M. S., & Vitart, F, 2011 : Evaluation of the ECMWF 32 day ensemble predictions during 2009 season of western North Pacific tropical cyclone events on intraseasonal timescales. Asia-Pacific J. Atmos. Sci., 47, 305–318. [8] Elsberry, R. L., Jordan, M. S., & Vitart, F, 2010 : Predictability of tropical cyclone events on intraseasonal timescales with the ECMWF monthly forecast model. Asia-Pacific J. Atmos. Sci., 46, 135–153. [9] Fang, J., & Zhang, F, 2016 : Contribution of Tropical Waves to the Formation of Supertyphoon Megi (2010). Journal of the Atmospheric Sciences, 73, 4387–4405. [10] Feng, X., & Wu, L, 2021 : Roles of interdecadal variability of the western North Pacific monsoon trough in shifting tropical cyclone formation. Climate Dynamics, 58, 87–95. [11] Ferreira, R. N., & Schubert, W. H, 1997 : Barotropic Aspects of ITCZ Breakdown. Journal of the Atmospheric Sciences, 54, 261–285. [12] Gao, K., & Chen, J. H, 2019 : Skillful Prediction of Monthly Major Hurricane Activity in the North Atlantic with Two‐way Nesting. Geophysical Research Letters, 46, 9222–9230. [13] Henderson, S. A., & Maloney, E. D, 2013 : An Intraseasonal Prediction Model of Atlantic and East Pacific Tropical Cyclone Genesis. Monthly Weather Review, 141, 1925–1942. [14] Hendricks, E. A., & Montgomery, M. T, 2004 : The Role of “Vortical” Hot Towers in the Formation of Tropical Cyclone Diana (1984). Journal of the Atmospheric Sciences, 61, 1209–1232. [15] Ho, C. H, 2006 : Variation of tropical cyclone activity in the South Indian Ocean: El Niño–Southern Oscillation and Madden-Julian Oscillation effects. Journal of Geophysical Research, 111, D22101. [16] Horn, M, 2014 : Tracking Scheme Dependence of Simulated Tropical Cyclone Response to Idealized Climate Simulations. Journal of Climate, 27, 9197–9213. [17] Hsieh, T. L., & Vecchi, G. A, 2020 : Large-scale control on the frequency of tropical cyclones and seeds: a consistent relationship across a hierarchy of global atmospheric models. Climate Dynamics, 55, 3177–3196. [18] Klotzbach, P. J., & Oliver, E. C. J, 2015 : Variations in global tropical cyclone activity and the Madden-Julian Oscillation since the midtwentieth century. Geophysical Research Letters, 42, 4199–4207. [19] Klotzbach, P. J, 2014 : The Madden–Julian Oscillation’s Impacts on Worldwide Tropical Cyclone Activity. Journal of Climate, 27, 2317–2330. [20] Knutson, T., & Sugi, M, 2020 : Tropical Cyclones and Climate Change Assessment: Part II: Projected Response to Anthropogenic Warming. Bulletin of the American Meteorological Society, 101, E303–E322. [21] Kuo, H. C., & Chen, J. H, 2001 : Rossby Waves in Zonally Opposing Mean Flow: Behavior in Northwest Pacific Summer Monsoon. Journal of the Atmospheric Sciences, 58, 1035–1050. [22] Kurihara, Y, 1993 : An Initialization Scheme of Hurricane Models by Vortex Specification. Monthly Weather Review, 121, 2030–2045. [23] Lee, C. Y., & Camargo, S. J, 2018 : Subseasonal Tropical Cyclone Genesis Prediction and MJO in the S2S Dataset. AMS, 33, 967–988. [24] Leroy, A., & Wheeler, M. C, 2008 : Statistical Prediction of Weekly Tropical Cyclone Activity in the Southern Hemisphere. Monthly Weather Review, 136, 3637–3654. [25] Maloney, E. D., & Hartmann, D. L, 2000 : Modulation of Eastern North Pacific Hurricanes by the Madden–Julian Oscillation. Journal of Climate, 13, 1451–1460. [26] Montgomery, M. T., & Nicholls, M. E, 2006 : A Vortical Hot Tower Route to Tropical Cyclogenesis. Journal of the Atmospheric Sciences, 63, 355–386. [27] Murphy, A. H, 1996 : The Finley Affair: A Signal Event in the History of Forecast Verification. Weather and Forecasting, 11, 3–20. [28] Roebber, P. J, 2008 : NOTES AND CORRESPONDENCE Visualizing Multiple Measures of Forecast Quality. Department of Mathematical Sciences, University of Wisconsin. [29] Slade, S. A., & Maloney, E. D, 2013 : An intraseasonal prediction model of Atlantic and East Pacific tropical cyclone genesis. Monthly Weather Review, 141(6), 1925–1942. [30] Thorncroft, C., & Hodges, K, 2001 : African Easterly Wave Variability and Its Relationship to Atlantic Tropical Cyclone Activity. Journal of Climate, 14, 1166–1179. [31] Tsai, H.-C., & Elsberry, R. L, 2013 : Opportunities and challenges for extended-range predictions of tropical cyclone impacts on hydrological predictions. J. Hydrol. 506, 42-54. [32] Tsai, H.-C., & Elsberry, R. L, 2013 : Objective Verifications and False Alarm Analyses of Western North Pacific Tropical Cyclone Event Forecasts by the ECMWF 32-Day Ensemble. Asia-Pacific Journal of Atmospheric Sciences, 49, 409–420. [33] Tsai, H.-C., & Elsberry, R. L, 2014 : Extended-Range Forecasts of Atlantic Tropical Cyclone Events during 2012 Using the ECMWF 32-Day Ensemble Prediction. Weather and Forecasting, 29, 271–288. [34] Vitart, F, 2009 : Impact of the Madden Julian Oscillation on tropical storms and risk of landfall in the ECMWF forecast system. Geophysical Research Letters, 36. [35] Vitart, F., Leroy, A., & Wheeler, M. C, 2010 : A Comparison of Dynamical and Statistical Predictions of Weekly Tropical Cyclone Activity in the Southern Hemisphere. Monthly Weather Review, 138, 3671–3682. [36] Wang, X., & Zhou, W, 2023 : Interdecadal variation of the monsoon trough and its relationship with tropical cyclone genesis over the South China Sea and Philippine Sea around the mid‑2000s. Climate Dynamics, 62, 3743–3762. [37] Wheeler, M., & Kiladis, G. N, 1999 : Convectively Coupled Equatorial Waves: Analysis of Clouds and Temperature in the Wavenumber–Frequency Domain. Journal of the Atmospheric Sciences, 56, 374–399. [38] Zhao, M, 2009 : Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. Journal of Climate, 22, 6653–6678. [39] 鄧旭峰,2016:西北太平洋熱帶雲簇之形成與發展。國立台灣大學博士論文* 178頁。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97905 | - |
| dc.description.abstract | 隨著過去兩年來 AI 模型的快速發展,越來越多的深度學習天氣預報(Data-Driven Weather Prediction, DWP)模型不斷出現,能夠提供快速且方便的預測。在颱風預報方面,從過去的案例中可以看出,AI 模型在許多情況下並不遜於傳統數值模式,甚至能超越之。本研究針對2023年西北太平洋颱風個案,利用DWP模型在不同預測時效第一週(W1)至第四週(W4)所產生的系集預報,測試並比較不同 DWP 模型對颱風路徑的預測能力,並進一步了解其預報特性。在集合颱風路徑評分方法中,我們採用了 LHV(Likelihood Value)評分方式,並定義了一種創新的訊號偵測方法以檢測正確預報(Hit)、缺報(Miss)、誤報(False Alarm)、正確缺報(Correct Negative)。比較兩個 AI 模型(Pangu 與 FCNV2)在所有個案中的整體預報表現後發現,Pangu 模型在 W4 預報時較容易出現颱風缺報,而 FCNV2 則有較高的誤報傾向。從大尺度環境的預報能力來看,Pangu 模型在 W4 之後會低估 Z500 強度,而 FCNV2 則能維持其強度。此外,Pangu 模型在 W3 之後逐漸失去季風槽結構,可能導致其產生颱風的能力下降,因此產生的颱風數量較少,且分布在較高緯度地區。相較之下,FCNV2 能夠維持季風槽結構,導致產生較多颱風,並集中在低緯度的合流區域。透過延伸實驗,我們也確認了季風槽在擾動成長中的關鍵作用。最後使用 Wheeler-Kiladis 圖,我們比較了 ERA5、Pangu 預報與 FCNV2 預報的波動特性。結果顯示,在我們實驗目標的2023年7-10月的四個月間,FCNV2 與 ERA5 更為接近,但兩模式在東傳波動存在顯著差異,這些差異為未來的進一步研究提供了機會;而在較長時間的預報結果中,兩模式之Wheeler-Kiladis 圖較為相近。在整體模式預報波動的趨勢是否有顯著的差異造成大尺度結構的不同,可能需要未來更長的預報時間以驗證。 | zh_TW |
| dc.description.abstract | With the rapid development of AI models over the past two years, an increasing number of Data-Driven Weather Prediction (DWP) models have emerged, offering fast and convenient forecasting capabilities. In terms of typhoon cyclone forecasting, past cases have shown that AI models are, in many instances, not inferior to traditional numerical models and can even outperform them.In this study, we utilized ensemble forecasts generated by DWP models at different lead times (W1 to W4) for typhoon cases in the Northwest Pacific in 2023 to test and compare the ability of various DWP models to predict typhoon tracks, and to further understand the characteristics of these forecasts. For ensemble typhoon track evaluation, we adopted the LHV (Likelihood Value) scoring method and introduced an innovative signal detection framework, which includes Hit, Miss, Correct Rejection, and False Alarm.By comparing the overall forecasting performance of two AI models, Pangu and FCNV2, across all cases, we found that the Pangu model exhibited a higher rate of typhoon misses (Miss) at W4, while FCNV2 showed a greater tendency for false alarms (False Alarm). In terms of large-scale environmental prediction, the Pangu model tended to underestimate the intensity of Z500 after W4, whereas FCNV2 was able to maintain its intensity. Additionally, the Pangu model gradually lost the monsoon trough structure after W3, potentially contributing to a reduction in its typhoon generation capability. As a result, the number of typhoons it generated was smaller and tended to be scattered at higher latitudes. In contrast, FCNV2 was able to maintain the monsoon trough, resulting in a greater number of typhoons concentrated in the low-latitude convergence region.Through experiments, we also confirmed the crucial role of the monsoon trough in disturbance growth.Finally, using the Wheeler-Kiladis diagram, we compared the wave characteristics of ERA5, Pangu forecasts, and FCNV2 forecasts. The results showed that during our targeted four-month period (July to October 2023), FCNV2 was more similar to ERA5, though there were still significant differences in eastward-propagating waves between the two AI models. These differences present opportunities for further research. Over the longer period, the Wheeler-Kiladis diagrams of the two models were more similar. Whether these overall differences in model-predicted wave characteristics lead to significant variations in large-scale structures may require longer forecast periods in future studies to verify. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-22T16:09:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-22T16:09:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iii 目次 iv 圖次 vi 表次 xii 第一章 前言 1 1.1 研究背景 1 1.2 研究目的及動機 3 第二章 實驗設計及方法 4 2.1深度學習模式及資料介紹 4 2.1.1 Pangu-Weather(Pangu) 4 2.1.2 ForeCastNet V1(FCNV1) 5 2.1.3 ForeCastNet V2(FCNV2) 5 2.2實驗設計介紹 6 2.3颱風識別及追蹤 7 2.3.1 颱風辨識 7 2.3.2 氣旋路徑追蹤 7 2.4颱風路徑匹配度評分 8 2.5系集信號判定 9 2.6系集技術得分 10 第三章 實驗結果及分析 12 3.1 Pangu 、FCNV1及FCNV2系集表現初步探討 12 3.2個案介紹及分析 – Talim 13 3.3個案介紹及分析 – Lan 15 3.4整體分析 17 第四章 延伸實驗 20 4.1季風合流區氣旋生成實驗 20 4.2 Wheeler-Kiladis Diagram 21 第五章 總結與討論 22 參考文獻 27 附錄 30 附錄一 30 附錄二 31 附表 33 附圖 38 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 季風槽 | zh_TW |
| dc.subject | 颱風 | zh_TW |
| dc.subject | 展期系集預報 | zh_TW |
| dc.subject | DWP模式 | zh_TW |
| dc.subject | 颱風 | zh_TW |
| dc.subject | 展期系集預報 | zh_TW |
| dc.subject | DWP模式 | zh_TW |
| dc.subject | 季風槽 | zh_TW |
| dc.subject | Extended-range Ensemble Forecast | en |
| dc.subject | Typhoon | en |
| dc.subject | Monsoon Trough | en |
| dc.subject | DWP Model | en |
| dc.subject | Extended-range Ensemble Forecast | en |
| dc.subject | Typhoon | en |
| dc.subject | Monsoon Trough | en |
| dc.subject | DWP Model | en |
| dc.title | 深度學習模式對西北太平洋熱帶氣旋事件的展期預報能力 | zh_TW |
| dc.title | Extended Range Forecasting Capabilities of Western North Pacific Tropical Cyclone Events by DWP Models | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 陳柏孚 | zh_TW |
| dc.contributor.coadvisor | Buo-Fu Chen | en |
| dc.contributor.oralexamcommittee | 蔡孝忠;曾開治 | zh_TW |
| dc.contributor.oralexamcommittee | Hsiao-Chung Tsai;Kai-Chih Tseng | en |
| dc.subject.keyword | 颱風,展期系集預報,DWP模式,季風槽, | zh_TW |
| dc.subject.keyword | Typhoon,Extended-range Ensemble Forecast,DWP Model,Monsoon Trough, | en |
| dc.relation.page | 77 | - |
| dc.identifier.doi | 10.6342/NTU202501746 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-16 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 大氣科學系 | - |
| dc.date.embargo-lift | 2030-07-14 | - |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-07-14 | 13.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
